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Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM’s origin,

recurrence, and resistance to treatment. However, the understanding of

how mRNA expression patterns of GBM subtypes are reflected at global

proteome level in GSCs is limited. To characterize protein expression in

GSCs, we performed in-depth proteogenomic analysis of patient-derived

GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000

proteins in two independent GSC panels and propose a GSC-associated

proteomic signature characterizing two distinct phenotypic conditions; one

defined by proteins upregulated in proneural and classical GSCs (GPC-

like), and another by proteins upregulated in mesenchymal GSCs (GM-

like). The GM-like protein set in GBM tissue was associated with necrosis,

recurrence, and worse overall survival. Through proteogenomics, we dis-

covered 252 non-canonical peptides in the GSCs, i.e., protein sequences

that are variant or derive from genome regions previously considered non-

protein-coding, including variants of the heterogeneous ribonucleoproteins

implicated in RNA splicing. In summary, GSCs express two protein sets

that have an inverse association with clinical outcomes in GBM. The dis-

covery of non-canonical protein sequences questions existing gene models

and pinpoints new protein targets for research in GBM.
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1. Introduction

Glioblastoma (GBM) is the most common malignant

primary brain tumor, almost inevitably fatal, and

characterized by short survival [1–3]. A previous

GBM molecular classification proposed by Verhaak

et al. [4], based on mRNA expression patterns, distin-

guished four GBM subtypes: classical, mesenchymal,

proneural, and neural. More recently, the classifica-

tion was revised by removing the neural subtype and

highlighting subtypes’ plasticity, i.e. the ability to

switch from one subtype to another [5]. The gene

expression in adult GBM tumors has been further

explored by the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) at several levels, including the

proteome, which led to a new, multiomic classifica-

tion of GBM tumor subtypes to: nmf1 (proneural-

like), nmf2 (mesenchymal-like), and nmf3 (classical-

like) [6].

Extensive research about the origin of GBM has

established the theory that cancer stem cells drive the

development and progression of GBM, contribute to

resistance to chemo- and radio-therapy, and induce

GBM recurrence [7,8]. Primary GBM stem cells

(GSCs) have shown to reflect the diversity of GBM,

recapitulate the tumor subtypes at mRNA level, and

represent a good model to study the molecular profile

of this cancer and explore new therapeutic targets [9].

Many efforts were undertaken to uncover gene expres-

sion signatures that are pivotal for GSC functions,

expanding our understanding of the transcriptome

and proteome of GBM and GSCs [9–18]. Single-cell

RNA-sequencing studies have demonstrated that

GSCs are plastic and can switch between different

subtypes [19]. Despite these efforts to characterize the

transcriptional programs responsible for GSCs’ plas-

ticity and stemness, no study has provided in-depth

proteomic or proteogenomic profiling of primary

GBM stem cells. Furthermore, it is not known

how well GBM subtypes are recapitulated in GSCs at

protein level.

The aim of this study was to explore the proteomic

and proteogenomic landscape of GSCs, to enhance

our comprehension on: (a) protein signatures that

would define GSC characteristics; (b) the relation

between mRNA and protein levels in GSCs; (c) how

the expression of GSC signatures relates to disease

aggressiveness in GBM cancer tissue; and (d) the exis-

tence of non-canonical peptides originating from gen-

ome regions previously considered as non-protein-

coding.

Here, we report deep transcriptome and proteome

profiling of patient-derived GSCs, by RNA-sequencing

(RNAseq) and high-resolution isoelectric focusing coupled

with liquid chromatography and mass-spectrometry (HiR-

IEF LC–MS/MS), respectively. We discovered a GSC-

associated protein signature (GSAPS), which reflects

two protein programs in GSCs that are inversely asso-

ciated with clinical outcomes in GBM, one associated

with the non-mesenchymal (proneural and classical)

subtypes and another associated with the mesenchymal

subtype. We demonstrate that GSAPS recapitulates key

features of GSCs and is associated with recurrence and

overall survival (OS) in GBM patients. Furthermore,

we report mRNA-protein correlations and non-

canonical protein sequences in GSCs, discovering poten-

tially new protein-coding targets for research and treat-

ment (Fig. 1A).

2. Materials and methods

2.1. GSCs and GBM tumors

2.1.1. Ethical considerations

All patients gave written informed consent to use the

samples for experiments, and the study methodologies

were in line with the standards outlined in the Decla-

ration of Helsinki. Processing of the BT human GSC

lines and HGCC GSC lines was approved by the

institutional Ethical Committee of Fondazione

IRCCS Istituto Neurologico C. Besta [20] and the

Uppsala Ethical Review Board (ID: 2007/353),

respectively. The experiments including the GBM tis-

sue samples were approved by the Ethics Committee

of the Provinces of Chieti and Pescara, and of the

“G. d’Annunzio” University of Chieti-Pescara (ID:

21052020).

2.1.2. GSC cell lines

BT human GSC lines were derived from surgical sam-

ples of consecutive primary GBMs, obtained at the

Neurological Institute of the Carlo Besta Foundation

IRCCS according to a protocol approved by the insti-

tutional Ethical Committee, which was previously

described and characterized [20,21]. Briefly, BT GSCs

were derived by mechanical dissociation and digestion

of tumor specimens with collagenase type I (Life

Technologies-Invitrogen, Monza, Italy). Single-cell sus-

pensions were plated at clonal density (50 cells�lL�1)

in standard medium containing: DMEM/F-12 (1 : 1)

(19) + GlutaMAX (Gibco, Waltham, MA, USA) con-

taining 1% penicillin/streptomycin (Corning), 1% L-

glutamine (Aurogene, Rome, Italy), 2% B27 (Gibco),

0.1% heparin (Sigma-Aldrich, Waltham, MA, USA),
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Fig. 1. Study workflow and exploratory findings. (A) In a discovery panel of six patient-derived GSC lines, previously subtyped as expressing the

classical and proneural GBM subtype at mRNA level, we have identified variable enrichment of the proneural (PRO) and classical (CLA) GBM

subtype, suggesting a plasticity between the two subtypes. However, all the GSC lines had a suppression for the GBM mesenchymal (MES)

subtype at protein level. We hypothesized that the GSCs are more distinctive at protein level based on whether they express the mesenchymal

subtype or not and aimed to identify a protein signature (GSAPS), that consisted of two protein sets: The proneural and classical-like (GPC-like)

protein set that was upregulated in proneural and classical GSCs and a mesenchymal-like protein set (GM-like) upregulated in mesenchymal

GSCs. GSAPS was identifiable in another panel of 11 patient-derived GSCs, and in GBM tissue, where the expression of higher GPC-like protein

scores was associated with better overall survival, whereas higher GM-like protein scores were associated with worse overall survival. Finally,

by integrating proteomic and transcriptomic expression, we have performed proteogenomic analysis of the discovery panel of GSCs, discovering

novel protein-coding gene regions and providing assessment of how well mRNA levels predict protein levels (figure created with BioRender.

com); (B) PCA based on proteomic expression of the GSC samples and non-GSC cell lines; (C, D) UMAP of protein products of genes included in

the Verhaak 2010 GBM subtypes’ gene sets (C) and Wang 2017 GBM subtypes’ gene sets (D).
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0.002% bFGF (PeproTech, Suzhou, China), and

0.002% EGF (PeproTech), at 37 °C in a humidified

5% CO2 incubator. The BT GSC stemness was charac-

terized by assessing the expression of stem-cell markers

such as SOX2, NES, or CD133, and by performing

in vitro clonogenic assays. The multipotency of BT

GSCs was assessed by culturing dissociated neuro-

spheres in pro-differentiating conditions (single-cell

suspensions plated in pro-adhesive flasks in DMEM/F-

12 containing 2 mM glutamine, penicillin–streptomycin,

B-27 and 10% fetal bovine serum), while measuring

the expression of neural (MAP2), astroglial (GFAP),

or oligodendroglial (GalC) markers. The in vivo

tumorigenic potential of BT GSCs was previously

characterized by subcutaneous injection into immuno-

compromised mice [20,21]. For all experiments, GSCs

were grown in vitro for < 10 passages.

