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Abstract
This paper presents the progress made so far in the development of the R package
hspm. The package hspm aims at implementing a variety of models and methods to
control for heterogeneity in spatial models. Spatial heterogeneity can be specified in
different ways, ranging from exogenous (or endogenous) spatial regimes models, to
models with coefficients that potentially vary for each observations (i.e., continuous
heterogeneity). We focus on a few R functions that allow for the estimation of a
general spatial regimes model, as well as all of the nested specifications deriving
from it. The models are estimated by instrumental variables and generalized method
of moments techniques.
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1 Introduction

Spatial effects are generally divided into two different categories: spatial dependence
and spatial heterogeneity (Anselin 1988). While cross-sectional dependence has to do
with correlation between spatial units, spatial heterogeneity consists of instabilities
over space that are generally reflected by variations across individual units (Anselin
2010).

In practice there are various ways of tackling unobserved heterogeneity, such as
controlling for spatial heteroscedasticity (Kelejian and Prucha 2007), spatial regimes
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models (Anselin 1988; Anselin and Rey 2014), geographically weighted regressions
(Fotheringham et al. 1998, 2002), and multilevel (or hierarchical) models (Arcaya
et al. 2012), among others.1

An interesting distinction between discrete and continuous spatial heterogeneity
has been made by Anselin and Amaral (2021). From a discrete perspective, they
argue that spatial regimes models are the most common way of dealing with spa-
tial heterogeneity. In a nutshell, spatial regimes models are a class of models whose
coefficients may vary across space. The term regimes indicates that the observations
are grouped according to some criteria that relates to space. Interestingly, Anselin and
Amaral (2021) point out that, even if the estimation of spatial regimes regressions is
well established, the identification of the regimes still remains a subject for investiga-
tion. Additionally, they acknowledge the existence of three approaches to identify the
regimes. The first approach is based on exogenous regimes (e.g., determined through
administrative boundaries); the second is when the regimes result from a data-driven
procedure (e.g., observation are aggregated using some clustering method); and the
last one corresponds to a situation where the coefficients and the regimes are jointly
determined.

From an empirical perspective, attempts to consider spatial heterogeneity in model
specification have mostly, but not exclusively, focused on economic geography and
regional sciences. This is verified by the special attention that local labor markets
(Huiban et al. 2004; Longhi and Nijkamp 2005; Melo et al. 2012), and regional eco-
nomic convergence (Rey and Janikas 2005; Ramajo et al. 2008; Ertur et al. 2006)
have received over the years. However, spatial heterogeneity has gained an increas-
ing interest also in other disciplines, such as quantitative geography (Song et al. 2020;
Georganos et al. 2021; Shu et al. 2019), urban growth (Zhai et al. 2021), urban sprawl
(Deng et al. 2020; Irwin and Bockstael 2007), geology (de Marsily et al. 2005), ecol-
ogy and evolution (Vinatier et al. 2011), epidemiology (Thomas et al. 2020), physics
and air pollution (He et al. 2022), among others.

From a software availability perspective, spatial models to control for spatial
dependence are well established.2 Code dealing with spatial heterogeneity is rela-
tively sparse but also long-established.3 In this scenario, hspm is an ambitious project

1 More recently, some authors focused on estimation and inference for spatial models with (continuous)
heterogeneous coefficients in the context of spatial panel models (see, for example, Aquaro et al. 2020;
Chen et al. 2022; LeSage and Chih 2018).
2 There are various packages in R (R Development Core Team 2012), such as spatialreg (Bivand and Piras
2015; Bivand et al. 2021), sphet (Piras 2010; Piras and Postiglione 2022), spldv (Sarrias and Piras 2022)
and splm (Millo and Piras 2012), among others, as well as in other software environment, such as the
Spatial Econometrics toolbox inMATLAB (MATLAB 2011), the Python (van Rossum 1995) spatial analysis
library PySAL (Anselin and Rey 2014), and Stata (StataCorp 2007).
3 The packages in R mostly deal with geographically spatial regression (GWR), such as, gwrr (Wheeler
2022) spgwr (Bivand and Yu 2022), mgwrsar (Geniaux and Martinetti 2017), GWmodel (Gollini et al.
2015). Furthermore, varycoef (Dambon et al. 2021a, b) and spBayes (Finley et al. 2007, 2015) provide
implementation of spatially varying coefficients models which may be preferred to GWRmodels as having
proper statistical foundation. In the PySAL library developed in Python there is code dealing with spatial
regime models. In Sect. 1 we compare our implementation with the one in PySAL.
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that aims at developing and implementing various methodology to control for hetero-
geneity in spatial models. This article presents the methodological innovations that
have been made so far dealing with spatial and (non spatial) regimes models. In
particular, we present R functions that allow for the estimation of a general spatial
regimes model, as well as all of the nested specifications deriving from it. The mod-
els are estimated by instrumental variables (IV) and generalized method of moments
(GMM) techniques.

The rest of this paper is a mere description of the package functionality to get
the readers to familiarize with the different functions contained in it. In particular,
Sect. 2 introduces the two data sets that we use throughout the paper: the first is based
on a housing price model in the city of Baltimore; the second contains county level
data for homicides and selected socio-economic characteristics for the continental
United States. The difference between these two data sets is that the second one suf-
fers from endogeneity and requires instrumental variables methods implemented in
hspm. In Sect. 3 we introduce the function regimes which is the basic function to
deal with (non-spatial) regimes models. Section 4 is devoted to the illustration of the
function ivregimes that allows for endogenous variables in a non-spatial context.
The function spregimes is presented in Sect. 5. spregimes is a wrapper function
that allows to estimate a regimes model with a spatial lag of the dependent variable,
the spatial lag of (part of) the regressors, a spatially lagged error term and additional
(other than the spatial lag) endogenous variables. As we will see, spregimes also
allows to estimate all of the nested specifications included in this general model. In
Sect. 6, we explain why hspm does not calculate the impacts measures put forth by
LeSage and Pace (2009), and we show a simple way to deal with those impacts in
a special case (i.e., when the spatial weighting matrix is block diagonal). Section 7
draws some conclusions and gives indications for future developments of the pack-
age. Finally, “Appendix A” compares our implementation with code available from
PySAL library (Rey et al. 2022; Rey and Anselin 2007, 2010) developed in Python
(van Rossum 1995).

2 Data sets

To illustrate the capabilities of hspm we make use of two data sets: baltimore and
natreg.4

4 We include the data and the spatial weighting matrices in the package. The original data are available at
https://geodacenter.github.io/data-and-lab//. Anselin and Rey (2014) use the same data in Chapters 12 and
13.
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Baltimore

The Baltimore data set on housing price (Dubir 1992) contains many standard factors
to explain the price of a dwelling (PRICE): the number of rooms (NROOM), the
number of bathrooms (NBATH), the age of the construction (AGE), the size of the lot
(LOTSZ), the number of car space in a garage (GAR), and the square footage of the
house (SQFT). Additional dummy variables are included to check whether the house
has a patio (PATIO), a fireplace (FIREPL), and air conditioning (AC). The variable
employed to identify the regimes is a binary equal to one if the dwelling is situated in
Baltimore County and zero otherwise (CITCOU).

The following code loads the data and creates the spatial weighting matrix (of class
listw) using a binary contiguity criterion.

R> library("hspm")

R> library("spdep")

R> data("baltim")

R> nbB <- read.gal(system.file("extdata",

+ "baltimore.gal",

+ package = "hspm"))

R> wlis <- nb2listw(nbB, style = "W")

natreg

The data in natreg contains information on homicides and selected socio-economic
characteristics for the (continental) counties in the U.S., for four decennial census
years, last of which is 1990 (Messner et al. 2000; Baller et al. 2001). Specifically,
the dependent variable is the homicide rate in 1990 (HR90). Among the regressors
we include median age (MA90), population structure (PS90), resource deprivation
(RD90), and the, potentially endogenous, unemployment rate (UE90).5 The instru-
ments consist of three variables: percentage of female headed households (FH90),
percentage of families below poverty (FP89), and the Gini index of family income
inequality (GI89).6 The regimes identifier is the variable REGIONS that divides the
counties in three regions: south, west, and other (not south or west).

