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Abstract: The most commonly used refrigerants are potent greenhouse gasses that can contribute to
climate change. Hydro-Fluoro-Olefins are low Global Warming Potential fluids. A summary of our
experimental research activity on the thermodynamic properties of two environmentally friendly
Hydro-Fluoro-Olefins, namely R1234yf and R1234ze(E), is reported. In particular, the measurements
were performed with an isochoric apparatus and the apparatus specifically built to reach temperatures
down to about 100 K. The data elaboration confirms the validity of the choice and that R1234yf and
R1234ze(E) can be adopted in many domestic applications. Moreover, considering the reduction
of the flammability issues of R1234yf and R1234ze(E), the properties of binary systems containing
these fluids and carbon dioxide were analyzed. The presented mixtures could be very interesting for
low-temperature applications such as cascade cycles.
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1. Introduction

In recent years, the scientific community has been focused its effort on the investigation on the
so-called fourth-generation refrigerants referred to as low Global Warming Potential (GWP) refrigerants,
to decrease environmental issues and climate change caused by the emissions of traditional refrigerants.

For example, while, in Europe, the HydroChloroFluoroCarbons (HCFCs) emissions are reaching
zero, on the other hand, the consumption of HydroFluoroCarbon (HFCs) is growing very fast. However,
since the HFCs are high-GWP fluids, there is a need to reduce the impact to climate change due to
their emissions into the atmosphere. Among the family of HFCs, there are several fluids used for air
conditioning, foams and other field, but a lot of them have a very high GWP. One of the most famous is
the 1,1,1,2-tetrafluoroethane (R134a in the ASHRAE designation) that is widespread in use in domestic
and industrial plants that have a GWP of 1300 and is one of the substances controlled by the Kigali
Amendment to the Montreal Protocol [1,2].

Governmental regulations and taxes influence the increasing motivation behind low-GWP
refrigerants. The European Union (EU) F-Gas regulations [3] impose that the GWP of household air
conditioner refrigerants must remain less than 150 by 2020. In addition, they proposed to decrease at
least two-thirds of the 2010 emissions of fluorinated greenhouse gases by 2030 in the EU.

More recently (February 2017), the European Commission [4] adopted a proposal to ratify the
Kigali amendment to the Montreal Protocol to constantly restrict the production and application of
HFCs [5].
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The challenge to find refrigerants that are at the same time low GWP, secure, and have a high
performance is ongoing.

McLinden et al. [6,7] presented a well organised and comprehensive review of new environmentally
friendly refrigerants, implementing a selection based on safety, environmental, and thermodynamic
properties’ criteria.

They took into account several and important factors for the selection, such as low flammability,
low GWP, efficiency, and proper capacity. The authors found a very limited group of compounds, most
of them HydroFluoroOlefins (HFOs), that could be possible substitutes for old refrigerants.

The HFOs have a carbon–carbon double-bound that causes them to have a very short lifetime in
the atmosphere. Nevertheless, their disadvantages are that often, they are flammable or even toxic.
Moreover, frequently, the thermophysical properties of these alternative refrigerants are not suitable
for engineering applications. To fix these shortcomings, researchers are studying many blends of the
former and the latter refrigerants in order to take into account the benefits of many compounds and
balance their disadvantages [7].

Thanks to its thermodynamic properties, one of the most used refrigerants for domestic supplies
is R134a [2].

As stated before, R134a has a very high level of GWP; therefore, the restriction of GWP 150
obliges the replacement in domestic refrigerator and freezers. Despite many of the pure HFOs and
hydrocarbons being flammable, these alternatives to HFCs are being used in 90% of domestic use [8].

Hydrocarbons could be considered a very good alternative to R134a because of their high energy
performance and could have several environmental advantages. However, in many countries, the safety
regulations forbid the use of such compounds. For particular usages, such as domestic refrigeration,
isobutane (R600a in the ASHRAE designation) could be considered as a good replacement for R134a [9].

For example, in Europe and Japan, the domestic regulations allow hydrocarbons such as R600a,
despite many technical issues. But in many countries with more restrict safety regulations, this fluid
is considered dangerous due to its flammability. For instance, in the United States, the amount of
hydrocarbons for domestic use is restricted to 57 g for each charge, while in Europe, it is limited to
150 g [5].

For all these reasons, the fourth generation of synthetic refrigerants with a low GWP and low
level of flammability has been arising a lot of interest by researchers and markets.