The human glioblastoma T98G (RRID:

CVCL_0556) cell line and the astrocyte line were pur-

chased from ATCC and CliniSciences (Guidonia Mon-

tecelio, Italy), respectively. The T98G cells were

cultured in DMEM supplemented with 10% fetal

bovine serum. The astrocytes were cultured in Astro-

cyte Medium (ScienCell #1801, Carlsbad, CA, USA).

We cultured three biological replicates for each BT

GSC and the T98G line, and one biological replicate

for the astrocyte line. All cell lines were authenticated

by short tandem repeat (STR) profiling using Gene-

Print� 10 System by Promega Italia (Milano, Italy) in

the past 3 years before the experiments. All cell lines

were mycoplasma free (analyzed by PCR) at the time

of experiments.

The human glioma cell culture (HGCC) GSC lines

(RRIDs: CVCL_IR90, CVCL_IR82, CVCL_IS03) are

part of the HGCC biobank (https://hgcc.se/) and have

been previously described and validated [9,22]. The

cells were cultured as previously described, character-

ized for maintaining stemness potential [9,22,23], and

analyzed between passages 10–19. Briefly, the cultures

were maintained on poly-ornithine/laminin-coated

dishes in DMEM/F12 Glutamax (Gibco) and Neu-

robasal medium (Gibco) mixed 1 : 1, with addition of

1% B27 (Invitrogen), 0.5% N2 (Invitrogen), 1% Peni-

cillin/Streptomycin (Sigma), and 10 ng�mL�1 of each

EGF and FGF2 (PeproTech). All HGCC cell lines

were authenticated by STR profiling in the past

3 years before the experiments. They all have been reg-

ularly screened for mycoplasma infection using a

PCR-based method with the primers Myco1 (50-
GGCGAATGGGTGAGTAACACG) and Myco2 (50-
CGGATAACGCTTGCGACTATG) (Invitrogen) and

no cultures have tested positive.

2.1.3. GBM tumor tissue processing

Ten GBM tissue samples were collected and freshly

frozen at the Neurosurgical Unit and evaluated by a

pathologist at the Hospital Spirito Santo, Pescara, “G.

D’Annunzio” University, Chieti, Italy. The tissue sam-

ples were fixated on an OCT compound and cut into

10 lm-thick sections with a kryotome, of which 30

sections were collected in a tube for lysis and parallel

sections were fixed on slides for hematoxylin and eosin

staining. The sections collected in tubes were washed

in PBS to remove the blood, centrifuged, and the tis-

sue pellets were used for subsequent DNA, RNA, and

protein isolation with the AllPrep DNA/RNA/Protein

Mini Kit (Qiagen, Hilden, Germany).

2.2. RNA sequencing

Sequencing libraries for whole transcriptome analysis

were prepared using Stranded mRNA-Seq Library

Preparation Kit. RNAseq was performed on an Illu-

mina HiSeq 2500 Sequencer using standard conditions

at the Next Generation Sequence Facility of University

of Trento (CIBIO, Trento, Italy).

2.2.1. RNA isolation, library preparation, RNA-

sequencing, qRT–PCR

Total RNA from the BT GSCs and the non-GSC cell

lines was isolated by TRIzol (Invitrogen), subjected to

DNase-I (Ambion, Thermo Fisher Scientific, Waltham,

MA, USA) treatment, and RNAs were depleted of

ribosomal RNA. Two RNA samples derived from nor-

mal brain were purchased from Clontech Laboratories

(Takara Bio Europe, Saint-Germain-en-Laye, France)

and BioChain (Newark, CA, USA), respectively, and

underwent RNAseq.

2.2.2. Data quality check

The fastq files generated by the Illumina sequencer

were monitored for quality by the FASTQC tool

(https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/, v.0.11.6). It provides a modular set of analy-

ses that tests if the data has any problems. Since for

each sample there is one FASTQC output, with several

results, we used the MULTIQC tool (http://multiqc.

info/, v.1.4) to aggregate the information for a better

interpretation. The main outcome of these analysis is

that the reads have very good quality and despite

some differences among samples, the further analyses

were performed without corrections at this stage.
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2.2.3. Transcript quantification

Transcript quantification was performed using SALMON

[24]. SALMON applies a quasi-mapping with a two-phase

inference procedure to quantify expression at the tran-

script level. The unique feature that distinguishes SAL-

MON from other transcript assemblers is in its ability to

account for experimental and other biases that are com-

mon to RNAseq data, such as GC content. ENSEMBL

cDNA release 99 from GRCh38 was used as the target

transcriptome. To obtain gene-level quantifications, the

median value across the transcripts of each gene was

assigned as the gene expression. All options were set to

default and �l A parameter was set to detect the library

type from the RNAseq datasets.

2.3. Mass-spectrometry-based proteomics

The samples were prepared and analyzed following the

HiRIEF LC–MS/MS protocol, as previously described

[25]. Brief description is provided below.

2.3.1. Cell lysis and in-solution digestion

The BT GSCs were lysed in 200 lL SDS-lysis buffer

(containing 4% (w/v) SDS, 50 mM HEPES pH 7.6, and

1 mM dithiothreitol) using 1 : 4–10 of sample to buffer

ratio. Afterwards, the cells were heated at 95 °C for

5 min while shaking on a pre-warmed block and soni-

cated to dissolve the pellet and disrupt the remaining

DNA. The lysate was then centrifugated at 14 000 g for

15 min and the supernatant removed. Proteins from

HGCC cells and GBM tissue were extracted with the

AllPrep DNA/RNA/Protein Mini Kit (Qiagen).

The protein concentration in the lysate was deter-

mined by Bio-Rad DC Assay (Hercules, CA, USA)

and equal amounts of each sample was subjected to

in-solution digestion. Briefly, the cell pellet was dena-

tured at 95 °C for 5 min followed by reduction with

dithiothreitol and alkylation with chloroacetamide at

end concentrations of 5 and 10 mM, respectively. Lys-

C was added at a 1 : 50 (w/w) ratio and digestion was

performed at 37 °C, 6 h or overnight. The samples

were further digested by trypsin at a 1 : 50 (w/w) ratio

with 37 °C overnight incubation. After LysC/trypsin

digestion, ~ 1% of each peptide sample was aliquoted

for ~ 15 min gradient LC–MS/MS runs to check for

protease activity by the samples’ miscleavage rate.

2.3.2. TMT-labelling

Before labelling, equal amounts of peptide samples

were pH-adjusted using TEAB, pH 8.5. The resulting

peptide mixtures were labeled with Thermo Fisher Sci-

entific isobaric Tandem Mass Tags (TMT). Biological

triplicates of the BT GSCs and the T98G line, and

technical triplicates of the astrocyte line were labeled

with three TMT-10-plex sets, using two internal stan-

dards per set. The internal standards were made of

sample pools. HGCC GSC samples were run in one

TMTpro-16-plex set, without an internal standard,

leaving the 133C and 134N channels empty. GBM tis-

sue samples were labeled with one TMT-10-plex set,

without an internal standard. Labelling efficiency was

determined by LC–MS/MS before pooling of samples.