The following code loads the data and the spatial weighting matrix of class Matrix
(Bates et al. 2022) based on the six nearest neighbors criteria:

R> data("natreg")

R> data("ws_6")

5 The variables RD90 and PS90 were created from other indicators in a principal component analysis.
6 Percentage of families below poverty and Gini index are based on 1989 figures.
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3 The basic (non spatial) model and the function regimes

3.1 The basic (non spatial) model

For convenience and without loss of generality, we assume the presence of only two
regimes (i.e., j = 1, 2). The basic (non spatial) model can be written in a general way
as:

y =
[
X1 0
0 X2

] [
β1
β2

]
+ Xβ + ε, (1)

where y = [y′
1, y

′
2]′, and the n1 × 1 vector y1 contains the observations on the depen-

dent variable for the first regime, and the n2×1 vector y2 (with n1+n2 = n) contains
the observations on the dependent variable for the second regime. The n1 × k matrix
X1 and the n2 × k matrix X2 are blocks of a block diagonal matrix of regressors, the
vectors of parameters β1 and β2 have dimensions k1 × 1 and k2 × 1, respectively, X
is the n × p matrix of regressors that do not vary by regime, β is a p × 1 vector of
parameters, and ε = [ε′

1, ε
′
2]′ is the n-dimensional vector of regression disturbances.7

Even though this is not a “traditional” spatial model, spatial heterogeneity is taken
into account by considering a regimes variable that is revealing some spatial aspects
of the data. The model in Eq. (1) can be estimated by OLS after reorganizing the data
according to Eq. (1).8

3.2 The function regimes

The function regimes has four arguments: formula, data, rgv, and vc. The right
hand side of the formula can be of different lengths. If the length is one, it is assumed
that all coefficients are different by regimes. When the length of the formula is two,
the variables in the first part are kept constant, while those in the second part are
different by regimes.

The argument rgv is a formula that indicates the regimes variable. The are
two options to estimate the variance-covariance matrix of the estimated coefficients:
"groupwise" and "homoskedastic": If vc is set to "groupwise", the model is
estimated according to a feasible generalized least squares procedure.9

In the example below, all the regressors vary by regimes and the vc argument is
set to "homoskedastic":

7 Anselin and Rey (2014) refer to Eq. (1) as the hybrid model.
8 The reorganization of the data is dealt internally by the function regimes that is introduced in Sect. 3.2.
9 The feasible generalized least squares corresponds to a weighted least squares estimator where the
weights for each regime are calculated as the sum of the squared residuals divided by the correspond-
ing degrees of freedom (see Anselin and Rey 2014, for further details.
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R> form_ns <- PRICE ~ NROOM + NBATH + PATIO

+ FIREPL + AC + GAR + AGE +

+ LOTSZ + SQFT

R> mod_ns <- regimes(formula = form_ns, data = baltim,

+ rgv = ~ CITCOU)

R> summary(mod_ns)

--------------------------------

Regimes Model

--------------------------------

Call:

regimes(formula = form_ns, data = baltim, rgv = ~CITCOU)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

Intercept_0 8.150793 6.900731 1.1811 0.2375435

NROOM_0 1.263246 1.613613 0.7829 0.4337046

NBATH_0 4.379132 2.634815 1.6620 0.0965075 .

PATIO_0 11.084383 5.722933 1.9368 0.0527654 .

FIREPL_0 7.466420 4.270493 1.7484 0.0803993 .

AC_0 12.572501 4.952575 2.5386 0.0111304 *

GAR_0 0.106564 3.101820 0.0344 0.9725939

AGE_0 0.048081 0.071326 0.6741 0.5002429

LOTSZ_0 0.162311 0.046495 3.4909 0.0004814 ***

SQFT_0 -0.161628 0.266790 -0.6058 0.5446316

Intercept_1 12.650330 7.774536 1.6271 0.1037054

NROOM_1 1.880380 1.676226 1.1218 0.2619502

NBATH_1 13.672410 2.644772 5.1696 2.346e-07 ***

PATIO_1 6.822112 3.246130 2.1016 0.0355871 *

FIREPL_1 11.439887 3.079421 3.7149 0.0002032 ***

AC_1 1.948290 3.072815 0.6340 0.5260542

GAR_1 9.068525 2.250954 4.0287 5.607e-05 ***

AGE_1 -0.226210 0.124555 -1.8161 0.0693479 .

LOTSZ_1 0.047377 0.017334 2.7332 0.0062720 **

SQFT_1 0.139858 0.227119 0.6158 0.5380311

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the coefficients table printed by the summary method, the different regimes are
indicated with numbers inherited from the regime variable.

Since this basic specification does not account explicitly for space, one can obtain
the spatial LM tests for spatial dependence by estimating two separate equations, and
then using the function lm.LMtests available from the package spdep:

R> eq1 <- lm(form_ns, data = subset(baltim, CITCOU == 0))

R> eq2 <- lm(form_ns, data = subset(baltim, CITCOU == 1))

R> library("spdep")

R> st1 <- lm.LMtests(eq1, subset(wlis, baltim$CITCOU == 0),

test = "all")

R> st2 <- lm.LMtests(eq2, subset(wlis, baltim$CITCOU == 1),

test = "all")
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Table 1 LM tests results for the
regime model with two
equations using a spatial weight
matrix based on the queen
contiguity criterion

First equation Second equation

Statistic p value Statistic p value

LMerr 0.0062 0.9371 7.1964 0.0073

LMlag 0.0103 0.9190 30.0204 0.0000

RLMerr 0.0451 0.8318 1.0816 0.2983

RLMlag 0.0492 0.8244 23.9056 0.0000

SARMA 0.0554 0.9727 31.1020 0.0000

Table 1 reports the results of the five tests implemented in lm.LMtests.10 While
none of the tests is statistically significant in the first equation, the equation for the
second regime points at a spatial lag specification.

Interestingly, it is also possible to test various types of restrictions. As an exam-
ple, we can consider restrictions on the coefficients for the same variable in different
regimes. The code below shows how to implement those tests for the variable NBATH:
H0 : βNBATH_0 = βNBATH_1. There are multiple ways to test linear hypothesis in R. We
choose the implementation provided by the function linearHypothesis from the
car package (Fox and Weisberg 2019).

R> library("car")

R> linearHypothesis(mod_ns[[1]], c("NBATH_0 - NBATH_1=0"))

Linear hypothesis test

Hypothesis:

NBATH_0 - NBATH_1 = 0

Model 1: restricted model

Model 2: PRICE ~ Intercept_0 + NROOM_0 + NBATH_0 + PATIO_0

+ FIREPL_0 +

AC_0 + GAR_0 + AGE_0 + LOTSZ_0 + SQFT_0

+ Intercept_1 + NROOM_1 +

NBATH_1 + PATIO_1 + FIREPL_1 + AC_1 + GAR_1

+ AGE_1 + LOTSZ_1 +

SQFT_1 - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 192 31520

2 191 30530 1 990.51 6.1968 0.01365 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result shows that we can reject the null hypothesis that NBATH has the same
effect on housing price regardless of whether the dwelling is in Baltimore County or
another county.

One can also perform a Wald test for the joint significance of the coefficients using
the function wald.test from the library aods3 (Lesnoff and Lancelot 2022). In our

10 This table was produced with the package xtable (Dahl et al. 2019).
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example below, the null hypothesis is

H0 :βAGE_0 = βAGE_1,

βLOTSZ_0 = βLOTSZ_1,

βSQFT_0 = βSQFT_1.

R> library("aods3")

R> first <- c(0,0,0,0,0,0,0,1,0,0,

+ 0,0,0,0,0,0,0,-1,0,0)

R> second <- c(0,0,0,0,0,0,0,0,1,0,

+ 0,0,0,0,0,0,0,0,-1,0)

R> third <- c(0,0,0,0,0,0,0,0,0,1,

+ 0,0,0,0,0,0,0,0,0,-1)

R> lmat <- rbind(first, second, third)

R> wald.test(coef(mod_ns[[1]]), varb = vcov(mod_ns[[1]]), L = lmat)

Chi-squared test:

X2 = 8.998, df = 3, P(> X2) = 0.02932

In the example below, we show that it is possible to identify regimes using a
(clustering) data driven procedure. For an illustrative purpose, we use the (scaled)
geographical coordinates of the dwellings to identify two regimes using the kmeans
function. The results from this model are different from the previous one.

R> df <- scale(baltim[,c("X", "Y")])

R> vrreg <- kmeans(df, centers = 2)

R> mod_ns3 <- regimes(formula = form_ns,

+ data = baltim, rgv = ~ vrreg$cluster,

+ vc = "groupwise")

R> summary(mod_ns3)

--------------------------------

Regimes Model

--------------------------------

Call:

regimes(formula = form_ns, data = baltim, rgv = ~vrreg$cluster,

vc = "groupwise")

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

Intercept_1 19.207028 7.891701 2.4338 0.014940 *

NROOM_1 3.040837 1.726507 1.7613 0.078193 .