In this study, a review of the thermodynamic properties of two of the most important
HFOs, namely 2,3,3,3-tetrafluoroprop-1-ene (R1234yf in the ASHRAE designation) and
trans-1,3,3,3-Tetrafluoropropene (R1234ze(E) in the ASHRAE designation) is presented. The interest
in these fluids characterized by GWP values near to 1 was confirmed by the Bobbo et al. [10] review
in which it was shown that the thermophysical properties of R1234yf and R1234ze(E) are the most
investigated, also in terms of thermal conductivity, viscosity and surface tension.

Regarding domestic refrigeration, in the last decade, a huge number of papers have focussed on
low-GWP replacements for R134a [9,11–15]. Among the proposed options, R152a presents a relatively
low GWP but it is flammable, such as R32 and R600a. For these reasons, the most suitable candidates
should be selected between HFOs and their mixtures with conventional and natural refrigerants.

In addition, considering the flammability issues of the two HFOs, an analysis of thermodynamic
properties of different binary systems containing these fluids and carbon dioxide is presented.

2. Materials and Methods

The Pressure-Specific Volume-Temperature, PvT and Pressure-Specific Volume-Temperature-
Composition, PvTz measurements for the low GWP refrigerants and their binary systems were
performed using an isochoric apparatus. The triple points of pure fluids and the Solid-Liquid
Equilibrium (SLE) of their blends were measured with an apparatus specifically built to reach
temperatures down to about 100 K.
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The isochoric apparatus is formed by an AISI 304 stainless-steel isochoric sphere and two
thermostatic baths that work at low temperatures (from 210 to 298 K) and high temperatures (from 303
to 390 K), respectively. A schematic view of the experimental setup is shown in Figure 1. For details
of the setup, the measurement procedure and the uncertainties are given in previous works [16,17]
and only a summary of the information is reported in this section. The spherical cell (1) containing
the refrigerant sample is connected to a differential diaphragm pressure transducer (4) coupled to an
electronic null indicator (5). In the new setup, the transducer and sphere were placed vertically and a
magnetic pump (3) for mixing the sample was connected to the sphere. Temperature is controlled by a
PID device and measured with a calibrated resistance thermometer (8). The measured binary systems
were prepared by a gravimetric method.
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1. Constant volume spherical cell 
2. Auxiliary cell 
3. Magnetic pump 
4. Differential pressure transducer 
5. Electronic null indicator 
6. Charging system 
7. Thermostatic baths 
8. Platinum thermo-resistances  
9. Thermometric bridge 
10. Stirrer 
11. Heater 

12. Power system 
13. Cooling coil 
14. Connections to auxiliary 

thermostatic bath 
15. Acquisition system 
16. Bourdon gage 
17. Dead weight gage 
18. Vibrating cylinder pressure gage 
19. Precision pressure controller 
20. Nitrogen reservoir 
21. Vacuum pump system 

Figure 1. Schematic view of the isochoric apparatus.

To perform the experimental runs, the sample charged in the isochoric sphere was allowed to
stabilize at the temperature set-point for an hour before the pressure measurements were taken. After
recording the measured values, the set-point of the thermostatic bath was changed to the next set
temperature. The measurement procedure was then repeated.

The isochoric measurements have the following expanded uncertainties at the 95% confidence
level (coverage factor of 2): 1.2 mg for the masses, 0.03 K for the temperature, 1 kPa for the pressure,
0.3 cm3 for volumes, 0.001 for the mole fractions, and 0.005 m3 kg−1 for specific volumes.
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The experimental setup for the triple point temperatures and SLE measurements is based on
the cooling curve method [18,19] which is a dynamic technique of measurement and does not
require the visual observation of phase behavior. Figure 2 shows the experimental setup. The
detailed descriptions of the experimental setup and the testing procedure were reported in previous
works [20–22]. Only summary information is included below.
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Figure 2. Schematic view of the Solid-Liquid Equilibrium (SLE) apparatus.

The apparatus includes a measuring cell (1) consisting of a stainless-steel cylinder. The cover of the
cylinder has two holes that house two T-type thermocouples (2). To avoid any premature stratification
of the sample and to ensure homogeneity during the sample liquefaction and crystallization, a stirrer
(3) was placed inside the cylinder. The measuring cell is surrounded by a copper coil that exchanges
heat with the cell through its contact surface and by means of a working fluid (air or liquid nitrogen).
The cell and the copper coil are placed inside a thermally insulated Dewar flask (7). The apparatus has
two separate circuits: a compressed air circuit and a liquid nitrogen circuit. One end of the compressed
air circuit is connected to the dry air supplier (8). A mass flow control (9) was installed downstream
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the dry air supplier to adjust the air flow rate, while a rotameter (10) measured the air flow rate. On
the other end, the compressed air circuit is connected both to the thermally insulated liquid nitrogen
Dewar tank (11) and to an external heating coil (13) that is connected to the copper coil surrounding
the measuring cell. The two circuits allowed to carry out measurements in two operating modes:
cooling and heating modes. During the cooling mode, a cooling curve is drawn in real time and
the sample solidification results in a slope modification of the temperature trend in correspondence
to the freezing point. During the heating mode, the sample melting point was identified on the
time-temperature curve.