Subsequently, sample clean-up was performed by solid

phase extraction (SPE strata-X-C; Phenomenex, Tor-

rance, CA, USA). The labelling schemes per sets can

be found in Tables S1–S3.

2.3.3. High resolution isoelectric focusing (HiRIEF)

After sample clean-up, the sample pool was subjected

to peptide IEF-IPG (isoelectric focusing by immobi-

lized pH gradient) in pI range 3–10. The freeze-dried

peptide sample was dissolved in 250 lL rehydration

solution containing 8 M urea and allowed to adsorb to

the gel strip by swelling overnight. The 24 cm linear

gradient IPG (Immobilized PH Gradient) strip (GE

Healthcare, Chicago, IL, USA) was incubated over-

night in 8 M rehydration solution containing 1% IPG

pharmalyte pH 3–10 (GE Healthcare). After focusing,

the peptides were passively eluted into 72 contiguous

fractions with MilliQ water/35% acetonitrile/35% ace-

tonitrile and 0.1% formic acid, using an in-house con-

structed IPG extractor robotics (GE Healthcare

Biosciences AB, Uppsala, Sweden; prototype instru-

ment) into a 96-well plate (V-bottom, product

#651201; Greiner Bio-One, Kremsm€unster, Austria).

The BT GSCs samples were rerun and additionally

fractionated by IEF-IPG in pI range 3.7–4.9, to detect

more peptides for proteogenomic analyses. The result-

ing fractions were then dried, frozen, and kept at

�20 °C until LC–MS/MS analysis.

2.3.4. LC–MS/MS analysis

Online LC–MS/MS was performed using a Dionex

UltiMateTM 3000 RSLCnano System coupled to a Q-

Exactive HF mass spectrometer (Thermo Fisher Scien-

tific). Each plate well was dissolved in 20 lL solvent A

and 10 lL were injected. Samples were trapped on a

C18 guard-desalting column (Acclaim PepMap 100,

75 lm 9 2 cm, nanoViper, C18, 5 lm, 100 �A), and

separated on a 50 cm long C18 column (Easy spray

PepMap RSLC, C18, 2 lm, 100 �A, 75 lm 9 50 cm).
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The nano capillary solvent A was 95% water, 5%

DMSO, 0.1% formic acid; and solvent B was 5%

water, 5% DMSO, 95% acetonitrile, 0.1% formic

acid. At a constant flow of 0.25 lL�min�1, the curved

gradient went from 2% B up to 40% B in each frac-

tion, followed by a steep increase to 100% B in 5 min

and subsequent re-equilibration with 2% B.

FTMS master scans with 60 000 resolution (and mass

range 300–1700 m/z) were followed by data-dependent

MS/MS (30 000 resolution) on the top 5 ions using

higher energy collision dissociation (HCD) at 30% nor-

malized collision energy. Precursors were isolated with a

2 m/z window. Automatic gain control (AGC) targets

were 16 for MS1 and 15 for MS2, with minimum AGC

target of 13. Maximum injection times were 100 ms for

MS1 and 100 ms for MS2. The entire duty cycle lasted

~ 2.5 s. Dynamic exclusion was used with 30.0 s dura-

tion. Precursors with unassigned charge state or charge

state 1, 7, 8, or > 8 were excluded.

2.3.5. Protein identification

Raw MS/MS files were converted to mzML format

using msconvert from the PROTEOWIZARD tool suite

[26]. Spectra were then searched in the Galaxy frame-

work using tools from the Galaxy-P project [27,28],

including MSGF+ [29] (v.2020.03.14) and PERCOLATOR

[30] (v.3.04.0), where eight subsequent HiRIEF search

result fractions were grouped for PERCOLATOR target/

decoy analysis. Peptide and PSM (Peptide Spectrum

Matches) FDR (False discovery rate) were recalculated

after merging the PERCOLATOR groups of eight search

results into one result per TMT set. The reference

database used was the human protein subset of

ENSEMBL (v.101). Quantification of isobaric reporter

ions was done using OPENMS project’s ISOBARICANA-

LYZER [31] (v.2.5.0). Quantification on reporter ions in

MS2 was for both protein and peptide level quantifica-

tion based on median of PSM ratios, limited to PSMs

mapping only to one protein and with an FDR q-

value < 0.01. FDR for protein level identities was cal-

culated using the �log10 of best-peptide q-value as a

score. The search settings included enzymatic cleavage

of proteins to peptides using trypsin limited to fully

tryptic peptides. Carbamidomethylation of cysteine

was specified as a fixed modification. The minimum

peptide length was specified to be six amino acids.

Variable modification was oxidation of methionine.

2.4. Proteogenomic identification

The proteogenomic pipeline is described in detail else-

where [32]; a brief description is provided as follows.

Transcripts were assembled from the RNAseq data of

each sample using STRINGTIE (v.2.113) [33] based on

the human reference gene annotations (ENSEMBL, v.99).

Next, transcripts with low expression level (TPM < 1)

were removed and a peptide database was generated

from the transcript sequences using custom scripts.

Tryptic peptides with a minimum length of eight

amino acids and a maximum length of 40 amino acids

were kept. The database was fractionated based on the

peptide isoelectric points as further detailed in [25].

Finally, the human canonical proteins (ENSEMBL, v.99)

were appended to the peptide database.

The proteomics data from each cohort were

searched against the peptide database from the same

cohort using MSGF+ Release (version 15 January 2020).

PERCOLATOR (v.3.04.0) was used for PERCOLATOR

target-decoy scoring. Peptides at FDR < 1% were con-

sidered significant, while those matching canonical

protein sequences were removed. Using BLAST, the

remaining peptides were searched against a larger col-

lection of reference protein databases that included

UNIPROT (v.11, December 2019), GENCODE (v.33),

ENSEMBL (v.99), and RefSeq (version 29 May 2020).

Peptides matching any sequence were removed and

those with one mismatch were further validated using

SPECTRUMAI [34]. Finally, the list of novel peptides

contained peptides with more than one mismatch or

no match to known proteins as well as those that

passed SPECTRUMAI.

2.5. Bioinformatics and statistical analyses

2.5.1. Differential expression analysis and GSAPS

derivation

Protein or peptide differential expression analysis was

performed with a two-sided t test for all comparisons

and corrected for multiple testing with the FDR at

5%. The GSAPS was derived by comparing each BT

GSCs triplicate to an astrocyte and T98G line tripli-

cate and finding the intersect of proteins consistently

upregulated and downregulated in the proneural and

classical BT GSCs as compared to non-GSC lines

(Fig. S5). Those proteins that were upregulated in

proneural and classical BT GSCs we named as the

GPC-like protein set, and those that were downregu-

lated in BT GSCs that included many mesenchymal

proteins we named as the GM-like protein set.

We further refined the GSAPS by filtering the initial

proteins that were included in the GPC-like protein set

to include only those proteins that were also upregu-

lated in the proneural and classical GSCs from the

HGCC panel, and the proteins included in the GM-
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like set to include only those proteins that were also

upregulated in the mesenchymal HGCC GSCs based

on log2-fold change.

2.5.2. Protein-mRNA correlation

Protein per-gene expression was calculated as the aver-

age of the proteins’ levels for those proteins matching

to the same gene, whereas the mRNA per-gene expres-

sion was calculated as the sum of TPMs per gene.

Correlations between matching protein and mRNA

expression levels per overlapping genes were tested

with Spearman’s correlation coefficient and two-sided t

test at a = 0.05 and corrected for multiple testing with

the FDR. Protein-mRNA correlation for the CPTAC

data was performed using processed and normalized

proteomic and transcriptomic data available from [6].

