
ORIGINAL ARTICLE

A graph-based superframework for mixture model estimation using
EM: an analysis of US wholesale electricity markets

Carlo Mari1 • Cristiano Baldassari2

Received: 3 October 2022 / Accepted: 7 March 2023
� The Author(s) 2023

Abstract
A fully unsupervised graph-based superframework is proposed to handle the EM initialization problem for estimating

mixture models on financial time series. Using a complex network approach that links time series and graphs, the graph-

structured information derived from the observed data is exploited to produce a meaningful starting point for the EM

algorithm. It is shown that structural information derived by complex graphs can definitely capture time series behavior and

nonlinear relationships between different observations. The proposed methodology is employed to estimate Gaussian

mixture models on US wholesale electricity market prices using two different configurations of the superframework. The

obtained results show that the proposed methodology performs better than conventional initialization methods, such as K-

means based techniques. The improvements are significant on the overall representation of the empirical distribution of

log-returns and, in particular, on the first four moments. Moreover, this approach has a high degree of generalization and

flexibility, exploiting graph manipulation and employing functional operating blocks, which can be adapted to very

different empirical situations.

Keywords Markov transition fields � Quantile networks � Graph embedding � Topological data analysis

1 Introduction

Network science is a well-established discipline that

explores a broad variety of natural and social phenomena

by describing actual relationships via complex network, or

graph, structures [1]. There is a long history of effective

applications of complex networks in various fields [2–5].

Several time series analysis techniques based on net-

work science have been proposed in the previous decade,

utilizing the huge body of research on network analysis and

providing new insights and innovative perspectives on

understanding the granular structure of time series [6, 7].

Indeed, transforming a time series into a network improves

in-depth the analysis, leading to the discovery of time

series non-trivial topological features [8, 9] and providing

new viewpoints and ideas for penetrating into the proba-

bilistic structure of time series [10, 11].

1.1 Problem statement

Finite mixture models provide universal approximations to

any continuous probability density and have proven to be

very useful in describing observed data in many fields of

application [12, 13]. In particular, Gaussian mixture mod-

els (GMMs) are intriguing instances of mixture models that

are frequently used as an effective tool for data analysis

and modeling, especially in signal and information pro-

cessing [14–17]. The methods for estimating the parame-

ters in a mixture model are crucial to the model

performance. Among the others, the expectation-maxi-

mization (EM) algorithm, frequently used for training

mixture models [18], provides an iterative approach for

parameter estimation based on likelihood maximization.

Carlo Mari and Cristiano Baldassari have contributed

equally to this work.

& Cristiano Baldassari

cristiano.baldassari@unich.it

Carlo Mari

carlo.mari@unich.it

1 Department of Economics, University of Chieti-Pescara,

Viale Pindaro, 42, 65100 Pescara, PE, Italy

2 Department of Neuroscience, Imaging and Clinical Sciences,

University of Chieti-Pescara, Via Luigi Polacchi, 11,

66100 Chieti, CH, Italy

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-023-08468-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-3963-3003
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08468-2&domain=pdf
https://doi.org/10.1007/s00521-023-08468-2

However, the initialization settings of the EM technique

have a significant influence on the quality of the resulting

solution [19]. Indeed, EM maximum likelihood estimation

is subject to the local-optima problem and choosing the

right initial values is essential for getting accurate results

[20–22]. Due to this predisposition toward local solutions,

it is implausible that any given solution, regardless of the

initialization strategy, would be globally optimum [22].

1.2 Related works

Clustering algorithms are used in the literature to provide

meaningful solutions to the EM initialization problem. In

particular, K-means [23] and Random algorithms [24]

received great attention in recent years. In both these

algorithms, the number of mixture components must be set

exogenously. Moreover, cluster centers (centroids) are

chosen randomly and, due to the high occurrence of local

solutions, the estimation procedure must be re-initialized

several times before a solution can be detected. In addition,

no existing technique can determine when the number of

initialization is sufficient to ensure a full examination of

the likelihood function [22]. Other clustering algorithms

for EM initialization, such as hierarchical clustering [25] or

rough-enhanced-Bayes mixture estimation (REBMIX)

[26], have been proposed in the literature. However, no one

of these experimental strategies can be considered as the

best one [24]. Some authors investigated the feasibility of

realizing a fully unsupervised framework, i.e., without any

guesswork about the number of mixture components, by

mapping time series to complex networks, thus determin-

ing the optimal number of the mixture model components

and the vector of initial parameters [27]. The proposed

framework has done an outstanding job in addressing the

local-optima problem, thus providing accurate estimates of

GMM parameters.