NBATH_1 9.992617 3.215458 3.1077 0.001886 **

PATIO_1 8.520687 3.796738 2.2442 0.024819 *

FIREPL_1 5.455361 4.236263 1.2878 0.197824

AC_1 -2.661242 3.590460 -0.7412 0.458573

GAR_1 13.295143 2.477742 5.3658 8.058e-08 ***

AGE_1 -0.595531 0.109828 -5.4224 5.881e-08 ***

LOTSZ_1 0.042853 0.021524 1.9910 0.046481 *

SQFT_1 0.190504 0.273335 0.6970 0.485826

Intercept_2 16.828253 7.096335 2.3714 0.017721 *

NROOM_2 -0.140388 1.628934 -0.0862 0.931320

NBATH_2 6.205570 2.531654 2.4512 0.014238 *
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PATIO_2 9.785026 4.839851 2.0218 0.043201 *

FIREPL_2 10.432588 3.504153 2.9772 0.002909 **

AC_2 11.741856 3.888001 3.0200 0.002528 **

GAR_2 -1.686457 3.247405 -0.5193 0.603534

AGE_2 -0.055655 0.069501 -0.8008 0.423256

LOTSZ_2 0.134456 0.023130 5.8129 6.139e-09 ***

SQFT_2 0.123873 0.247989 0.4995 0.617420

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4 Endogenous variables and the function ivregimes

4.1 Endogenous variables

The basic (non spatial) model with endogenous variables can be written in a general
way as:

y =
[
X1 0
0 X2

] [
β1
β2

]
+ Xβ +

[
Y1 0
0 Y2

] [
π1
π2

]
+ Yπ + ε, (2)

where the difference with Equation (1) is given by the presence of the n1 × q matrix
Y1, the n2 × q matrix Y2 and the n × r matrix Y , with the corresponding vectors of
parameters π1, π2 and π . Since those three matrices contain endogenous variables,
the model is estimated using IV techniques.

4.2 The function ivregimes

The function ivregimes has four arguments: formula, data, rgv and vc. The right-
hand side of the formula has four parts. The first part must contain all the regressors
(exogenous and endogenous) that do not vary by regimes. The second part has all the
regressors (exogenous and endogenous) that vary by regimes. The third part includes
all the exogenous regressors and external instruments that do not vary by regimes.
The fourth part has all the exogenous regressors and external instruments that vary by
regimes. Let H be the matrix of instruments (exogenous regressors and additional
instruments for the endogenous variables) for the endogenous variables. Then the
formula for ivregimes has the following structure:

y ~ fixed Xs | varying Xs | fixed Hs | varying Hs

The following formula states that none of the regressors (exogenous and endoge-
nous) is fixed (note the 0), and they all vary by regime. The instrument matrix is
made up of the exogenous variables MA90, PS90, and RD90, and the external instru-
ments FH90, FP89, and GI89. The function ivregimes checks internally that the
instruments are at least as many as the endogenous variables.

R> form_nse <- HR90 ~ 0 | MA90 + PS90 + RD90 +

+ UE90 | 0 | MA90 + PS90 + RD90 +

+ FH90 + FP89 + GI89
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The argument vc determines how the variance-covariance matrix should be esti-
mated. Specifically, it takes on three values: "homoskedastic", "robust" and
"OGMM".,11

We use ivregimes to estimate the previous model, form_nse, and we set vc =
"robust":

R> mod_nse <- ivregimes(formula = form_nse, data = natreg,

+ rgv = ~ REGIONS, vc = "robust")

R> summary(mod_nse)

------------------------------------

IV Regimes Model

------------------------------------

Call:

ivregimes(formula = form_nse, data = natreg, rgv = ~REGIONS,

vc = "robust")

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_2 -3.444691 2.396091 -1.4376 0.150539

MA90_2 0.011485 0.048761 0.2355 0.813794

PS90_2 0.740137 0.281651 2.6278 0.008593 **

RD90_2 0.130083 0.597848 0.2176 0.827752

UE90_2 1.004032 0.222674 4.5090 6.514e-06 ***

(Intercept)_0 -11.130505 5.568414 -1.9989 0.045623 *

MA90_0 0.179010 0.088457 2.0237 0.043002 *

PS90_0 0.544240 0.373615 1.4567 0.145203

RD90_0 -1.142647 1.185927 -0.9635 0.335294

UE90_0 1.414407 0.450072 3.1426 0.001674 **

(Intercept)_1 15.613820 2.064515 7.5629 3.930e-14 ***

MA90_1 -0.023799 0.050756 -0.4689 0.639146

PS90_1 2.261376 0.335955 6.7312 1.683e-11 ***

RD90_1 5.965739 0.452688 13.1785 < 2.2e-16 ***

UE90_1 -1.211717 0.178151 -6.8016 1.034e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

UE90_2 UE90_0 UE90_1

Instruments:

FH90_2 FP89_2 GI89_2 FH90_0 FP89_0 GI89_0 FH90_1 FP89_1 GI89_1

11 When vc = "OGMM" a two step procedure is adopted. In the first step, the model is estimated by two
stage least squares using the matrix of instruments which is made up of all the exogenous variables and
the external instruments. In the second step, the optimal weighted GMM is obtained by using the residuals
from the first step to estimate the weighting matrix for the moments conditions (see Anselin and Rey 2014,
for additional details).
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5 The spatial models and the function spregimes

5.1 The spatial model

A general spatial model is one that contains spatial lag of the dependent variable, spa-
tial lag of the error term, and spatial lag of (some of) the regressors. This is combined
with the fact that hspm allows for additional endogenous variables and regimes. For
this reason, we decided to present each model separately. It is worth emphasizing
again that our presentation of the function is not intended to guide users’ choice in
terms of model specification, but rather to illustrate the arguments of the function.
The general model is estimated following a series of steps that alternate IV with
GMM techniques. These steps are an adaptation of the general cross-sectional model
in Kelejian and Prucha (2010a) and Arraiz et al. (2010) to spatial regimes models.12

5.2 The function spregimes

spregimes is used to estimate the general model as well as all of the nested spec-
ifications that derive from it. The function has eleven arguments. In this section we
describe the formula, and we delay the discussion of the other arguments to the next
sections. In spregimes, the right-hand side of formula must be specified with six
parts. Specifically, the formula for spregimes has the following structure:

y ~ fixed Xs | varying Xs | WXs | fixed Hs |
varying Hs | W external

instruments

Since the specification of the formula is the trickiest part, we use three examples.
form_sp_b below is based on the Baltimore data. The variables AC, AGE and

NROOM are the regressors that do not vary by regimes, while PATIO, FIREPL, and
SQFT are those that vary. The third part is used to specify the spatially weighted
regressors (in this case, AGE, NROOM and NBATH). It is important to stress that the
spatial lag of one regressor varies only if the regressor itself vary. Vice-versa, if the
regressor is fixed, also the lag would be so. For example, since AGE and NROOM
vary by regimes also their lags vary. On the other hand, since NBATH is fixed, also
the lag of NBATH will not vary. The next three parts of the formula serve to specify
the fixed instruments (part four), the instruments that vary (part five), and the spatial
lag of the external instruments (part six). Since there are no endogenous variables in
Baltimore data, part four and part five of the formula are the same as part one and
part two. The sixth part is set to 0 indicating that there are no external instruments to
be lagged.
R> form_sp_b <- PRICE ~AC+AGE +NROOM + PATIO + FIREPL + SQFT |

+ NBATH + GAR + LOTSZ - 1 |

+ AGE + NROOM + NBATH |

+ AC + AGE + NROOM + PATIO+FIREPL+SQFT |

+ NBATH + GAR + LOTSZ - 1 | 0

12 For implementation details in the context of cross-sectional models see also Bivand and Piras (2015).
For additional information it is also possible to consult the details of the help function.
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The second and third formulas are specified in terms of natreg data. The formula
form_sp_n should be interpreted in the following way. The regressor MA90 is fixed.
The intercept, PS90, RD90, and UE90 are the regressors that vary by regimes. The
spatial lag of MA90 is also considered among the regressors. Since MA90 is fixed,
also its spatial lag is fixed. Next, we have one instrument fixed (MA90), and five
instruments that change by regimes, namely PS90, RD90, FH90, FP89, and GI89.
None of the additional instruments is spatially lagged (the 0 in the last line below).

R> form_sp_n <- HR90 ~ MA90 -1 |

+ PS90 + RD90 + UE90 |

+ MA90 |

+ MA90 -1 |

+ PS90 + RD90 + FH90 + FP89 + GI89 | 0

In form_sp_n2 all of the regressors vary by regime (since the first part of the
formula is 0). The spatial lag of MA90 is also included. Since MA90 varies, so does
its spatial lag. Furthermore, all of the instruments vary by regimes, and none of the
external instruments is lagged.
R> form_sp_n2 <- HR90 ~ 0 |

+ MA90 + PS90 + RD90 + UE90 |

+ MA90 |

+ 0 |

+ MA90 + PS90 + RD90 + FH90 + FP89 + GI89 | 0

Linearmodel with regimes, spatially lagged regressors and potential endogeneity

The first case that we consider is that of a linear model with regimes that includes
spatial lag of the regressors (both exogenous and endogenous):

y =
[
X1 0
0 X2

] [
β1
β2

]
+ Xβ +

[
Y1 0
0 Y2

] [
π1
π2

]
+ Yπ+

W

[
X1 0
0 X2

] [
δ1
δ2

]
+ WXδ + W

[
Y1 0
0 Y2

] [
θ1
θ2

]
+ WY θ + ε.