The selected gene sets for correlation analyses were

extracted from the Molecular Signature Database

(MSigDb) [35,36], apart from the ‘Glioma-elevated’

and ‘FDA drugs’ datasets, which were extracted from

the Human Protein Atlas [37].

The Bland–Altman analysis on agreement in

mRNA-protein correlations between GSCs and GBM

tissue was performed as previously described [38]. The

genes outside the 95% CI (Confidence Intervals) of the

Bland-Alman plot were considered to have strong dis-

agreement; we extracted the gene lists above and below

the 95% CI and performed enrichment analysis with

an overrepresentation test in g:Profiler.

2.5.3. Features reduction, visual projection, and

clustering

Principal component analysis (PCA), Uniform Mani-

fold Approximation and Projection (UMAP), and

hierarchical clustering of samples based on protein

expression was performed on log2 relative protein

expression values. We used the prcomp, umap, and

Heatmap functions from the stats, umap, and Com-

plexHeatmap packages, respectively.

2.5.4. ssGSEA, GSEA and MSigDB

Single-sample gene set enrichment analysis (ssGSEA)

was performed by ordering the protein rank according

to their log2 relative protein expression values in a

sample and performing a gene set enrichment analysis

(GSEA) on gene sets of interest, adjusting for multiple

comparisons at 5% FDR. For subtyping the GSCs,

the Verhaak gene sets were downloaded from the

MSigDB [35,36] and we created a dataset with Entrez

IDs for the Wang gene sets and the GSAPS protein

sets. GSEA analyses were performed separately for

published, hallmark (H), and GO (gene-ontology) bio-

logical processes’ gene sets by sub-setting the MSigDB

to the C2-CGP (chemical and genetic perturbations),

C2-REACTOME, H, and C5 GO biological processes

categories. The ranking in the comparisons GPC-like

vs. GM-like GSCs and recurrent vs. primary GBM tis-

sue was based on the difference in log2 average expres-

sion in the first group and the log2 average expression

in the second group. In instances where several pro-

teins matched to the same gene name, we excluded

those proteins from the ranked GSEA list, to reduce

uncertainty in the ranking. For all the GSE analyses

we used the GSEA function from the CLUSTERPROFILER

package.

2.5.5. Protein–protein interactions

The known and predicted protein–protein interactions

of the proteins included in the GSAPS were derived

from STRING, v.11.5 [39]. The network was based on

confidence values above 0.4 of the entire STRING net-

work, including all data sources. The proteins were

then further clustered with k-means, assigning 10 clus-

ters.

2.5.6. GBM anatomical localization

Glioblastoma differentially expressed gene sets per

anatomic region were downloaded from the Ivy Lea-

gue GBM Atlas [40], including gene sets of leading

edge (n = 1998), cellular tumor (n = 114), palisades

around necrosis (n = 389), and microvascular prolifera-

tion (n = 1126). The gene sets per regions consisted of

genes two-folds (log2-FC > 1) differentially expressed

in that region as compared to the remaining regions,

at 1% FDR, based on an EDGER analysis. For the

overlapping genes identified in our proteomic experi-

ment and included in the Ivy GBM Atlas gene sets, we

calculated the mean protein log2-FC between GPC-

like and GM-like HGCC GSCs as a difference

between mean log2 protein values and categorized

them as up in GPC-like (if log2-FC > 0) and up in

GM-like (if log2-FC < 0). We then made contingency

tables and tested if the proteins were overrepresented

in the anatomical regions’ gene sets with a two-sided

Fisher’s exact test, at a < 0.05.

2.5.7. CPTAC proteomics dataset

We downloaded a processed, mass-spectrometry,

global-proteomics, log2-normalized protein expression

matrix of GBM tissue samples (n = 99) and normal
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brain tissue samples (n = 10), along with clinical, sub-

type, molecular, and survival data from the CPTAC

cohort multiomic datasets [6]. Based on the expression

of proteins included in the GSAPS, the samples were

clustered with PCA and hierarchical clustering

(method: Euclidean distance). We then performed

ssGSEA for the refined GPC-like and GM-like protein

set, by ranking the proteins within a sample based on

their log2 relative expression values and considered the

protein set enriched and upregulated in the sample if

the enrichment score was > 0, at P < 0.05 and 5%

FDR.

The OS was calculated as the time from date of ini-

tial pathological diagnosis to date of death or date of

loss to follow-up. The OS could not be calculated for

two patients due to missing data. GPC-like and GM-

like sum scores were calculated by summing up the rel-

ative protein expression values of the proteins included

in the refined GPC-like and GM-like protein set,

respectively, and log2-normalizing them. We then per-

formed a survival analysis with Cox proportional haz-

ards models and a likelihood ratio test at a = 0.05,

adjusting the scores for age and sex. We did not adjust

for MGMT promotor methylation status because of

the large proportion of missing values for this variable

in the CPTAC cohort (n = 62, 63.918%). To confirm

the association between the refined GPC-like and GM-

like sum scores and OS, we categorized the scores

based on quartile expression values to high/medium

(> first quartile) and low score (< first quartile) and

performed KM survival analysis with a logrank test,

at a = 0.05. Finally, we calculated a log2 ratio of the

refined GPC-like to the GM-like sum score and per-

formed survival analysis with Cox proportional haz-

ards models and likelihood ratio test, adjusting for age

and sex. We then categorized the GPC-like/GM-like

ratio to high (> third quartile), medium (> first and ≤
third quartile), and low (≤ first quartile) and per-

formed KM survival analysis with a log-rank test, at

a = 0.05.

2.5.8. Protein structure models

Experimental models for the protein structure of

HNRNPA2B1 were downloaded from the PDB data-

base: 1X4B (nuclear magnetic resonance, residues 1–
103) and 5WWG (X-ray crystallography, residues 12–
195). Because a full-length protein structure is not

available for the canonical isoform of HNRNPA2B1,

we used the ALPHAFOLD2-predicted structure model of

isoform B1 (AF-P22626-F1) for comparison to the

non-canonical protein structure. The protein structure

of the canonical A2 isoform and the non-canonical

protein structure of the new isoforms of HNRNPA2B1

(310- and 390-residues long) were predicted with

ALPHAFOLD2 [41], using a Python Jupiter Notebook

within COLABFOLD [42].

2.5.9. Software

All analyses were performed in R v.4.0.3, unless stated

otherwise. Visualization of protein structures and

sequence matching was performed in UCSF CHIMERA,

v.1.16 (University of California, San Franscisco, CA,

USA). The figure panels were created in Adobe Illus-

trator 2020. The graphical abstract was created in

BIORENDER (Toronto, Ontario, Canada).

3. Results

3.1. Protein identification and GBM proteome

subtyping

To extract a protein signature that recapitulates

GSC-specific features, we analyzed six primary GSCs

(hereafter referred to as BT GSCs) with RNAseq and

in-depth proteomic profiling (Fig. 1A). Three GSCs

were previously classified as expressing the classical

subtype and three expressing the proneural subtype

(Wang 2017 mRNA classification, Table S4)

[20,21,43]. All samples were run in biological tripli-

cates. To extract proteins that are consistently dereg-

ulated in GSCs but not in other brain-derived cells,

we included primary human healthy astrocytes with

three technical replicates representing normal brain

cells, and three biological replicates of the T98G

human glioblastoma cell line, representing a non-stem

glioblastoma cell line (hereafter defined as non-GSC

brain cell lines). Across all samples, we identified

11 140 proteins, of which 9161 proteins (82.24%) had

no missing values and were included in the analyses.