1.3 Purpose

The aim of this paper is develop a fully unsupervised

graph-based superframework to handle the EM initializa-

tion problem for estimating GMMs on financial log-return

time series. In fact, although price time series are typically

non stationary, log-return time series, computed as the

difference in log-prices between two subsequent observa-

tions, demonstrate better behavior [28]. We will show that

the proposed approach has a high degree of generalization

and flexibility, taking advantage of graph manipulation and

employing functional operating blocks that can be adapted

to any empirical situation. This superframework is descri-

bed in the end-to-end flowchart shown in Fig. 1.

The workflow is composed by three sections, namely the

input, the distribution estimation, and the output. The input

is the possibly preprocessed log-price time series. Indeed,

in some cases time series of market prices needs to be

preprocessed to account for possibly missing data impu-

tation and trends [29]. Then, the preprocessed log-price

time series is splitted in two branches both entering the

distribution estimation section, one going into the initial-

ization blocks (highlighted in red in Fig. 1), and the other

branch going directly into the GMM model block after a

log-return transform. In the initialization blocks, the pre-

processed time series undergoes three major initialization

transformations, namely graph encoding, graph compres-

sion and graph partitioning, in order to determine the

vector of initialization parameters. First, the graph associ-

ated to the preprocessed time series must be created (graph

encoding); then, by lowering the complexity of the graph

(graph compression), log-return communities (graph par-

titioning) can be identified. Next, the number of the GMM

components is set equal to the number of the detected

communities, and the remaining initializing parameters of

the EM algorithm are determined by log-return community

membership, as will be explained in the text. In this way,

all the inputs of the GMM block, i.e., the initializing

parameters and the log-return time series, are composed.

Finally, the output section provides the estimated param-

eters through the EM algorithm.

The graph encoding step is realized by mapping the

preprocessed log-price time series (hereinafter, log-price

Fig. 1 End-to-end workflow diagram. The red line highlights the

initialization blocks

Neural Computing and Applications

123

time series), into a quantile network (according to the

taxonomy proposed in the literature [11]), using a Markov

transition field (MTF) as adjacency matrix [30–33]. The

use of a MTF as adjacency matrix is particularly well

suited to fully account for the transitions between the

observed dynamic states [30].

To reduce the complexity of the created graph, we

employed two different graph compression techniques,

namely graph coarsening [34] and graph embedding [35].

Graph coarsening is a model-driven technique used to

reduce the size of a graph maintaining essential properties.

Despite the plethora of literature on graph coarsening,

model-driven methods are the most popular, as data-driven

techniques are still under-explored [34]. Graph embedding,

on the other hand, is based on a data-driven approach,

transforming the graph to a multi-dimensional Euclidean

vector space. The essential idea of graph embedding

methods is to learn effective feature representations of

network nodes in an unsupervised manner preserving the

graph structural properties [35, 36]. In this research, we

will employ a variety of embedding techniques using the

Karate Club open source Python framework [37, 38],

which includes state-of-the-art and cutting-edge approa-

ches for conducting unsupervised learning on graph-

structured data. The classes of embedding, as listed on the

Karate Club paper and suitable for our procedure, are:

(i) neighborhood preserving embedding; (ii) structural

embedding; (iii) attributed embedding; iv) meta-embed-

ding. In particular, we used the so-called diff2Vec

embedding method as representative of the first class [39];

the GraphWave method for the second class [40]; the

attributed social network embeddings (ASNE) for the third

class [41], and network embedding update(NEU) for the

fourth class [42].

The community detection task is performed in the graph

partitioning block. We used two different techniques, the

Louvain method [43] and a clustering technique based on

topological data analysis (TDA) [44]. The Louvain Method

provides a technique of community discovery based on the

optimization of the graph modularity. Instead, operating

with a TDA-based clustering technique, the community

discovery process is performed directly on the graph

embedding using the Topological Mode Analysis Tool

(ToMATo) [45]. This latter strategy, compared to other

current clustering methods, demonstrates a superior

advantage by providing an accurate unsupervised system

for determining how many stable clusters the data contain

through to the use of persistent homology [44, 46–48].