(3)

Compared to Equation (2), Equation (3) includes the spatial lags of the exogenous
and endogenous variables whether or not they change by regimes, and the relative
vectors of parameters. Interestingly, there is no limitation as for the specification of
the spatial weighting matrix. This means that the spatial weighting matrix does not
necessarely need to be block-diagonal, but it can have a structure where observations
that are in different regimes are considered neighbours.13

13 The specification of the spatial weighting matrix was one of the crucial aspects in the implementation
of the package. It is quite reasonable that W is not block-diagonal when one is constructing the spatial
lag for variables that are fixed. At the same time, a spatial weighting matrix that allows for interactions
across regimes can be difficult to justify for variables that vary across regimes. However, also the opposite
situation is true: forcing the spatial weighting matrix to a block-diagonal structure, while it seems a logical
choice if the regressors are different by regimes, it would be a limitation for variables that are fixed by
regimes. Because of this, in the end we decided to leave the decision to the users. Additionally, this was
one of the reasons for not implementing the impacts for the regimes models. We delay this discussion to
Sect. 6.
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For models with endogenous variables, we use the specification reflected in
form_sp_n based on the natreg data. The arguments model = "ols" and the
regimes variables is set to ~ REGION.14 The spatial weighting matrix is listw =
w_6. The argument listw, as in other spatial packages, can be of class listw, or
matrix, or Matrix (Bates et al. 2022).

R> mod_s_b_olse

<- spregimes(formula = form_sp_n, data = natreg,

+

rgv = ~ REGIONS, listw = ws_6, model = "ols")

R> summary(mod_s_b_olse)

------------------------------------------------------------

Regimes Model with spatially lagged regressors

and additional endogenous variables

------------------------------------------------------------

Call:

spregimes(formula = form_sp_n, data = natreg, model = "ols",

listw = ws_6, rgv = ~REGIONS)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

MA90 0.036269 0.035040 1.0351 0.300640

(Intercept)_2 -2.585496 2.862794 -0.9031 0.366453

PS90_2 0.732342 0.249492 2.9353 0.003332 **

RD90_2 0.138214 0.750891 0.1841 0.853962

UE90_2 1.009683 0.233377 4.3264 1.516e-05 ***

(Intercept)_0 -2.285820 3.424251 -0.6675 0.504428

PS90_0 0.483703 0.238178 2.0309 0.042270 *

RD90_0 -0.402834 0.993990 -0.4053 0.685279

UE90_0 1.110973 0.352428 3.1523 0.001620 **

(Intercept)_1 15.160386 1.832372 8.2736 2.220e-16 ***

PS90_1 2.319289 0.180390 12.8571 < 2.2e-16 ***

RD90_1 5.958644 0.277295 21.4885 < 2.2e-16 ***

UE90_1 -1.195927 0.114842 -10.4136 < 2.2e-16 ***

W_MA90 -0.050150 0.055819 -0.8984 0.368948

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

UE90_2 UE90_0 UE90_1

Instruments:

X WX FH90_2 FP89_2 GI89_2 FH90_0 FP89_0 GI89_0 FH90_

1 FP89_1 GI89_1

The summary method prints a description reflecting the fact that the model con-
tains endogenous variables. In the bottom part of the output, a list of the endogenous
variables and the instruments is given. The function spregimes checks internally
that the instruments are at least as many as the endogenous variables.

14 It might seems counterintuitive that the model argument is set to "ols" when there are endogenous
variables in the model. However, this is consistent with other spatial libraries, such as sphet.
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Spatial Lag (and Durbin) regimesmodel

In this section we include both the spatial lag and the spatial Durbin model (with or
without additional endogenous variables). Regimes models that include the spatial
lag of the dependent variable can be specified in two different ways depending on
whether the spatial lag coefficient is allowed to vary by regimes. When the coefficient
of the spatial lag is not allowed to change, the model can be written in the following
way:

y = λWy +
[
X1 0
0 X2

] [
β1
β2

]
+ Xβ +

[
Y1 0
0 Y2

] [
π1
π2

]
+ Yπ

+ W

[
X1 0
0 X2

] [
δ1
δ2

]
+ WXδ + W

[
Y1 0
0 Y2

] [
θ1
θ2

]
+ WY θ + ε

(4)

where λ is a scalar parameter. On the contrary, when the coefficient of the spatial lag
is allowed to vary, the model can be written as15:

y = W

[
y1 0
0 y2

] [
λ1
λ2

]
+

[
X1 0
0 X2

] [
β1
β2

]
+ Xβ +

[
Y1 0
0 Y2

] [
π1
π2

]
+ Yπ

+ W

[
X1 0
0 X2

] [
δ1
δ2

]
+ WXδ + W

[
Y1 0
0 Y2

] [
θ1
θ2

]
+ WY θ + ε

(5)

No endogenous variables

In the example below, we are assuming that the spatial process is different by regimes
(wy_rg = TRUE), and that the model = "lag".16

R> mod_s_b_lag <- spregimes(formula = form_sp_b, data = baltim,

+ rgv = ~ CITCOU, listw = wlis, model = "lag",

+ wy_rg = TRUE)

R> summary(mod_s_b_lag)

------------------------------------------------------------

Spatial Durbin Regimes Model

------------------------------------------------------------

Call:

spregimes(formula = form_sp_b, data = baltim, model = "lag",

listw = wlis, wy_rg = TRUE, rgv = ~CITCOU)

Coefficients:

15 Also in this case no restriction on W is imposed (i.e., W is not necessarily block diagonal). For the
spatial model in Eq. (5), this means that observations that equal zero in y1 (because they belong to a

different regimes) may not necessarily be zero when one takes the spatial lag of the first column of

[
y1 0
0 y2

]
.

Clearly, the same is also true if we consider y2 and the spatial lag of the second column of

[
y1 0
0 y2

]
.

16 Note that we do not allow explicitly the argument model to be set to Durbin. This is due to the fact that
hspm deals with spatially lagged regressors through the formula argument.
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Estimate Std. Error z-value Pr(>|z|)

(Intercept) 9.697585 11.003865 0.8813 0.378161

AC 5.491020 2.489142 2.2060 0.027385 *

AGE -0.022360 0.064788 -0.3451 0.729993

NROOM 1.537288 1.158262 1.3272 0.184430

PATIO 4.565648 2.795709 1.6331 0.102450

FIREPL 6.756735 2.465632 2.7404 0.006137 **

SQFT -0.014176 0.168549 -0.0841 0.932972

NBATH_0 3.465790 2.084328 1.6628 0.096355 .

GAR_0 1.483856 2.937730 0.5051 0.613487

LOTSZ_0 0.116911 0.043997 2.6573 0.007878 **

NBATH_1 12.940427 2.207887 5.8610 4.601e-09 ***

GAR_1 6.219459 2.098825 2.9633 0.003044 **

LOTSZ_1 0.033165 0.016492 2.0109 0.044333 *

W_AGE 0.038113 0.116357 0.3276 0.743249

W_NROOM -2.562542 2.378078 -1.0776 0.281226

W_NBATH_0 -2.013042 5.530003 -0.3640 0.715842

W_NBATH_1 -14.556912 5.593529 -2.6025 0.009256 **

W_PRICE_0 0.533085 0.268570 1.9849 0.047155 *

W_PRICE_1 0.793301 0.140087 5.6629 1.488e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_PRICE_0 W_PRICE_1

Instruments:

X WX WWX WWWX

Note that since the wy_rg is TRUE and there are two regimes, the function esti-
mates two coefficients for the spatially lagged dependent variable (W_PRICE_0 and
W_PRICE_1).

With endogenous variables

The model specification below does not allow for a varying λ (wy_rg = FALSE) but
allows for heteroskedasticity in the error term (het = TRUE). When het is set to
TRUE, a robust estimator of the variance-covariance is calculated.

R> mod_s_n_lag <- spregimes(formula = form_sp_n, data = natreg,

+ rgv = ~REGIONS, listw = ws_6, model = "lag",

+ het = TRUE, wy_rg = FALSE)

R> summary(mod_s_n_lag)

------------------------------------------------------------

Spatial Durbin Regimes Model

with additional endogenous variables

------------------------------------------------------------

Call:

spregimes(formula = form_sp_n, data = natreg, model = "lag",

listw = ws_6, wy_rg = FALSE, rgv = ~REGIONS, het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

MA90 0.026297 0.036287 0.7247 0.468631
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(Intercept)_2 6.117144 2.064886 2.9625 0.003052 **

PS90_2 1.457928 0.213599 6.8255 8.760e-12 ***

RD90_2 2.897389 0.446956 6.4825 9.022e-11 ***

UE90_2 0.089726 0.108346 0.8281 0.407587

(Intercept)_0 4.303163 2.833462 1.5187 0.128839

PS90_0 0.615684 0.347250 1.7730 0.076224 .