The combined uncertainties associated with the measurements of mass, temperature, and mole
fraction are ±0.6, ±1 K, and ±0.0005, respectively.

3. Results

Table 1 presents the Global Warming Potential (GWP) of some of the most widespread refrigerants,
both natural and synthetic, together with their main physical properties. The reported GWP values
were collected from WMO 2018 [23]. The physical properties (molar mass (M), normal boiling point
temperature (Tb), critical temperature (Tc), and critical pressure (Pc)) were collected from REFPROP
10.0 [24].

Table 1. Global Warming Potential (GWP) and physical properties of the studied refrigerants.

Refrigerant GWP M (kg kmol−1) Tb (K) Tc (K) Pc (kPa)

R744 1 44.010 194.69 304.13 7377.3
R32 705 52.024 221.50 351.26 5782.0

R600a <1 58.122 261.40 407.81 3629.0
R134a 1360 102.030 247.08 374.21 4059.3

R1234yf <1 114.040 243.67 367.85 3382.2
R1234ze(E) <1 114.040 254.18 382.51 3634.9

The GWP of a compound compares its global warming impact to the impact due to the emission
of a similar amount of a reference compound, usually taken as carbon dioxide (R744 in the ASHRAE
designation) [25]. This value is estimated during a time horizon that is usually assumed to be equal to
100 years. In particular, the GWP results from the combination of the cumulative radiative forcing, both
direct and indirect effects, and atmospheric lifetime of a compound (trace gas), together with the time
horizon for its evaluation [6]. The radiative forcing is the change in net irradiance at the tropopause
due to the change in atmospheric concentration of a trace gas resulting from a pulse release of that gas.

Although the concept of GWP has several weaknesses, such as that it neglects the effect of reaction
products resulting from breakdown and the assumption of a global mean concentration [6], this index
is easy and the most commonly used environmental metric.

The GWPs of blends are estimated as the mass-weighted averages of components’ GWPs.
The United Nations Environment Programme (UNEP) [26] proposed a classification scheme,

distinguishing between very low (or ultra-low) (<~30), very low (<~100), low (<~300), moderate
(<~1000), high (<~3000), very high (<~10,000) and ultra-high (>~10,000) GWP fluids.

In recent years, many experimental vapor pressure and PvT data in the superheated vapor phase
were measured by our research group with the isochoric apparatus for R1234yf and R1234ze(E) [27–30],
as summarized in Figure 3.
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3.1. R1234yf

As it is possible to see from Figure 3, the vapor pressure data for R134a, here reported as regressed
values, overlap with the measurements of R1234yf, suggesting that it can be substituted by the proposed
HFO. In addition, the critical temperatures of the two fluids are also very similar, as reported in Table 1.
In addition, the normal boiling point and the critical pressure are also quite similar to the ones of the
other fluids.

By means of the SLE set-up, we also measured its triple point, which was found to be 122.88 K on
average [20]. This temperature also allows R1234yf to be considered for low-temperature applications,
combining it with other fluids.

The main issue regarding R1234yf is its flammability, thus, this study aimed to find non-flammable
binary systems.

3.2. R1234ze(E)

The critical parameters and vapor pressure (reported in Table 1) of R1234ze(E) are also very
interesting, and are similar to many HFCs, suggesting that it can also be an interesting alternative for
domestic applications. In particular, R1234ze(E) was shown to have higher critical temperature than
R1234yf and R134a, which is a critical parameter thermodynamic parameter for a good performance.

By means of the SLE set-up, we also measured its triple point, which was found to be 167.9 K on
average [22]. The measurements were obtained both in the heating and in the cooling mode, and the
final value was determined by averaging the values.

Moreover, for R1234ze(E), the measuring binary system is a valuable perspective to increase the
number of applications of this fluid.

3.3. Binary Systems

We measured many binary systems with both the isochoric and the SLE set up. Regarding low
GWP mixtures, our research group focused the research activity on blends with R744, as this fluid is
non-flammable and has a GWP = 1. R744 + R1234yf and R744 + R1234ze(E) were measured both in
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the two-phase and in the superheated vapor region [31,32]. The results obtained are summarized in
Tables 2 and 3 for R744 + R1234yf and R744 + R1234ze(E), respectively.