We applied the proposed superframework to US

wholesale electricity markets, investigating the behavior of

daily electricity prices at Palo Verde (Southwest area), PJM

(Northeast region), SP15 (Southern California) and Nepool

(New England) in the time interval January 1, 2017 to

December 31, 2021. US electricity price time series show

irregular sampling (lack of daily data points) as well as

trend and seasonality. Typically, electricity prices may be

higher in winter and in summer, and the seasonal compo-

nent must account for this semiannual periodicity. A trend

must be included to account for expected inflation and

possibly for a real power price escalation rate (positive or

negative). For these reasons, a preprocessing consisting of

a gap filling in procedure and a seasonal-trend removal is

first accomplished.

Within the superframework and focusing on the ini-

tialization blocks, we identify two different frameworks

that combine the techniques described above: the first

framework is composed by (i) graph encoding using MTF,

(ii) graph compression with graph coarsening techniques,

(iii) graph partitioning with the Louvain method; the sec-

ond framework as (i) graph encoding using MTF, (ii) graph

compression with graph embedding, (iii) graph partitioning

with ToMATo clustering. We will call graph approxima-

tion framework (GA framework) the first framework and

graph representation learning framework (GRL frame-

work) the second. In a previous paper [27], we have shown

that the GA framework performs better than conventional

initialization methods, such as K-means and random-based

techniques. In this paper, we will see that the GRL

framework provides even more accurate results than the

GA framework. The higher likelihood values reached

imply a stronger learning performance than the GA

framework in the distribution estimation task. This is due

also to the fact that the GRL framework has a more con-

servative pipeline by design (less information loss in the

graph compression phase), and the need for custom feature

engineering as graph coarsening is reduced by superior

data-driven and unsupervised graph machine learning

techniques. In addition, embedding methods combined

with TDA tools made feature extraction highly accurate

and efficient.

To the best of our knowledge, this is the first study in

which these embedding approaches are used with quantile

graphs created with time series MTF encoding. In partic-

ular, we highlight that the combination of NEU meta-em-

bedding applied to Diff2Vec, and the ASNE method stand

out as especially effective embedding models, and their use

with an MTF-encoded quantile graph is a completely new

approach.

The rest of this study is structured as follows. The

superframework is described in depth in Sect. 2. Section 3

focuses on the empirical analysis. Section 4 concludes. The

code to reproduce our results is available in the Github

repository at https://bit.ly/3zFtbQY.

Neural Computing and Applications

123

https://bit.ly/3zFtbQY

2 The methodology

2.1 Overview

This section illustrates the proposed superframework

approach to the estimation of mixture models, outlining in

detail two distinct operational frameworks, namely the GA

and the GRL frameworks, that will be used in the empirical

analysis. Let us start, therefore, by briefly reviewing same

basic facts about Mixture Models and the EM estimation

algorithm.

Consider a possibly preprocessed log-price time series

fxtgNt¼1 and its log-return tranform frtgN�1
t¼1 , where

ri ¼ xiþ1 � xi; i ¼ 1; 2; . . .;N � 1: ð1Þ

Suppose that the values, ri, i ¼ 1; 2; . . .;N � 1, are

extracted in an IID manner from an underlying random

model described by a probability density pðriÞ. We assume

that pðriÞ is a finite mixture distribution with C

components,

pðri j HÞ ¼
XC

c¼1

acpcðri j zic ¼ 1; hcÞ: ð2Þ

In Eq. (2), zi ¼ fzi1; zi2. . .; ziCg with i ¼ 1; 2; . . .;N � 1, is

a vector of C unobservable latent binary random variables

that are mutually exclusive and exhaustive, i.e., one and

only one of the zic is equal to 1, while the others are equal

to 0). The vector zi plays the role of an indicator random

variable representing the identity of the mixture component

responsible for the generation of the outcome ri; pcðri j
zic ¼ 1; hcÞ denotes the density distributions of the mixture