RD90_0 1.149395 0.788002 1.4586 0.144670

UE90_0 0.499441 0.276218 1.8081 0.070585 .

(Intercept)_1 16.551061 2.324691 7.1197 1.082e-12 ***

PS90_1 2.228211 0.362886 6.1403 8.239e-10 ***

RD90_1 5.732077 0.549753 10.4266 < 2.2e-16 ***

UE90_1 -1.163982 0.187167 -6.2189 5.005e-10 ***

W_MA90 -0.099521 0.057046 -1.7446 0.081057 .

W_HR90 0.055918 0.075654 0.7391 0.459828

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_HR90 UE90_2 UE90_0 UE90_1

Instruments:

X WX WWX WWWX FH90_2 FP89_2 GI89_2 FH90_0

FP89_0 GI89_0 FH90_1 FP89_1 GI89_1

The last row in the coefficients table reports the lag of the homicides rate. The
other endogenous variable are UE90_2, UE90_0, and UE90_1. As a consequence, the
external instruments are also different by regimes.

Spatial error regimesmodel

The spatial error regimes model is slightly different from the previous specification.
In fact, the spatial error coefficient can be different by regime if and only if all the
explanatory variables in the model vary by regimes, that is17:

y =
[
X1 0
0 X2

] [
β1
β2

]
+

[
Y1 0
0 Y2

] [
π1
π2

]

+ W

[
X1 0
0 X2

] [
δ1
δ2

]
+ W

[
Y1 0
0 Y2

] [
θ1
θ2

]
+

[
ε1
ε2

]
,

(6)

where

[
ε1
ε2

]
= W

[
ε1 0
0 ε2

] [
ρ1
ρ2

]
+ u,

where ρ1 and ρ2 are the spatial error parameters for the first and the second regime,
respectively. Alternatively, the hybrid model can include a spatial error process that

17 The reason for this is related to the peculiar estimation of the error model that involves the so-called
spatial Cochrane-Orcutt transformation (Kelejian and Prucha 1999, 2010b). Further details can be obtained
by writing to the authors.
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does not vary by regimes, such as:

y =
[
X1 0
0 X2

] [
β1
β2

]
+ Xβ +

[
Y1 0
0 Y2

] [
π1
π2

]
+ Yπ

+ W

[
X1 0
0 X2

] [
δ1
δ2

]
+ WXδ + W

[
Y1 0
0 Y2

] [
θ1
θ2

]
+ WY θ + ε,

(7)

and

ε = ρWε + u,

where the spatial error coefficient ρ is a scalar parameter.
The spatial error regimes model is obtained from the natreg data setting the argu-

ment model = "error". For the following example we use the formula formula
= form_sp_n2, where all the exogenous and endogenous variables are different by
regime. We also set weps_rg = TRUE, and we allow for heteroskedasticity by sett-
ting het = TRUE:

R> mod_s_n_error <- spregimes(formula=form_sp_n2, data = natreg,

+ rgv = ~ REGIONS, listw = ws_6, model = "error",

+ weps_rg = TRUE, het = TRUE)

R> summary(mod_s_n_error)

--------------------------------------------

Spatial Error Regimes Model

with spatially lagged regressors

and additional endogenous variables

--------------------------------------------

Call:

spregimes(formula = form_sp_n2, data = natreg, model = "error",

listw = ws_6, weps_rg = TRUE, rgv = ~REGIONS, het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_2 -0.506749 2.305999 -0.2198 0.8260639

MA90_2 0.047852 0.048794 0.9807 0.3267354

PS90_2 1.014640 0.279003 3.6367 0.0002762 ***

RD90_2 0.832787 0.514065 1.6200 0.1052315

UE90_2 0.878607 0.192386 4.5669 4.950e-06 ***

W_MA90_2 -0.089340 0.015470 -5.7750 7.695e-09 ***

We_2 0.413651 0.058780 7.0372 1.961e-12 ***

(Intercept)_0 -5.590587 4.800468 -1.1646 0.2441841

MA90_0 0.227225 0.090092 2.5222 0.0116636 *

PS90_0 0.648210 0.365976 1.7712 0.0765302 .

RD90_0 -0.805318 1.143382 -0.7043 0.4812272

UE90_0 1.304638 0.440551 2.9614 0.0030627 **

W_MA90_0 -0.188891 0.055211 -3.4213 0.0006233 ***

We_0 0.110381 0.131750 0.8378 0.4021372

(Intercept)_1 16.311945 2.390988 6.8223 8.962e-12 ***

MA90_1 -0.005598 0.054441 -0.1028 0.9181016

PS90_1 2.161770 0.360342 5.9992 1.983e-09 ***

RD90_1 5.861047 0.512513 11.4359 < 2.2e-16 ***
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UE90_1 -1.195113 0.207373 -5.7631 8.258e-09 ***

W_MA90_1 -0.036756 0.016538 -2.2225 0.0262507 *

We_1 0.236253 0.052229 4.5234 6.085e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

UE90_2 UE90_0 UE90_1

Instruments:

X WX FH90_2 FP89_2 GI89_2 FH90_0 FP89_0 GI89_0 FH90_1 FP89_1 GI89_1

In this case we have the endogenous variable UE90 that varies by regimes, and the
instruments matrix that includes all the exogenous variables in the model and the
external instruments that are also different by regimes.

Spatial SARAR regimesmodel

The spatial SARAR regimes model is selected by the argument model = "sarar".
One can then choose to set wy_rg and weps_rg in order to have four possible com-
binations. However, as for the error regimes model, weps_rg can be TRUE only if
all variables are different by regimes. Since this model is just a combinations of the
arguments presented in the previous sections, to save space we do not include output
for the SARAR model.

6 Impacts

As noted by LeSage and Pace (2009), models that contain spatial lag of the depen-
dent variable needs to be correctly interpreted. This means that appropriate impacts
measures have to be calculated. LeSage and Pace (2009) suggested the computation
of three average spillover impacts for spatial models including a spatial lag of the
dependent variable. These spillover impacts defined on the j-th variable of a spatial
lag model (without regimes) are:

AT I j = β j n
−1e′(In − λW )−1e, (8)

ADI j = β j n
−1tr [(In − λW )−1], (9)

and

AI I j = AT I j − ADI j , (10)

where e is a vector of ones, In is a diagonal matrix whose diagonal elements are one,
and tr indicates the trace operator.

For a variety of reasons, the impacts measures suggested by LeSage and Pace
(2009) may not be straightforwardly extended to spatial regimes models. This is
mainly, but not exclusively related to how the spatial weighting matrix can be defined
in this context. Of course, a general treatment of impacts measures for spatial regimes
models is outside of the scope of the present paper. However, in what follows, we
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show a few (simple) situations in which the impacts can be calculated using matrix
algebra.

The first and easiest option relates to the case where all coefficients, including
the spatial lag of the dependent variable, vary by regimes. Interestingly, this scenario
corresponds to the estimation of two separate equations. In R this can be achieved
using the function spreg from the sphet package (Bivand and Piras 2015; Bivand
et al. 2021; Piras and Postiglione 2022). Basically, one can take advantage of the
function subset that can be applied both to the data and the listw object wlis:

R> library("sphet")

R> ff <- PRICE ~ NROOM + NBATH + PATIO +

+ FIREPL + AC + GAR + AGE + LOTSZ + SQFT

R> mod_sphet_1 <- spreg(ff, data = subset(baltim, CITCOU == 0),

+ listw = subset(wlis, baltim$CITCOU == 0),

+ model = "lag", het = TRUE)

R> mod_sphet_2 <- spreg(ff, data = subset(baltim, CITCOU == 1),

+ listw = subset(wlis, baltim$CITCOU == 1),

+ model = "lag", het = TRUE)

Since sphet has functions to calculate the effects, one can take advantage of the
infrastructure already available in R. For reason of space, the code below illustrates
how to obtain impacts and inference only for the first equation. Particularly, the infer-
ence for the impacts is obtained using an analytical formula derived in Kelejian and
Piras (2020).