This is, so far, the most in-depth proteomic charac-

terization of GSCs.

Based on total proteome expression, the GSCs

clearly clustered away from non-GSC brain cell lines

(Fig. 1B; Fig. S1A, Table S5). Performing ssGSEA to

define the Verhaak GBM subtype at protein level

showed that three cell lines overexpressed a different

subtype at protein level compared to their initial

mRNA subtype classification; some GSCs initially

classified as proneural had enrichment for the classical

subtype and vice versa. In addition, the proteins

included in the proneural gene set projected closer to

the classical gene set, suggesting that they were coex-

pressed in the GSCs (Fig. 1C,D). This also implied

that classical GSCs are more closely related to the
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proneural GSCs in human samples, as suggested in a

mouse cell-of-origin gene signature in mouse GSCs

[23]. As expected, based on their original classification,

the GSCs showed higher expression of protein prod-

ucts of genes included in both the proneural and clas-

sical subtype as compared to the non-GSC lines, but

had a consistently lower expression of proteins deriv-

ing from mesenchymal gene sets (Fig. S1B). Based on

ssGSEA, we did not detect an activation of the refined

Wang proneural and classical gene sets [5] at protein

level, possibly because these gene sets are smaller than

the Verhaak GBM gene sets [4]. However, all GSCs

had a suppression for the Wang mesenchymal subtype,

in agreement with the Verhaak gene sets (Fig. S2A,B).

Furthermore, the MET gene had consistent downregu-

lation in BT GSCs, and all GSCs had higher EGFR

to MET ratio compared to non-GSC cell lines

(Fig. S2A,C), suggesting that higher EGFR-to-MET

ratio and a downregulated MET could be biomarkers

of the non-mesenchymal subtypes. The downregulation

of MET in classical GSCs agrees with previous find-

ings [20], however, we found that MET is downregu-

lated in proneural GSCs at protein level opposing the

findings of De Bacco et al. [20].

This shows that whereas the cell lines have an inter-

changeable enrichment for the proneural and classical

subtypes, they had a consistent suppression of the mes-

enchymal subtype.

3.2. Protein-mRNA correlations in GSCs

Due to the relatively low agreement between protein

and mRNA expression levels in the gene sets used to

classify GBM subtypes in the BT GSCs, we analyzed

the overall agreement between mRNA and protein

per-gene products in GSCs. Per-gene correlation analy-

sis of mRNA and protein matching to 9007 genes

showed an overall moderate agreement between

mRNA and protein levels (median Spearman’s

q = 0.49, P < 0.05, 5% FDR, Fig. 2A; Table S6). Ana-

lyzing several established GBM and splicing gene sets

of interest [4,5,37,44] showed similar mRNA-protein

correlations as observed in the entire proteome identi-

fied in the GSCs (Fig. 2B). Genes upregulated in

CD133+ glioma stem cells compared to CD133�
glioma stem cells [44] and glioma-elevated genes (ob-

tained from the Human Protein Atlas – HPA [37]) had

a higher than overall mRNA-protein correlation,

whereas genes involved in splicing and heterogeneous

ribonucleoproteins (HNRNPs) had lower than overall

correlation in GSCs.

To verify whether the overall moderate mRNA-

protein correlations are observable at GBM tissue level

as well, we downloaded proteomic and transcriptomic

data from the recently published CPTAC GBM

cohort, which includes multiomic profiling of 99

treatment-na€ıve GBM cancer tissues [6]. Based on an

analysis of mRNA and protein products deriving from

8292 genes, GBM tissue also had a moderate overall

mRNA-protein correlation (median Spearman’s

q = 0.51, P < 0.05, 5% FDR, Fig. 2C; Table S7).

GBM tissue had more statistically significant correla-

tions and less skewed distribution of mRNA-protein

correlations compared to the GSCs, which is most

likely due to the larger sample size of the GBM cohort

that provided better estimates. The selected gene sets

of interest showed mRNA-protein correlation patterns

in tissue like those in GSCs (Fig. 2D,E). Comparing

the agreement between correlations’ estimates by a

Bland–Altman plot analysis showed that proteins

involved in RNA splicing/processing and protein-

folding had lower and higher mRNA-protein correla-

tion in the GSC lines compared to GBM tissue,

respectively (Fig. 2F; Fig. S3), suggesting that GSCs

might have an impaired regulation of RNA metabo-

lism but are less likely to accumulate unfolded proteins

than GBM tissue due to better translation of proteins

that regulate protein folding.

The mesenchymal gene sets had the highest concor-

dance between mRNA and protein level in GBM tis-

sue, with median correlation of q = 0.823 and

q = 0.803 for the Verhaak and Wang mesenchymal

gene sets, respectively (Fig. 2D). This was much higher

compared to the median mRNA-protein correlation in

GSCs of q = 0.544 and q = 0.474 for the Verhaak and

Wang mesenchymal gene sets, respectively (Fig. 2B).

The classical and proneural gene sets also had higher

mRNA-protein correlation in GBM tissue, compared

to GSCs, confirming that these gene sets might per-

form better at subtyping GBM tumors than subtyping

GSCs. However, one limitation in our study is that the

discovery panel did not include mesenchymal GSCs,

which has limited the variance in protein levels for the

subtypes’ gene sets, albeit a minor effect (Fig. S4). It is

also possible that non-cancerous cells, such as stromal

and immune cells, could have contributed to a larger

variance in protein expression of genes included in the

GBM subtypes, suggesting that the GBM subtypes

expression patterns might not be fully reflected at GSC

level. The higher correlations in tissue for the mes-

enchymal gene sets are expected, because it has been

recently shown that this subtype has a larger infiltra-

tion of immune cells [6]. Still, other factors, such as

gene sets’ size, mRNA decay, protein degradation,

study sample size, protein identification and technical

measurement errors could have all contributed to the
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Fig. 2. mRNA-protein correlations in BT GSCs and in CPTAC GBM tissue. (A) mRNA-protein Spearman correlation coefficients (qGSCs) of

genes identified in BT GSCs (ncell = 18) with both RNA-seq and HiRIEF LC–MS/MS; (B) qGSCs of genes included in selected gene sets of

interest; (C) mRNA-protein correlation of genes (qGBM tissue) identified in GBM tissue, CPTAC cohort (ntissue = 99); (D) qGBM tissue of genes

included in selected gene sets of interest; (E) Density plot comparing mRNA-protein correlation coefficients in GSCs and GBM tissue. Most

of the genes had a positive correlation (q > 0) in both GSCs and GBM tissue; (F) Bland–Altman plot comparing the agreement between

qGSCs and qGBM tissue. The mean of the coefficients is plotted on the x axis and the difference between the coefficients is plotted on the y

axis. The dashed lines show the 95% confidence intervals for the differences in correlation coefficients. Outside of the dashed lines are the

genes with the largest disagreement in mRNA-protein correlations in GBM tissue and GSCs. The proteins below the lower dashed line had

significantly lower mRNA-protein correlation in GSCs and proteins above the upper dashed line had significantly higher mRNA protein-

correlation in GSCs, as compared to GBM tissue. These genes’ lists were enriched for the annotated gene ontology (GO) terms; the full

enrichment terms are given in Fig. S3.
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disagreement in estimating mRNA and protein corre-

lations in both GSCs and GBM tissue.

Overall, our findings demonstrate that the regulation

of mRNA translation to protein follows similar pat-

terns in GSCs as in GBM tissue, and that GSCs can

be a representative cell model for protein expression in

GBM to some degree. However, there was a notable

disagreement between mRNA and protein levels,

which warrants investigating the GSCs at the pheno-

typic level by analyzing the proteome.