components with parameters hc; a1; a2; . . .; aC are the

mixture weights, i.e., positive numbers such that

XC

c¼1

ac ¼ 1; ð3Þ

representing the probability that the value ri was generated

by the component c; H ¼ fa1; . . .; aC; h1; . . .; hCg is the

complete set of the mixture model parameters [49]. In the

case of univariate Gaussian mixture models, the compo-

nents of the model are described by univariate Gaussian

densities,

pcðri j hcÞ ¼
1

rc
ffiffiffiffiffiffi
2p

p exp
�ðri � lcÞ

2

2r2c

 !
; ð4Þ

with parameters hc ¼ flc; r2cg denoting, respectively, the

mean and the variance of the single component

distribution.

Mixture models can be efficiently estimated by maxi-

mum likelihood using the EM algorithm [18]. EM is an

iterative procedure that begins with an initial estimate of

parameters H ¼ H0 and then iteratively updates H until

convergence is achieved. Each iteration consists of two

steps, the E-step and the M-step.

In the E-Step, given a set of parameters H, the so-called

membership weight of the data point ri in component c is

computed. It is defined as

wic ¼ pðzc ¼ 1 j ri;HÞ; ð5Þ

with

XC

c¼1

wic ¼ 1: ð6Þ

In this way, we obtain the N � C matrix of membership in

which each row sum to 1. From the Bayes rule, we can cast

Eq. (5) in the following equivalent form,

wic ¼
acpcðri j zic ¼ 1; hcÞPC

m¼1 ampmðri j zm ¼ 1; hmÞ
: ð7Þ

In the M-step, the algorithm computes the parameter values

that maximizes the log-likelihood, starting from the values

obtained by suitably aggregating the membership weights

generated in the E-step. In the case of Gaussian mixture

models such an aggregation can be performed in the fol-

lowing way,

ac ¼
Nc

N
; ð8Þ

lc ¼
1

Nc

XN

i¼1

wicri; ð9Þ

r2c ¼
1

Nc

XN

i¼1

wicðri � lcÞ2; ð10Þ

where Nc ¼
PN

i¼1 wi represents the effective number of

data points assigned to component c. We notice that both

the mean and the variance are computed in a way similar to

how standard empirical average and variance are com-

puted, but with a fractional weight wic.

Once the new values of the parameters are obtained via

maximum likelihood in the M-step, they are used in the

subsequent iterations (composed of both the E-step and the

M-step). The iterative procedure continues until conver-

gence is achieved.

The EM algorithm can be started by selecting a set of

initial parameters and then performing the E-step, or by

selecting a set of initial weights and then conducting a first

M-step. The initial parameters or the initial weights can be

chosen randomly or could be derived using some heuristic

method [49]. Within the superframework, we identified two

different operational frameworks to perform this initial-

ization task, namely the GA and GRL frameworks. Fig-

ure 2 depicts the specific tasks performed in each

Neural Computing and Applications

123

framework, putting into evidence major distinctions

between the GA and GRL frameworks.

In both frameworks, the preprocessed log-price time

series is encoded into a graph network using a MTF-based

encoding. Then, the graph will undergo a compression

phase performed through graph coarsening techniques in

the GA framework, and graph embedding techniques in the

GRL framework. Finally, the community detection is

accomplished by a partitioning procedure performed using

the Louvain Method to optimize the modularity of the

graph in the GA framework, and ToMaTo multidimen-

sional clustering of the graph embedding in the GRL

framework. Table 1 summarizes the specific task of each

block of Fig. 2.

The partitioning step serves as a feature extraction

procedure for the distribution estimation to generate auto-

matically the number of components of the mixture model

and the initialization parameters. In fact, since each log-

return value, ri ¼ xiþ1 � xi, can be uniquely associated to

the value xi, the detected communities can be viewed also

as log-return communities. In both frameworks the number

of components is set equal to the number of the detected

communities, and the other initialization parameters, con-

tained in the initializing vector H0, are computed through

community membership (i.e., wic ¼ 1 if the observation ri

belongs to the cluster c, 0 otherwise) using Eqs. (8–10).

Then, a first M-step is performed. Once the new values of

the parameters are obtained via maximum likelihood in the

M-step, they are used in the subsequent iterations (com-

posed of both the E-step and the M-step) until convergence

is obtained.