R> impacts(mod_sphet_1, KPformula = TRUE)

Impact Measures (lag, KP_formula):
Direct Indirect Total

NROOM 1.49562469 0.34661171 1.84223640
NBATH 4.62449820 1.07172959 5.69622780
PATIO 11.59566431 2.68730056 14.28296487
FIREPL 6.68434971 1.54910113 8.23345084
AC 12.04494900 2.79142249 14.83637149
GAR 0.17413512 0.04035590 0.21449102
AGE 0.06355598 0.01472913 0.07828511
LOTSZ 0.14844814 0.03440292 0.18285106
SQFT -0.19521019 -0.04524005 -0.24045024
========================================================
Results based on Kelejian and Piras formula:
========================================================
Analytical standard errors

Direct Indirect Total
NROOM 2.06242519 0.55236543 2.43939027
NBATH 2.17685545 1.35656560 2.62946178
PATIO 5.56322677 3.88683051 7.98088853
FIREPL 4.10077137 2.50061374 5.98030568
AC 3.04743323 3.58850525 4.56464593
GAR 2.89309374 0.67809572 3.56949626
AGE 0.09365007 0.03326068 0.12263245
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LOTSZ 0.04745690 0.04484869 0.06705187
SQFT 0.31475415 0.07958076 0.37440748

Analytical z-values:
Direct Indirect Total

NROOM 0.72517767 0.62750435 0.7552036
NBATH 2.12439379 0.79003153 2.1663094
PATIO 2.08434148 0.69138609 1.7896460
FIREPL 1.63002252 0.61948837 1.3767609
AC 3.95248987 0.77787889 3.2502787
GAR 0.06018993 0.05951357 0.0600900
AGE 0.67865386 0.44283906 0.6383719
LOTSZ 3.12806260 0.76708874 2.7270092
SQFT -0.62019893 -0.56847979 -0.6422154

Analytical p-values:
Direct Indirect Total

NROOM 0.4683430 0.53033 0.4501268
NBATH 0.0336372 0.42951 0.0302876
PATIO 0.0371291 0.48932 0.0735108
FIREPL 0.1030967 0.53559 0.1685862
AC 7.7342e-05 0.43664 0.0011529
GAR 0.9520044 0.95254 0.9520840
AGE 0.4973572 0.65788 0.5232316
LOTSZ 0.0017596 0.44303 0.0063911
SQFT 0.5351268 0.56971 0.5207334

The summary method for the impacts reports the direct, indirect, and total impact for
each variables, along with the standard error, a z-value and a p-value to determine the
statistical significance of the impacts.

As an alternative, one can calculate the impacts manually taking advantage of
sparse matrix representations from the package Matrix. In doing this we will use
the model described by the formula = form which is written in such a way that all
variables are different by regimes, and there are no spatially weighted regressors:

R> form <- PRICE ~ -1 | NROOM + NBATH + PATIO +

+ FIREPL + AC + GAR + AGE +

+ LOTSZ + SQFT | 0 | -1 | NROOM +

+ NBATH + PATIO + FIREPL +

+ AC + GAR + AGE + LOTSZ + SQFT | 0

In spregimes we set the argument wy_rg to FALSE:

R> mod_nwy <- spregimes(formula = form,

+ data = baltim,

+ rgv = ~ CITCOU, model = "lag",

+ wy_rg = FALSE, listw = wlis, het = TRUE)
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To calculate the impact, we follow a series of steps described in what fol-
lows. First of all, we create a sparse spatial weighting matrix with the function
listw2dgCMatrix, we separate the betas from the spatial lag, and calculate the
inverse term of (In − λW ):

R> library(Matrix)

R> Ws <- listw2dgCMatrix(wlis)

R> n <- dim(Ws)[1]

R> I <- Diagonal(n)

R> cf <- length(coefficients(mod_nwy))

R> betas <- coefficients(mod_nwy)[-cf]

R> k1 <- length(betas)

R> betas <- betas[-c(1,((k1/2)+1))]

R> k <- length(betas)

R> Wprice <- coefficients(mod_nwy)[cf]

R> IlW <- I - Wprice * Ws

R> IlWi <- solve(IlW)

Since we have multiple betas, we use a simple loop to iterate over and obtain the
three impacts.18

R> ATI <- vector(mode = "numeric", length = k)

R> for(i in 1:k) ATI[i] <- sum(IlWi * betas[i])/n

R> ADI <- vector(mode = "numeric", length = k)

R> for(i in 1:k) ADI[i] <- sum(diag(IlWi * betas[i]))/n

R> AII <- ATI - ADI

R> effects <- cbind(ADI, AII, ATI)

R> rn <- rownames(coefficients(mod_nwy))

R> rownames(effects) <- rn[-c(1,((k1/2)+1), cf)]

R> colnames(effects)

<- c("Average Direct", "Average Indirect", "Average Total")

R> effects

Average Direct Average Indirect Average Total

NROOM_0 1.99703015 1.30031781 3.29734796

NBATH_0 4.68741092 3.05209407 7.73950499

PATIO_0 12.98101581 8.45227399 21.43328980

FIREPL_0 3.31133478 2.15609543 5.46743020

AC_0 11.32510082 7.37406506 18.69916587

GAR_0 1.02686125 0.66861583 1.69547707

AGE_0 0.08743152 0.05692892 0.14436043

LOTSZ_0 0.11624634 0.07569099 0.19193733

SQFT_0 -0.14263578 -0.09287383 -0.23550962

NROOM_1 0.97618165 0.63561704 1.61179869

NBATH_1 12.23459939 7.96626302 20.20086241

PATIO_1 3.71166347 2.41675975 6.12842322

FIREPL_1 9.65643706 6.28755507 15.94399213

AC_1 1.67440848 1.09025052 2.76465900

GAR_1 8.07706396 5.25918454 13.33624850

AGE_1 -0.14969278 -0.09746883 -0.24716161

LOTSZ_1 0.03550754 0.02311987 0.05862741

SQFT_1 0.02661675 0.01733085 0.04394761

18 Note that the impacts are different from those in the previous case since now the spatial lag of price is
unique.
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An alternative way to produce inference would be to generateMonte Carlo samples
for the effects from a multivariate normal distribution. For this purpose, we use the
package mvtnorm (Genz et al. 2021; Genz and Bretz 2009). The function rmvnorm
generates S samples from a multivariate normal with means equal to the vector of
the estimated coefficients, and variance-covariance matrix as the estimated variance-
covariance matrix of the model. We apply to the generated samples the function eff
which calculates the three impacts. Finally, we compute the standard deviation of the
S samples of impacts.

R> set.seed(2512)

R> library("mvtnorm")

R> S <- 399

R> mvn <- rmvnorm(S, coefficients(mod_nwy), vcov(mod_nwy))

R> eff <- function(x){

+ betas <- x[-c(1,length(x))]

+ IlW <- I - x[length(x)] * Ws

+ IlWi <- solve(IlW)

+ ATE <- vector(mode = "numeric", length = k)

+ for(i in 1:k) ATE[i] <- sum(IlWi * betas[i])/n

+ ADE <- vector(mode = "numeric", length = k)

+ for(i in 1:k) ADE[i] <- sum(diag(IlWi * betas[i]))/n

+ AIE <- ATE - ADE

+ return(rbind(ADE, AIE, ATE))

+ }

R> MCeffects <- apply(mvn, 1, eff)

R> sterr <- matrix(apply(MCeffects, 1, sd), 18, 3, byrow = T)

R> rownames(sterr) <- rownames(effects)

R> colnames(sterr) <- colnames(effects)

R> sterr

Average Direct Average Indirect Average Total

NROOM_0 2.27296700 1.67983768 3.85097136

NBATH_0 2.47357046 1.96810173 4.19753337

PATIO_0 5.58940086 5.46916593 10.32911754

FIREPL_0 4.84338926 3.78897285 8.44577684

AC_0 2.96899760 3.57652004 5.69314927

GAR_0 3.01809750 2.37546952 5.26623013

AGE_0 0.09421574 0.07561498 0.16605169

LOTSZ_0 0.05014582 0.04551636 0.08840079

SQFT_0 0.39001381 0.28274951 0.66180201

NROOM_1 8.10776574 6.16234288 13.95039547

NBATH_1 1.67090126 1.25988956 2.87049777

PATIO_1 3.26552651 4.07807921 6.58525885

FIREPL_1 3.45158358 2.87005467 6.11982509

AC_1 2.83890691 3.52899772 5.67812563

GAR_1 3.39769311 2.46339063 5.74160747

AGE_1 3.11553987 3.41618382 6.11205622

LOTSZ_1 0.12822484 0.10868092 0.22902261

SQFT_1 0.02540186 0.01736927 0.04099058

7 Conclusions

In this paper we described the main functionality of the newly developed package
hspm. We started from a very simple regime model where space is accounted for by
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specifying a “spatial” regime variable, and then we presented various spatial specifi-
cations containing spatial lag of the dependent variable, spatial lag of the regressors,
spatial lag of the error term, and any possible combinations of those lags. Finally, we
showed how to manually calculate impacts when the spatial weighting matrix has a
block-diagonal structure. Implicitly, we recommend not to use the impacts defined by
LeSage and Pace (2009) when the structure of the spatial weighting matrix allows for
interactions between observations that belong to different regimes.

However, this is only the beginning stage of the package. In the future, we would
like to proceed mainly in two directions. On the one hand, we want to expand the
package to include more ways to determine the regimes such as data-driven pro-
cedures or endogenous ways of determining the regimes. On the other hand, we
intend to explore more the continuous approach where coefficients are allowed to
vary smoothly over space.