3.3. GSC-associated protein signature reflects

the proneural-mesenchymal axis

To select a set of proteins that describe GSC pheno-

types, we performed a differential expression analysis,

to define a GSC-associated protein signature (GSAPS).

We compared each GSC triplicate to each non-GSC

triplicate (astrocyte or T98G), to encompass the defin-

ing stem expression signature of each cell line and

selected the overlapping proteins that were consistently

differentially altered in the same direction in all BT

GSCs and in all comparisons (Fig. S5). This led to a

core set of 524 proteins that we define as GSAPS

(Fig. 3A; Table S8). STRING analysis of the GSAPS

proteins showed that most of them interact between

each other (Fig. S6, Table S9A,B).

As expected, GSEA of GSAPS showed upregulation

of the Verhaak proneural subtype gene set and down-

regulation of the mesenchymal subtype and the

epithelial-to-mesenchymal transition (EMT) gene sets

(Fig. S7, Tables S10–S12). Gliomas are not tumors

derived from the epithelium, therefore the EMT is not

directly applicable to them. However, a similar pro-

cess, proneural-to-mesenchymal transition (PMT), has

been described in GBM and is associated with worse

prognosis and therapy resistance [5,45–49]. A predomi-

nant part of GSAPS consisted of upregulated proneu-

ral and downregulated mesenchymal markers,

suggesting that the GSAPS shows inverse association

with PMT. The GSAPS also had the hallmark hypoxia

gene set downregulated, along with several other

hypoxia gene sets (Fig. S7B, Table S11). The hypoxic

metabolism has been associated with the mesenchymal

subtype [49,50], suggesting that GSAPS can reflect the

subtype-driven cellular metabolic condition.

Based on the differences in gene sets enriched

among the upregulated and downregulated GSAPS

proteins, we split it into two protein sets. The first

consisted of the upregulated GSAPS proteins associ-

ated with the proneural signature and proliferation,

henceforth referred to as GSAPS Proneural and

Classical-like protein set (GPC-like), and the other

consisted of the downregulated GSAPS proteins, asso-

ciated with the mesenchymal signature, hypoxia, and

EMT, henceforth referred to as GSAPS Mesenchymal-

like protein set (GM-like). We hypothesized that these

two protein sets define two different GSC conditions,

which are mutually exclusive and would better define

the specific GSC phenotypes than the previously estab-

lished Verhaak and Wang gene signatures established

for GBM tissue. Worth noticing is that 107 of the

GSAPS proteins are targetable by FDA-approved

drugs (31 in the GPC-like and 76 in GM-like set,

Table S13), with some drugs targeting more than one

protein in the signature and 33 drugs ongoing clinical

trials in GBM (Table S14).

The overall protein-mRNA correlation of genes

encoding for the GSAPS proteins was moderately pos-

itive (Spearman’s median q = 0.459), indicating that

some features should be detectable at mRNA level but

a considerable proportion of the GSC phenotype vari-

ance will be observable only at protein level. We

detected a higher mRNA-protein agreement for genes

included in the GM-like set in GSCs (Fig. 3B), but this

was not observed in GBM tissue (Fig. 3C), which had

higher mRNA-protein agreement for the GSAPS sets

than GSCs.

3.4. GSAPS defines two phenotypic conditions

To address the lack of mesenchymal GSCs in the first

GSC panel, and to confirm the GSAPS ability to

define GSC conditions along the PMT axis, we per-

formed proteomic expression profiling on another

GSC panel consisting of GSCs of all GBM subtypes.

The extended cohort included 11 patient-derived GSC

lines from the HGCC cohort, identifying 10 169 pro-

teins across the cell lines, including cell lines classified

as mesenchymal based on mRNA expression [9]. Sub-

typing the cell lines with ssGSEA at protein level

showed that all GSCs that expressed the classical sub-

type also expressed the proneural subtype and had a

suppression for the mesenchymal subtype (Fig. 3D), in

line with previous observations on BT GSCs. Cluster-

ing the proteins corresponding to the subtype-specific

genes included in Verhaak [4] and Wang [5] GBM

gene sets showed again that the proteins included in

the classical gene set projected closer to the proteins

included in the proneural gene set and apart from the

mesenchymal proteins (Fig. 3E,F).

Applying GSAPS to the HGCC panel clustered the

mesenchymal GSCs separately from proneural-classical

GSCs (Fig. S8). To further validate whether the

GSAPS is reflective of PMT, we performed GSEA on

the two GSAPS protein sets comparing the proneural-
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classical HGCC GSC lines to the mesenchymal

GSC lines. As hypothesized, we detected a strong

enrichment of both GSAPS protein sets (NES > 3,

P < 0.001), with the GPC-like set upregulated in the

proneural-classical GSCs and the GM-like upregulated

in the mesenchymal GSCs (Fig. 4A,B). ssGSEA analy-

ses showed that GSCs expressing the GPC-like pheno-

type had suppression of the GM-like phenotype, and

vice versa, confirming the hypothesis that these condi-

tions are mutually exclusive. GSEA comparing the

protein expression of GPC-like GSCs to GM-like

GSCs on hallmark gene sets showed that GM-like

GSCs were enriched for the hypoxia gene set (Fig. S9).

Considering that mesenchymal gene expression has

been consistently associated with hypoxia, we hypothe-

sized that the GM-like GSCs could be enriched in

hypoxic regions of GBM tumor tissue, in proximity to

necrosis, such as regions of tumor cells palisading

around necrosis (CTpan) and tumor cells involved in

microvascular proliferation (CTmvp). We then per-

formed enrichment analysis comparing protein expres-

sion between GPC-like and GM-like GSCs to genes

enriched in different GBM anatomical regions at

mRNA level, based on the Ivy GBM Atlas [40], which

consisted of genes enriched at mRNA level in different

GBM regions. Neither GSAPS set had enrichment in

the leading edge (LE) region of GBM. However, genes

with higher protein levels in the GM-like GSCs were

enriched in regions of CTmvp and CTpan, whereas

genes with higher protein levels in GPC-like GSCs

were enriched in regions of cellular tumor – CT

(Fig. 4C). The findings suggest that GSCs adapt their

phenotypic expression and thereby their subtype to

local conditions, driving different elements of tumori-

genesis. This is in line with previous observations

within the Ivy GBM Atlas [40]. Still, the gene sets of

the Ivy Atlas are derived by transcriptomic methods,

leaving a gap to explore the regional protein expres-

sion in GBM for future endeavors.

To address the limitations in the first GSC panel,

which lacked GSCs of the mesenchymal subtype and

included a comparison to non-GSC cell lines that were

grown in serum-containing media that could have

potentiated the “mesenchymalness” of cells in vitro

[51], we further refined the GSAPS in the HGCC

GSCs. For this purpose, we filtered the GPC-like pro-

tein sets to include only proteins that were upregulated

in the proneural-classical HGCC GSCs (n = 157,

75.845%) and the GM-like protein set to include only

proteins that were upregulated in the mesenchymal

HGCC GSCs (n = 256, 81.270%) based on log2-fold

change (Table S15). This refined GSAPS was used for

all subsequent analyses in GBM tissue.

In summary, these findings confirm that GSAPS is

associated with PMT and that cultured GSCs exist in

two mutually exclusive phenotypic conditions, one

characterized by the GPC-like protein set and another

characterized by the GM-like protein set. These two

types of GSCs have an inverse association with hypox-

ia, with GM-like GSCs having a higher activation of

hypoxia-induced gene sets compared to GPC-like

GSCs.