2.2 Graph encoding with Markov transition
fields

This methodology is based on mapping the log-price time

series into a graph. The purpose is to identify typical pat-

terns or similar contexts with the aim to form a network

and detect communities of nodes that may be associated

with the components of a mixture model. In order to map a

time series onto a complex network, the adjacency matrix

must be defined. If the underlying dynamics is determined

by a Markov process, the Markov transition matrix can be

used as an adjacency matrix [11]. In fact, it allows us to

properly account for the transitions among different states

of the observed dynamics. In such a case, the time series

must be first quantized in order to define the dynamical

states. This task can be accomplished in the following way.

Let us consider on the real axis a certain number, say Q, of

adjacent intervals by positioning Qþ 1 cut points, namely

fq0; q1; . . .; qQg, to divide log-price observation data into

continuous intervals, hereinafter bins, with equal

probabilities,

PðqkÞ � Pðqk�1Þ ¼ 1=Q: ð11Þ

In this way, we can group observation data into Q bins,

B1;B2; . . .;BQ, that identify the Q states of the dynamics. In

our analysis, both the empirical distribution, hereinafter

Quantile binning, and the normal distribution fitted to time

series data, hereinafter normal binning, are used. In the

latter case, the whole real axis is divided into Q interval

with equal probability. In both cases, each observation is

mapped to the corresponding bin,

fx1; x2; . . .; xNg ! fd1; d2; . . .; dNg; ð12Þ

where di denotes the bin containing the value xi. After

Fig. 2 The initialization blocks

Table 1 Initialization tasks. GA and GRL task columns are merged when the GA and GRL tasks are the same

GA block GRL block GA task GRL task

Graph

Encoding

Graph

Encoding

Transforming the log-price time series into a quantile network using the MTF as adjacency matrix

Graph

Coarsening

Graph

Embedding

Reducing graph dimension by graph coarsening Representation learning of the MTF matrix by a graph node

embedding

Louvain

Method

ToMaTo

Clustering

Community detection by optimizing the

modularity of the graph

Community detection by multidimensional clustering of

the graph embedding

Neural Computing and Applications

123

assigning each xi to its corresponding bin di, we construct a

Q� Q weighted matrix X by counting transitions among

bins in the manner of a first order Markov chain. By

transition we mean a transition between two consecutive

observations, namely from xi to xiþ1, that identify a tran-

sition between the bin (the state) di to the bin (the state)

diþ1. The Markov transition matrix can be, then, obtained

by identifying each element of X, namely Xh;k, with the

relative frequency of transitions between bins Bh and Bk

(h; k ¼ 1; . . .;QÞ. However, the information contained in

the Markov matrix is too coarse. In order to refine the

analysis we introduced the so-called Markov transition

field (MTF) [30, 50], a N � N matrix whose elements are

defined as follows,

Mi;j ¼ Xdi;dj ; ð13Þ

with i; j ¼ 1; . . .;N. In a Markov transition field, the

information contained in the Markov transition matrix is

spread out along the whole time series. Indeed, Mi;j rep-

resents the probability associated to a transition from the

bin di which contains xi to the bin dj containing xj, as given

in the Markov transition matrix X. The M matrix results as

a spread of the X matrix along the time axis and is intended

to enhance analytical capabilities, enabling a comprehen-

sive investigation of the associated network. The Markov

transition field M allows us to map a time series into a

complex network. This can be done by using the matrix M

as the adjacency matrix of the graph G, mapping the ver-

tices (nodes) V to the row-column indices (i, j) and the

edge weights to Mi;j.

2.3 Graph compression

This section discusses some graph compression techniques,

namely graph coarsening in the GA framework and unsu-

pervised embedding of graph in the GRL framework.

2.3.1 Graph coarsening

The goal of graph coarsening is to find a smaller graph �G,

which is a good approximation of G [51]. In the GA

framework, to make the whole estimation procedure

computationally more feasible and efficient, the size of the

matrix M is reduced by averaging its elements in each non-

overlapping g� g sub-matrix with a kernel 1=g2, thus

obtaining a reduced S� S square matrix, �M, to be used as

adjacency matrix,1 for the generation of the coarsened

graph �G.