Funding Open access funding provided by Università degli Studi G. D’Annunzio Chieti Pescara within
the CRUI-CARE Agreement.
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you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

Appendix A

Checks with other available implementations

In this appendix we compare the results from hspm with other available implementa-
tions. To the best of our knowledge, the only other implementation of spatial regimes
models is available in the Python package spreg (Anselin and Rey 2014) which
is part of the PySAL library. Additionally, we limit our attention to the spatial lag
regimes model for a couple of reasons. First of all, the spatial lag model should be
fully comparable since it is not based on optimization routines (like the case of the
error and SARAR models) that can influence the results. Second, the implementation
of hspm relies heavily on code available from the sphet package as it is the case for
the spreg package in PySAL. Bivand and Piras (2015) compared implementations
of spatial cross sectional models using, among others, results from sphet and spreg.
They noticed that comparison for the error model where slightly different.19 Based
on this, we expect the same differences to appear in the regimes specification.

19 See Table 11 and the discussion on page 22 in Bivand and Piras (2015).
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The function to estimate a spatial lag regime model in
spreg is spreg.GM_Lag_Regimes.20

We consider two cases: the first case corresponds to a situation where all coeffi-
cients (including the spatial parameter) are different by regimes; while the second
corresponds to a situation where all coefficients are different by regimes but the
spatial process is unique. We use the data in baltim, and we consider two spatial
weighting matrices: the first was introduced in Sect. 2 and it is based on the queen
contiguity criteria. The second matrix is simply a block diagonal version of the queen
where observations are neighbors only if they belong to the same regime. The results
from spreg are reported in Table 2. The first two columns of the table are based on the
queen contiguity matrix, with spatial lag coefficient that varies by regimes (column
(1)) or is fixed (column (2)). The second two columns are based on the block diagonal
version of the matrix, with spatial lag coefficient that vary by regimes (column (3))
or is fixed (column (4)).

Looking at Table 2, it stands clear that columns (1) and (3) are the same. This
means that, if the model is specified such that all variables differ by regimes,
spreg.GM_Lag_Regimes “forces” the spatial weighting matrix to be block-diagonal
even if the original spatial matrix is not. The same results can be obtained in R in two
different ways. The first way is to consider two separate equations and use the func-
tion spreg from the sphet package. These two equations were estimated in Sect. 6.
We set het = TRUE to obtain a robust estimator of the variance-covariance matrix in
order to match the results for the standard errors in Table 2. Here we report only the
summary of the two equations.
R> summary(mod_sphet_1)

Generalized stsls

Call:

spreg(formula = ff, data = subset(baltim, CITCOU == 0)a,

listw = subset(wlis,

baltim$CITCOU == 0), model = "lag", het = TRUE)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-31.01896 -7.47878 -0.33306 5.65189 29.14831

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 1.295358 10.591014 0.1223 0.9026556

NROOM 1.483139 2.054208 0.7220 0.4702941

NBATH 4.585893 2.187158 2.0967 0.0360169 *

PATIO 11.498864 5.502726 2.0897 0.0366477 *

FIREPL 6.628549 4.030935 1.6444 0.1000895

AC 11.944398 3.088166 3.8678 0.0001098 ***

GAR 0.172681 2.868597 0.0602 0.9519986

AGE 0.063025 0.092508 0.6813 0.4956844

LOTSZ 0.147209 0.047680 3.0874 0.0020189 **

SQFT -0.193581 0.313258 -0.6180 0.5366020

lambda 0.194925 0.216375 0.9009 0.3676599

20 For details on the arguments see the file replication.py available from the additional material associated
with the paper.
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Table 2 Results obtained with PySAL function spreg.GM_Lag_Regimes

Queen Block diagonal queen

(1) (2) (3) (4)

INTERCEPT_0 1.2953 −8.6200 1.2953 −8.7458

(10.5910) (10.9209) (10.5910) (10.7650)

NROOM_0 1.4831 1.9126 1.4831 1.8052

(2.0542) (2.2770) (2.0542) (2.3187)

NBATH_0 4.5858 4.5141 4.5858 4.8887

(2.1871) (2.4115) (2.1871) (2.4599)

PATIO_0 11.4988 12.4829 11.4988 12.1059

(5.5027) (5.2289) (5.5027) (4.8660)

FIREPL_0 6.6285 3.2656 6.6285 5.4013

(4.0309) (4.6409) (4.0309) (4.5261)

AC_0 11.9443 10.9414 11.9443 11.0244

(3.0881) (3.0495) (3.0881) (3.2454)

GAR_0 0.1726 0.9739 0.1726 0.2695

(2.8685) (2.8713) (2.8685) (2.8965)

AGE_0 0.0630 0.0836 0.0630 0.0849

(0.0925) (0.0914) (0.0925) (0.0910)

LOTSZ_0 0.1472 0.1128 0.1472 0.1250

(0.0476) (0.0487) (0.0476) (0.0484)

SQFT_0 −0.1935 −0.1378 −0.1935 −0.2403

(0.3132) (0.3812) (0.3132) (0.3798)

INTERCEPT_1 1.4189 2.5105 1.4189 2.9856

(7.4445) (8.0427) (7.4445) (7.4761)

NROOM_1 0.5718 0.9570 0.5718 0.7543

(1.4873) (1.5490) (1.4873) (1.4755)

NBATH_1 10.3693 11.8217 10.3693 10.8300

(2.9844) (3.1891) (2.9844) (3.0264)

PATIO_1 1.1846 3.6333 1.1846 1.9709

(3.1137) (3.3580) (3.1137) (3.1867)

FIREPL_1 7.8769 9.3419 7.8769 8.3739

(2.5384) (2.7379) (2.5384) (2.5768)

AC_1 0.1223 1.6192 0.1223 0.3770

(3.1476) (3.2105) (3.1476) (3.1532)

GAR_1 7.9206 7.8052 7.9206 8.0807

(2.9900) (3.0377) (2.9900) (3.0292)

AGE_1 −0.2087 −0.1456 −0.2087 −0.2112

(0.1199) (0.1286) (0.1199) (0.1232)
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Table 2 continued

Queen Block diagonal queen

(1) (2) (3) (4)

LOTSZ_1 0.0349 0.0344 0.0349 0.0367

(0.0249) (0.0256) (0.0249) (0.0248)

SQFT_1 −0.0057 0.0276 −0.0057 0.0145

(0.2226) (0.2274) (0.2226) (0.2201)

WPRICE_0 0.1949 0.1949

(0.2163) (0.2163)

WPRICE_1 0.5583 0.5583

(0.0949) (0.0949)

WPRICE 0.4091 0.4804

(0.1030) (0.0930)

Standard errors in parenthesis

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(mod_sphet_2)

Generalized stsls

Call:

spreg(formula = ff, data = subset(baltim, CITCOU == 1),

listw = subset(wlis,

baltim$CITCOU == 1), model = "lag", het = TRUE)

Residuals:

Min. 1st Qu. Median 3rd Qu. Max.

-31.36829 -6.39237 -0.10472 5.51075 58.25803

Coefficients:

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 1.4189637 7.4445519 0.1906 0.8488356

NROOM 0.5718325 1.4873796 0.3845 0.7006403

NBATH 10.3693049 2.9844099 3.4745 0.0005118 ***

PATIO 1.1846154 3.1137637 0.3804 0.7036152

FIREPL 7.8769605 2.5384508 3.1031 0.0019153 **

AC 0.1223055 3.1476928 0.0389 0.9690055

GAR 7.9206191 2.9900327 2.6490 0.0080729 **

AGE -0.2087772 0.1199920 -1.7399 0.0818721 .

LOTSZ 0.0349699 0.0249192 1.4033 0.1605187

SQFT -0.0057675 0.2226656 -0.0259 0.9793354

lambda 0.5583108 0.0949300 5.8813 4.071e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The second way is using the function spregimes after transforming W into a
block-diagonal matrix.