3.5. GSAPS is enriched in recurrent GBM tissue

Recurrent GBM tumors tend to have worse outcome

and faster progression. Several studies have linked this

to PMT, suggesting that proneural and classical GSCs

are more sensitive to chemotherapy and radiotherapy,

which eventually leads to selection and enrichment of

the mesenchymal subtype within recurrent tumors

[5,49]. To test whether GM-like GSCs are enriched in

recurrent GBM tumors, we analyzed seven primary

and three recurrent GBM tissue samples at proteomic

level with HiRIEF LC–MS/MS, identifying 7810 pro-

teins, with 7378 proteins quantified in all samples.

GSEA between non-paired recurrent and primary

tumors showed activation of the mesenchymal GBM

gene set and suppression of pathways associated with

GPC-like GSCs in recurrent tumors (Fig. S10). As

hypothesized, GSEA on the GSAPS gene sets, com-

paring recurrent to primary GBM, showed a sup-

pressed GPC-like and activated GM-like protein set in

recurrent GBM tumors (Fig. 5A). The GM-like pro-

tein set was also associated with necrosis (Fig. S11).

3.6. GSAPS protein signatures are associated

with OS in GBM tissue

A GSAPS-expression PCA analysis of 99 GBM

tumors and 10 normal brain samples from the CPTAC

cohort [6] separated GBM from normal brain tissue

and separated mesenchymal from non-mesenchymal

cancer tissue (Fig. 5B–D). Considering that the GM-

like signature was associated with hypoxia, necrosis,

and recurrence in GBM tissue, we hypothesized that it

might be associated with worse OS in GBM. To prove

the hypothesis, we calculated GPC-like and GM-like

protein sum scores by summarizing relative expression

of the proteins included in the corresponding refined

GSAPS protein sets and performed survival analyses.

Adjusting for sex and age, which was associated with

worse OS in this GBM cohort, higher GPC-like and

GM-like protein sum scores on their own had a statis-

tically non-significant association with longer and

shorter OS, respectively (Table S16, Fig. S12A,B). To
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incorporate both protein sets, we then calculated a

log2 ratio of the GPC-like to GM-like protein sum

score (log2 GPC-like/GM-like), which showed that

higher GPC-like/GM-like ratios were associated with

better OS (HR = 0.463, 95% CI: 0.224–0.957, LRT, P

= 0.005), adjusted for age and sex in Cox models. This

association remained consistent by categorizing log2

GPC-like/GM-like ratio to quartile expression in KM
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curves (Fig. 5E, log-rank test, P = 0.0091). The associ-

ation was inversed when calculating a log2 GM-like/

GPC-like ratio (Fig. S12C,D).

Overall, these results show that GSAPS describes a

GSC cellular signal that can categorize tumors across

the PMT axis, and that lower protein expression of

the GPC-like signature combined with a higher protein

expression of the GM-like signature was associated

with worse OS in GBM.

3.7. New protein-coding targets in GSCs

Stem cells often utilize parts of the genome that

mature cells do not, such as early developmental genes,

to obtain pluripotency. To explore if GSCs express

non-canonical proteins, i.e., proteins deriving from

genome regions considered as non-protein-coding, we

employed a previously established proteogenomics

pipeline [32,34], to search for non-canonical protein

sequences in BT GSCs. For this aim, we created an

RNAseq-based database of predicted protein

sequences, by translating the detected transcript

sequences obtained from RNAseq to protein

sequences, further predicting corresponding tryptic

peptides by in silico tryptic cleavage. We then

appended the non-canonical database to a canonical

database of protein sequences and searched for non-

canonical peptides among the identified PSMs. This

approach allowed us to discover novel non-canonical

peptides matching to protein sequences corresponding

to genome regions predicted to be non-protein-coding,

such as pseudogenes and lncRNAs, as well as non-

canonical peptides matching to protein-coding genes

that have not been previously described, such as novel

start sites, splice variants, gene extensions, etc.

We detected 252 non-canonical peptides in BT

GSCs, half of them with two or more PSMs (n = 118,

53.17%, Fig. 6A; Table S17). More than half (53.97%)

were novel peptides, whereas the remaining peptides

matched to non-canonical sequences of protein-coding

genes (Fig. 6B,C). One tenth of the non-canonical pep-

tides (n = 23) matched to protein-coding genes

included in the GSAPS, as expected – mostly the

GPC-like protein set (n = 19), including exon variants

of HNRNPA2B1, QKI, CUX1, EPHB3 and GAB1,

and 50-UTR extensions of SOX2, TRIM24, QKI, and

MSI2.

A recent screen of non-canonical open-reading

frames characterized hundreds of new proteins in

human induced pluripotent stem cells and human fore-

skin fibroblasts [52]. To validate the novel peptides dis-

covered in our study, we downloaded the novel amino-

acid sequences reported by Chen et al., and found that

40 of the non-canonical peptides discovered in our

study overlapped with the non-canonical protein

sequences reported by the authors, providing indepen-

dent support (Table S17). Most of these non-canonical

peptides were extensions of protein-coding genes

(n = 33, 82.5%).

3.8. Heterogeneous nuclear ribonucleoproteins’

variants contain 50-UTR peptide sequences

Sixteen non-canonical peptides found in GSCs

matched to a family of the ubiquitously expressed

HNRNPs, which are involved in mRNA splicing, pro-

cessing, and metabolism [53]. Half of these peptides

matched to processed pseudogenes (HNRNPA1-P8, -

P12, -P14, -P16, and -P59), and the remaining half to

variants of the isoforms A2 and B1. Among the non-

canonical peptides matching to protein-coding genes,

several matched to two novel protein-coding isoforms

of HNRNPA2B1 reported by Chen et al. [52], which

have upstream extensions of the canonical protein iso-

forms’ sequences (Fig. 6D). The canonical

HNRNPA2B1 protein had a higher expression in BT

GSCs compared to non-GSC lines and was part of the

GPC-like protein set, along with other HNRNPs

(HNRNP-U, -D, -DL, and -LL). Interestingly, the

non-canonical peptides matching to the HNRNPA2B1

gene also had higher levels in BT GSCs compared to

non-GSC lines (Fig. 6E; Table S18, P < 0.05, 5%

FDR), suggesting a role in GSC biology. Still, it

remains to be elucidated if the non-canonical protein

sequences detected in GSCs in this study, such as those

of HNRNPA2B1, exist only in GSCs or provide

improved gene models overall.

Finally, we used ALPHAFOLD2 [41] to explore

whether protein expression of the 50-UTR region in

the novel isoforms of HNRNPA2B1 could alter pro-

tein structure. Although with low confidence, the

ALPHAFOLD2 structure prediction of the 390-residues-

long novel isoform of HNRNPA2B1 suggests that

expression of a 50-UTR sequence might form alpha

helices that are not predicted from the canonical

sequence of isoforms A2 and B1 or observed in

experimental models (Fig. S13). We speculate that

such an alteration in protein structure can affect the

protein function and lead to the formation of new

epitopes, potentially recognizable by the immune sys-

tem.