2.3.2 Graph embedding

In the GRL framework we will make use of graph

embedding, as a data-driven approach, instead of graph

coarsening. Network embedding techniques have made

significant contributions to the use of Machine Learning

(ML) in network science [54]. Unsupervised feature

extraction techniques from graph data are gaining popu-

larity in the ML domain [35, 55, 56]. These methods

automatically extract features which can be used as inputs

for link prediction, node and graph classification, com-

munity detection, and a variety of other tasks in a wide

range of real-world research and application contexts

[35, 55, 57–59]. These graph mining technologies con-

tributed in a significant way to the advancement and

development of ML [60, 61]. In particular, node embed-

dings transform graph vertices to a Euclidean space, where

nodes that are related according to a specific definition of

closeness are close to each other. The Euclidean format,

instead of the native graph, facilitates the use of conven-

tional ML tools [37]. In this paper, we adopt graph

embedding procedures belonging to the four classes of the

Karate Club framework [37]: (i) neighborhood preserving

embedding; (ii) structural embedding; (iii) attributed

embedding; (iv) meta-embedding. While neighborhood

preserving embeddings preserve the closeness of graph

nodes, structural embeddings preserve the structural roles

of nodes in the embedding space, and attributed embed-

dings maintain the neighborhood, the structure and the

generic attribute similarity of nodes. Meta-embeddings are

designed to produce embeddings with a higher represen-

tation quality. To ensure generality and completeness, in

the empirical analysis we will use one method chosen from

each class. The main characteristics of these methods are

described below.

Diff2Vec is a neighborhood preserving embedding that uses

diffusion processes on graphs to create node sequences

with the aim of training a neural network. The weights of

the trained neural network determine the embedding of the

nodes. Experiments on community discovering revealed

that this method detect high-quality communities [39].

GraphWave is a structural embedding that preserves the

structural roles of nodes in the embedding space [40].

Different portions of a graph may contain nodes with

comparable structural roles within their local network

architecture. The discovery of such roles provides crucial

information into the structure of networks. GraphWave

computational complexity is proportional to the number of

edges, enabling it to scale to huge networks.

Attributed social network embeddings (ASNE) enhance all

the previous approaches focusing on neighborhood

1 If g does not divides the observed time series length N, we use the

Python function numpy.linspace that creates slightly different inter-

vals to keep S an integer [52, 53].

Neural Computing and Applications

123

closeness and structural information [41]. For networks

usually exist supplementary details that are referred to as

features or attributes, which comprise not only the node

information (adjacency matrix) but also node features (at-

tributes), related to the node context. In essence, node

attributes have enormous effects on the organization of

networks. By studying attribute homophily and network

structure together, it is possible to learn informative node

representations.

Network embedding update (NEU) belong to the meta-

embedding class [42]. It is an algorithm designed to

improve the performance of any given network represen-

tation learning. The running time of NEU is almost neg-

ligible. We will apply the NEU meta-embedding method to

any of the previously listed methods.

2.4 Graph partitioning

This section is devoted to describe the different strategies

to perform a graph mining task, namely the community

detection, in both the GA and GRL frameworks. In general,

a network is regarded to have a community structure if its

nodes can be divided into groups of highly connected

internal nodes compared to the connections with the

external nodes. Communities can be classified as overlap-

ping or nonoverlapping, depending on whether a node can

belong to more than one community or only one. In our

scenario, we adopted the latter option. In the GA

framework, the Louvain method was applied on the

coarsened graph; the GRL framework uses a clustering

technique on the embedded multi-dimensional Euclidean

space.

2.4.1 The louvain method

To identify communities, we used the Louvain method [43]

in the GA framework. The Louvain method provides a

unsupervised technique of community discovery based on

the optimization of the graph modularity that does not need

the number of communities or their sizes as inputs.

Modularity is the ratio of the density of connections inside

clusters to the density of connections between clusters. The

choice of the Louvain algorithm is justified by the fact that

it is well documented in the literature that this strategy

performs very well on a variety of community detection

benchmarks [62]. By partitioning the whole time series into

communities, the Louvain method finds the number of

mixture model components C by matching it to the number

of observed communities.