Table 2. Measurements at bulk compositions z1 and average specific volumes v for R744 (1) + R1234yf
(2) binary system over the temperature range ∆T and pressure range ∆P.

Series N. Points z1 v (m3 kg−1) ∆T (K) ∆P (kPa)

1 17 0.051 0.026 225–373 62–976
2 17 0.160 0.029 223–373 96–973
3 16 0.266 0.027 224–373 148–1119
4 15 0.365 0.026 223–373 198–1273
5 16 0.480 0.026 225–373 271–1381
6 16 0.574 0.029 224–373 312–1354
7 16 0.662 0.018 223–373 420–2292
8 15 0.754 0.029 224–373 460–1667

Table 3. Measurements at bulk compositions z1 and average specific volumes v for R744 (1) + R1234ze(E)
(2) binary system over the temperature range ∆T and pressure range ∆P.

Series N. Points z1 v (m3 kg−1) ∆T (K) ∆P (kPa)

1 14 0.155 0.028 233–363 104–943
2 14 0.254 0.029 233–363 149–1001
3 14 0.331 0.029 233–363 171–1063
4 14 0.459 0.029 233–363 255–1178
5 14 0.563 0.028 233–363 340–1366
6 14 0.642 0.030 233–363 397–1380
7 14 0.733 0.028 233–363 504–1601
8 14 0.859 0.028 233–363 634–1909

The P-T diagram of R744 + R1234ze(E) is also reported in Figure 4 as an example.
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Finally, Figures 5 and 6 report the SLE obtained for R744 + R1234yf and R744 + R1234ze(E),
respectively [33].
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4. Discussion

In many cases, using a binary system can be a good solution to overcome the main issues of new
refrigerants. In the case of R1234yf and R1234ze(E), one of the main limitations lies in their flammability.
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For this reason, after measuring the vapor pressures, the superheated vapor data and the triple
points of pure fluids, in this paper, we focused on the SLE and the VLE behavior of R744 + R1234yf
and R744 + R1234ze(E). In fact, to consider R744 as a refrigerant helps in terms of both avoiding
flammability and keeping GWP low. In addition, since the main limitations of carbon dioxide as
a refrigerant are related to its low critical temperature (very often, it is used as working fluid in
trans-critical cycles) and its high triple point (solidification occurs at too high temperatures), to blend it
with HFOs would provide improvements for all of these issues.

From the elaboration of the P-T curves, it is possible to derive the Vapor –Liquid Equilibrium
(VLE) behaviour of the binary system. As explained elsewhere [34], the flash method with the
Carnahan-Starling-DeSantis equation of state was used to derive the VLE data from the isochoric
measurements. Keeping T, z1, and the number of moles equal to the experimental values during
the calculation, the flash method provides the calculated values of mole fractions of the liquid phase
(x1) and vapor phase (y1) and pressure for each isochoric point. This was obtained by ensuring
the isofugacity conditions and minimizing the difference between the calculated volume and the
measurement cell volume, determined from the gravimetric calibration.

In Figure 7, the VLE of R744 + R1234ze(E) binary system is reported together with the results
from molecular Gibbs Ensemble Monte Carlo simulations [35].
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Figure 7. VLE for the R744 (1) + R1234ze(E) (2) binary pair.

From the figure, it is possible to notice that the system is zeotropic and shows an ideal behavior in
terms of Raoult’s law. The same results were achieved for the R744 + R1234yf binary system.

Furthermore, for R744 + R1234ze(E), the literature shows [35] that they are in good agreement
with the values calculated from the isochoric apparatus.

From the T-x data (Figures 5 and 6), it is evident that for the R744 + R1234yf binary system, it was
not possible to detect a eutectic point. This was probably due to the very far from each other triple
point temperatures of the two system constituents, which probably caused a eutectic point at a very
low carbon dioxide concentration region. For the R744 + R1234ze(E) binary system, the eutectic point
was estimated at x1 = 0.30 ± 0.05 and T = 164 ± 1 K.

The SLE data obtained confirm that the binary systems under analysis can be potentially adopted
in plants at very low temperatures without any solidification problem.
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In general, all the performed measurements confirm that the studied pure fluids and binary
systems are valid options for the replacement of non-environmentally friendly working fluids.

5. Conclusions

Because of their low GWP, R1234yf and R1234ze(E) are very promising HFOs. They can be adopted
in many domestic applications, but their thermophysical properties need to be estimated. In this paper,
a summary of the vapor pressure and of the superheated vapor region data is reported together with
the triple point and the SLE of their binary mixtures with carbon dioxide that can be attracting options
for low-temperature applications. The results confirm that the two fluids are promising substitutes of
R134a in domestic refrigeration.
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