The code below creates two objects of class listw, corresponding to the blocks of
the spatial weighting matrix. l0 and l1 are then transformed in matrix and organized
to form a block diagonal matrix.
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R> l0 <- subset(wlis, baltim$CITCOU == 0)

R> l1 <- subset(wlis, baltim$CITCOU == 1)

R> lm0 <- listw2mat(l0)

R> lm1 <- listw2mat(l1)

R> blk <- rbind(cbind(lm0, matrix(0,nrow = nrow(lm0),

ncol = ncol(lm1))),

+ cbind(matrix(0, nrow =

nrow(lm1), ncol = ncol(lm0)), lm1))

The formula was introduced in Sect. 6, and it is written in such a way that all vari-
ables are different by regimes. In spregimes the data should be ordered according to
the regime variable CITCOU and the argument wy_rg should be TRUE:

R> mod_blk_wy <- spregimes(formula = form,

+ data = baltim[order(baltim$CITCOU),],

+ rgv = ~ CITCOU, model = "lag",

+ wy_rg = TRUE, listw = blk, het = TRUE)

R> summary(mod_blk_wy)

------------------------------------------------------------

Spatial Lag Regimes Model

------------------------------------------------------------

Call:

spregimes(formula = form, data = baltim[order(baltim$CITCOU),

], model = "lag", listw = blk, wy_rg = TRUE, rgv = ~CITCOU,

het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_0 1.2953583 10.5910138 0.1223 0.9026556

NROOM_0 1.4831393 2.0542079 0.7220 0.4702941

NBATH_0 4.5858931 2.1871579 2.0967 0.0360169 *

PATIO_0 11.4988643 5.5027256 2.0897 0.0366477 *

FIREPL_0 6.6285491 4.0309351 1.6444 0.1000895

AC_0 11.9443984 3.0881656 3.8678 0.0001098 ***

GAR_0 0.1726815 2.8685973 0.0602 0.9519986

AGE_0 0.0630254 0.0925082 0.6813 0.4956844

LOTSZ_0 0.1472089 0.0476800 3.0874 0.0020189 **

SQFT_0 -0.1935806 0.3132577 -0.6180 0.5366020

(Intercept)_1 1.4189637 7.4445519 0.1906 0.8488356

NROOM_1 0.5718325 1.4873796 0.3845 0.7006403

NBATH_1 10.3693049 2.9844099 3.4745 0.0005118 ***

PATIO_1 1.1846154 3.1137637 0.3804 0.7036152

FIREPL_1 7.8769605 2.5384508 3.1031 0.0019153 **

AC_1 0.1223055 3.1476928 0.0389 0.9690055

GAR_1 7.9206191 2.9900327 2.6490 0.0080729 **

AGE_1 -0.2087772 0.1199920 -1.7399 0.0818721 .

LOTSZ_1 0.0349699 0.0249192 1.4033 0.1605187

SQFT_1 -0.0057675 0.2226656 -0.0259 0.9793354

W_PRICE_0 0.1949246 0.2163748 0.9009 0.3676599

W_PRICE_1 0.5583108 0.0949300 5.8813 4.071e-09 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_PRICE_0 W_PRICE_1
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Instruments:

X WX WWX

Note that if we do not change the spatial weighting matrix and keep wlis (i.e., the
queen), we obtain results that are different from column (1) of Table 2.21

R> mod_blk_wy_2 <- spregimes(formula = form, data = baltim,

+ rgv = ~ CITCOU, model = "lag",

+ wy_rg = TRUE, listw = wlis, het = TRUE)

R> summary(mod_blk_wy_2)

------------------------------------------------------------

Spatial Lag Regimes Model

------------------------------------------------------------

Call:

spregimes(formula = form, data = baltim, model =

"lag", listw = wlis,

wy_rg = TRUE, rgv = ~CITCOU, het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_0 -12.401853 10.701496 -1.1589 0.2465012

NROOM_0 1.903319 2.323058 0.8193 0.4126061

NBATH_0 4.633992 2.477804 1.8702 0.0614559 .

PATIO_0 12.910226 4.789703 2.6954 0.0070302 **

FIREPL_0 3.144275 4.605746 0.6827 0.4948058

AC_0 10.370991 3.247522 3.1935 0.0014055 **

GAR_0 0.560913 2.892655 0.1939 0.8462469

AGE_0 0.087409 0.092747 0.9424 0.3459645

LOTSZ_0 0.109504 0.048979 2.2357 0.0253688 *

SQFT_0 -0.166045 0.396507 -0.4188 0.6753852

(Intercept)_1 3.004709 7.970575 0.3770 0.7061920

NROOM_1 0.926782 1.509713 0.6139 0.5392947

NBATH_1 11.587012 3.131539 3.7001 0.0002155 ***

PATIO_1 3.229213 3.336469 0.9679 0.3331176

FIREPL_1 9.177195 2.719114 3.3751 0.0007380 ***

AC_1 1.049452 3.120094 0.3364 0.7366050

GAR_1 8.072684 3.023883 2.6696 0.0075932 **

AGE_1 -0.182964 0.129269 -1.4154 0.1569590

LOTSZ_1 0.035853 0.025913 1.3836 0.1664766

SQFT_1 0.034014 0.224265 0.1517 0.8794467

W_PRICE_0 0.571567 0.151722 3.7672 0.0001651 ***

W_PRICE_1 0.415025 0.098743 4.2031 2.633e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_PRICE_0 W_PRICE_1

Instruments:

X WX WWX

Column (4) of Table 2 can be matched by estimating the following model:
R> mod_blk_nwy <- spregimes(formula = form,

+ data = baltim[order(baltim$CITCOU),],

21 This is because spreg.GM_Lag_Regimes transforms the spatial weighting matrix to a block-diagonal
when all variables are different by regimes.
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+ rgv = ~ CITCOU, model = "lag",

+ wy_rg = FALSE, listw = blk, het = TRUE)

R> summary(mod_blk_nwy)

------------------------------------------------------------

Spatial Lag Regimes Model

------------------------------------------------------------

Call:

spregimes(formula = form, data = baltim[order(baltim$CITCOU),

], model = "lag", listw = blk, wy_rg = FALSE, rgv = ~CITCOU,

het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_0 -8.745818 10.765097 -0.8124 0.4165486

NROOM_0 1.805218 2.318706 0.7785 0.4362476

NBATH_0 4.888737 2.459954 1.9873 0.0468860 *

PATIO_0 12.105956 4.866009 2.4879 0.0128514 *

FIREPL_0 5.401317 4.526198 1.1933 0.2327342

AC_0 11.024414 3.245435 3.3969 0.0006815 ***

GAR_0 0.269524 2.896548 0.0931 0.9258637

AGE_0 0.084914 0.091071 0.9324 0.3511303

LOTSZ_0 0.125088 0.048450 2.5818 0.0098281 **

SQFT_0 -0.240382 0.379826 -0.6329 0.5268166

(Intercept)_1 2.985645 7.476108 0.3994 0.6896293

NROOM_1 0.754364 1.475543 0.5112 0.6091796

NBATH_1 10.830060 3.026499 3.5784 0.0003457 ***

PATIO_1 1.970999 3.186714 0.6185 0.5362426

FIREPL_1 8.373959 2.576870 3.2497 0.0011554 **

AC_1 0.377015 3.153291 0.1196 0.9048298

GAR_1 8.080742 3.029273 2.6676 0.0076406 **

AGE_1 -0.211209 0.123277 -1.7133 0.0866585 .

LOTSZ_1 0.036701 0.024884 1.4749 0.1402478

SQFT_1 0.014546 0.220154 0.0661 0.9473203

W_PRICE 0.480431 0.093026 5.1645 2.411e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_PRICE

Instruments:

X WX WWX

In this model wy_rg = FALSE, and the spatial weighting matrix is block diagonal.
The final comparison concerns a model where wy_rg is FALSE, and the spatial

weighting matrix is based on the queen criteria. This model was estimated in Sect. 6,
and corresponds to column (2) of Table 2.

R> summary(mod_nwy)

---------------------------------------------------------

Spatial Lag Regimes Model

---------------------------------------------------------

Call:

spregimes(formula = form, data = baltim, model =

123



    4 Page 30 of 32 G. Piras, M. Sarrias

"lag", listw = wlis,

wy_rg = FALSE, rgv = ~CITCOU, het = TRUE)

Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept)_0 -8.919530 10.948978 -0.8146 0.4152755

NROOM_0 1.924245 2.288908 0.8407 0.4005257

NBATH_0 4.516571 2.422119 1.8647 0.0622208 .

PATIO_0 12.507903 5.227201 2.3928 0.0167181 *

FIREPL_0 3.190648 4.691420 0.6801 0.4964394

AC_0 10.912340 3.053392 3.5738 0.0003518 ***

GAR_0 0.989436 2.880399 0.3435 0.7312175

AGE_0 0.084245 0.091300 0.9227 0.3561486

LOTSZ_0 0.112010 0.048499 2.3095 0.0209156 *

SQFT_0 -0.137437 0.382660 -0.3592 0.7194735

(Intercept)_1 2.329483 7.934102 0.2936 0.7690606

NROOM_1 0.940603 1.555722 0.6046 0.5454389

NBATH_1 11.788691 3.190693 3.6947 0.0002201 ***

PATIO_1 3.576386 3.352183 1.0669 0.2860247

FIREPL_1 9.304493 2.733959 3.4033 0.0006658 ***

AC_1 1.613382 3.203806 0.5036 0.6145545

GAR_1 7.782683 3.039714 2.5603 0.0104572 *

AGE_1 -0.144237 0.128171 -1.1253 0.2604428

LOTSZ_1 0.034213 0.025443 1.3447 0.1787275

SQFT_1 0.025647 0.227200 0.1129 0.9101246

W_PRICE 0.416426 0.098491 4.2281 2.357e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Endogenous variables:

W_PRICE

Instruments:

X WX WWX

However, the results obtained from the function spregimes are (slightly) different
from those in spreg.GM_Lag_Regimes.22
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