2.4.2 ToMATo clustering

Since the graph embedding generates a high-dimensional

Euclidean representation of the graph, we have chosen

TDA, an emerging field of research with the aim of pro-

viding mathematical and algorithmic tools to understand

Fig. 3 Observed time series in the time interval January 1, 2017, to December 31, 2021. Data are expressed in nominal dollars per megawatt-hour

Neural Computing and Applications

123

the topological and geometric structure of data, particularly

suited for high-dimensional data [63, 64]. The ToMATo

clustering technique is an unsupervised TDA tool that we

used in the GRL framework for community detection.

Theoretically, this technique allows us to identify clusters

that are stable under small perturbations of the input

[44, 65, 66].

Fig. 4 Filled time series fxft g (in blue) and their trends fxtrt g (in red) (Color figure online)

Fig. 5 Log-return time series

Neural Computing and Applications

123

3 The experiment

In this section, Gaussian mixture models are used to per-

form an experiment on US wholesale electricity prices time

series to assess the performance of the GA and GRL

frameworks. Our data collection is composed by daily

prices observed in the time interval January 1, 2017, to

December 31, 2021. Time series data can be freely

downloaded from www.eia.gov/electricity/wholesale.

Observed time series are shown in Fig. 3.

Volatility and extreme unpredictability characterize

market price movements, which are frequently accompa-

nied by sharp spikes and jumps generated by changes in the

supply–demand balance. All these time series show irreg-

ular sampling (as a result of weekends, holidays and other

missing data due to market specific reasons) as well as

trend and seasonality. Typically, electricity prices may be

higher in winter and in summer, and the seasonal compo-

nent must account for this semiannual periodicity. A trend

must be included to account for expected inflation and

possibly for a real power price escalation rate (positive or

negative). Data prepocessing was first conducted to fill in

time series gaps and remove observable trend and sea-

sonality over time.

3.1 Data preprocessing

Let us denote by fyob�t g the time series of daily prices

defined as a function of the incomplete observed raw time

base ftg, and fxob�t g its natural logarithm transform, i.e.,

xob�t ¼ log yob�t . The time series fxob�t g is sampled irregularly

(not evenly time interval) since weekends, holidays, and

other sporadic missing days are not included in it. Impu-

tation of missing data (gap filling) can be very informative

and convey important knowledge [67], counteracting the

phenomenon known as informative missingness [68]. In

the presence of missing data, different time periods may

have different information content. In fact, even when the

market is closed, new information can emerge that can

influence price dynamics [69, 70].

The first step, therefore, involves the gap filling of the

time series. To do this, we employ a complete daily grid

and an imputation technique called missForest [71], a ML

algorithm for data imputation that is completely agnostic

about the data distribution. MissForest is employed to

compute a value for each missing point. In this way, fol-

lowing the same procedure proposed in [29], we extending

the raw time series fxobt g on a complete daily time base ftg,

fxob�t g�!F fxft g; ð14Þ

where F is the application that transforms ftg in ftg and

computes missing values using the missForest algorithm to

fill the daily-complete grid, mapping fxob�t g to fxft g.
In the second step, we look for temporal trend and

seasonality, hereinafer, trend, that must be eliminated in

order to reveal the stochastic process driving the market

dynamics. LOWESS (LOcally Weighted Estimated Scat-

terplot Smoothing) is used to perform this task. [72, 73].

LOWESS is a versatile method for removing the trend by

fitting basic polynomial models to restricted portions of

data. The key benefit of LOWESS over other methods is

that it does not need the specification of a global function

or the assumption that the data must conform to a certain

distribution shape [74]. Figure 4 shows log-price time

series, fxft g, and superimposed the trend, fxtrt g, for each

market under investigation.