Overall, our findings show that some gene variants

previously considered as non-coding are expressed and

translated in GSCs and GBM at protein level and that

a subset of these is related to proteins included in the

GSAPS.
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Fig. 5. Refined GSAPS expression in GBM tissue. (A) GSEA on the GSAPS protein sets GPC-like and GM-like comparing recurrent to pri-

mary GBM tissue tumors (P < 0.001, 1% FDR); (B) PCA clustering, based on log2 expression levels of proteins included in the GSAPS, of

GBM tumors and normal brain tissue samples. GBM subtypes (mRNA, based on the Wang 2017 GBM classification [5]): CLA, classical;

PRO, proneural; IDHmut, IDH-mutant tumor; MES, mesenchymal; (C) Sankey diagram showing the proportion of GBM tumors of different

transcriptomic subtypes (Wang 2017, GBM classification) that are enriched for the GSAPS protein sets GPC-like or GM-like or both, as com-

pared to the CPTAC’s multiomic GBM subtypes recently described by Wang et al. [6]; (D) Hierarchical clustering of GBM tumors and normal

brain samples based on the GSAPS (distance: 1 � Spearman’s q). The different subtypes are shown in the annotation bars, as well as muta-

tion status of common genomic markers in GBM; (E) KM curves showing survival differences in patients categorized based on log2 GPC-

like to GM-like protein sum score ratio to groups of low (≤ first quartile) and medium/high (> first quartile) score ratios. The P-values are

based on logrank tests; the dashed lines present the median overall survival in the corresponding groups.
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portion of non-canonical and novel peptides classified according to matching gene type; (C) Proportion of novel peptide classified according
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4. Discussion

Glioblastoma is a highly malignant cancer, driven by

GSCs and their ability to adapt in response to treat-

ment and the tumor microenvironment. To improve

treatment options for GBM patients, it is essential to

understand the underlying mechanisms driving GSCs

and how mRNA is translated to protein level, allowing

the tumor to progress, adapt, and resist therapeutic

interventions.

In this study, we have performed the most in-depth

proteogenomic analysis of GSCs to date, providing an

extensive, new data resource for GSC proteome

expression. This data resource provides a new layer of

information on GSC biology, which we believe will be

valuable for future studies on gene expression and

translation to proteins in GSCs. Derived from a com-

parison of primary proneural and classical GSCs to

non-GSC brain cell lines, we present a new GSC-

associated protein signature. Some of the GSAPS pro-

tein products derive from genes included in the gene

sets that define the GBM subtypes. Thus, we named

the GSAPS protein sets GPC-like and GM-like

according to the overlap with and enrichment of the

corresponding GBM subtypes’ gene sets. However,

worth pointing out is that GSAPS is not synonymous

with the GBM subtypes gene sets, but instead the

GPC-like and GM-like protein sets describe two phe-

notypic GSC conditions that are mutually exclusive,

reflecting the proneural-to-mesenchymal axis, and hav-

ing an inverse association with necrosis, recurrence,

and OS in GBM. Although mesenchymal GSCs were

not included in the derivation of GSAPS, this did not

curb the identification of the GM-like protein set,

which was strongly suppressed in GSCs enriched for

proneural and classical markers. We further showed

that this exclusive expression of the GSAPS protein

sets is strongly preserved in GSCs by analyzing

another panel of GSCs from the HGCC cohort [9],

where mesenchymal GSCs had a strong activation of

the GM-like and suppression of the GPC-like protein

set. Furthermore, we showed that at protein level

GBM proneural and classical gene sets are both

enriched in non-mesenchymal GSCs, which had a

strong activation of the GPC-like and suppression of

the GM-like protein set. We further used the HGCC

GSC panel to refine the signature, to filter out protein

signals that could have been driven by the protein

expression in non-GSC brain cells, which served as

comparison. We used the T98G cell line as a glioblas-

toma cell line that is a tumor non-stem cell line, and

the astrocyte line as a normal brain cell line, to repre-

sent non-GSC brain cells, because the cellular

proteome of these cells is more comparable than brain

tissue due to the presence of extracellular matrix and

connective fibers, which would affect the protein levels.

The choice of two non-stem cell lines for comparison

might have limited the analysis but using several lines

for comparison might lead to a trade-off of a highly

specific GSC signature that would maybe lack in sensi-

tivity. However, our analysis of normal brain tissue

samples used in the CPTAC cohort showed that nei-

ther of the GSAPS protein sets was enriched in normal

brain tissue, and the majority of the GSAPS proteins

had lower expression in normal brain tissue as com-

pared to GBM tissue. Still, it is not unexpected that

normal brain cells would share some protein expres-

sion with brain tumor cells, as observed in single-cell

RNA-sequencing studies, which, for example, identi-

fied GBM tumor cells with astrocyte-like and oligo-

dendrocyte precursor cell-like transcriptome signatures

[19].

By analyzing protein expression in GBM cancer tis-

sue, we show that the refined GM-like protein set was

associated with recurrent GBM tissue, necrosis, and

mesenchymal GBM tumors. Previous observations at

tissue proteome level from the CPTAC cohort [6] have

shown that mesenchymal GBM tumors have higher

MET levels and are enriched for EMT, hypoxia, gly-

colysis, angiogenesis, and inflammatory pathways. We

demonstrated that all these observations at tissue level

are driven by expression patterns at GBM cellular

level, delineating expression patterns deriving from the

cancer cells in GBM tissue. Although the GSCs were

not cultured in hypoxic conditions, the GM-like GSCs

had higher levels of proteins involved in regulating

hypoxia compared to GPC-like GSCs. This does not

imply that either of the GSC types were hypoxic, but

that they have a different expression of genes involved

in regulating hypoxia. From a clinical perspective, the

GSAPS encompasses over 100 protein drug targets,

out of which 33 are currently undergoing clinical trials

for GBM. It is tempting to speculate that the signature

might serve a purpose in drug development guidance,

where a combination treatment targeting proteins in

both the GPC-like and the GM-like protein set might

be more effective. Furthermore, the GSAPS demon-

strated prognostic value, where lower GPC-like over

GM-like ratios were associated with worse OS in

GBM. Considering that existing transcriptomic signa-

tures were not predictive of OS in GBM [4,5], this dis-

covery of a GSC-associated protein signature that can

predict OS is worth of further exploration in larger,

independent cohorts.

Proteogenomics allows for the discovery of non-

canonical protein sequences that have not been
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observed before, matching to new protein variants, or

pseudogenes and long-non-coding RNAs not expected

to be protein coding. Through a proteogenomic

approach, we discovered protein sequences matching

to genes previously established as non-protein coding,

where some of these have a higher expression in GSCs.

Our unique approach provides a more confident dis-

covery of non-canonical protein sequences because it

involves verification of the matching sequences at both

mRNA and protein level, detected by RNAseq and

HiRIEF LC–MS/MS, respectively. The identification

of non-canonical proteins in GSCs questions estab-

lished gene models and indicates potentially new pro-

teins, which may have implications in GBM and

warrant further investigation. ALPHAFOLD2 predictions

of the protein structure of an HNRNPA2B1 isoform

that expresses protein sequences from the 50-UTR

region suggest that non-canonical proteins might have

an altered protein structure, which could hypotheti-

cally create new epitopes recognizable as non-self by

the immune system. Such protein variants and novel

peptides open a door for immunotherapy development

for GBM, serving as starting point for development of

immunotherapies with cancer vaccines and CAR T-

cells.

5. Conclusions

In summary, we present an in-depth proteogenomic

characterization of GSCs and report a new GSC-

associated protein signature that differentiates two

phenotypic conditions of GSCs along the proneural-

to-mesenchymal axis. This signature was associated

with cancer aggressiveness in patients with GBM,

including OS. Furthermore, in a unique approach, we

discover novel protein-coding gene regions in GSCs,

which may have implications in GBM biology and

potential treatment development. Our findings allow

studying GBM at a GSC cellular proteomic level,

improve our understanding of GSC biology, and iden-

tify new, protein- and pathway-related, subtype-

specific therapeutic targets for GSCs.
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