Once detected, the trend can be eliminated from the

filled time series, thus obtaining,

xi ¼ xfi � xtri ; i ¼ 1; 2; . . .;N; ð15Þ

where we assumed, without loss of generality, that the

Table 2 Descriptive statistics of log-returns

Mean Std. dev. Skew Kurt

PALOVERDE 0.00016 0.23 �0.38 19.84

NEPOOL �0.00016 0.17 0.51 9.22

SP15 0.00007 0.19 0.29 12.84

PJM �0.00042 0.15 �0.20 16.02

Fig. 6 The distribution estimation section

Table 3 Graph embedding experimental setup

Framework Embedding

method

Additional

attributes

Embedding

dimension

GRL Diff2Vec – 128

GRL GraphWave – 400

GRL ASNE frtg 128

GRL NEU_Diff2Vec – 128

GRL NEU_GraphWave – 400

GRL NEU_ASNE frtg 128

Neural Computing and Applications

123

complete time grid ftg is represented by the first N natural

numbers, f1; 2; . . .;Ng. Then, log-returns are computed as

the difference between two successive daily log-prices, i.e.,

ri ¼ xiþ1 � xi; i ¼ 1; 2; . . .;N � 1: ð16Þ

Fig. 5 depicts the log-return time series, frtg, for each

market under investigation. Table 2 depicts the descriptive

statistics of log-returns. In all four investigated markets,

empirical log-return distributions exhibit heavy tails, as

indicated by the high values of the kurtosis. The occurrence

of jumps and spikes in electricity prices significantly

increases the value of the fourth central moment of

empirical log-return distributions. From this perspective, it

is crucial that a given probabilistic model captures the first

four central moments of the empirical distribution of log-

returns, especially for financial applications [75, 76].

3.2 Distribution estimation: the experimental
setup

In this section, Gaussian mixture models are estimated on

market log-returns time series, rt, by maximum likelihood

using the EM algorithm. The initialization will be per-

formed using both the GA and GRL frameworks. Let us

focus on the Initialization blocks. Figure 6 shows a mag-

nified version of the distribution estimation section and

summarizes the calibration procedure. The Initialization

blocks produce both the number of the model component,

C, and the initial parameter set, H0. Indeed, the number of

components is set equal to the number of the detected

communities, and the initialization parameters are com-

puted through community membership according to

Eqs. (8–10). Then, a first M-step is performed and, sub-

sequently, the EM algorithm is used to estimate the GMM

parameter set, H.

With respect to the GA framework, the feasibility of the

GRL framework is facilitated by the embedding techniques

that enable to work directly on a not reduced graph. In the

GA framework, we performed the model estimation for

each couple of values (Q, S) defined on a suitable grid. The

number of bins, Q, is made to vary from 2 to 100 in

increments of 2 for both quantile and normal binning

strategies; the parameter S which defines the dimension of

the reduced adjacency matrix �M is made to vary from 5 to

400 in increments of 5. In the GRL framework, the

parameters of the four embedding methods used in this

study are the default parameters of the Karate Club

framework. Moreover, the ToMATo clustering techniques

needs to set three parameters, namely the neighborhood

information of the point cloud, the density estimator, and

the merging parameter. We used a ToMATo cluster func-

tion contained in the Python library tomaster2 which needs

only the neighborhood information as input and automates

the other two parameters. Since ToMATo relies heavily on

neighborhood information, a popular choice to model

neighborhood seems to be the K-nearest neighbors algo-

rithm. As well documented in the literature, this ML

algorithm performs well, recovering the correct clusters

under an appropriate choice of the parameter K [44]. For

the GRL framework the model estimation is, therefore,

performed by exploring a suitable two-dimensional grid for

the couple (Q, K). In this grid, the number of bins, Q, is

Table 4 PALOVERDE
Method Strategy Comps Grid

parameters

BIC e4 ð%Þ

NEU_Diff2Vec Q 3 (40, 13) �1246.06 37.16

Diff2Vec Q 3 (10, 81) �1245.85 33.39

NEU_Diff2Vec N 3 (10, 8) �1245.58 35.05

ASNE N 3 (42, 32) �1244.91 33.72

Diff2Vec N 3 (8, 14) �1244.09 34.53

GraphWave Q 3 (72, 62) �1243.59 43.04

ASNE Q 3 (8, 52) �1242.80 35.25

NEU_ASNE Q 3 (8, 79) �1242.37 35.34

NEU_GraphWave Q 3 (54, 17) �1241.96 43.59

GA framework N 3 (12, 265) �1241.43 44.66

GA framework Q 3 (6, 395) �1241.23 44.17

NEU_ASNE N 3 (2, 19) �1240.86 45.67

GraphWave N 3 (80, 11) �1240.23 42.70

NEU_GraphWave N 3 (90, 13) �1238.91 47.40

2 tomaster: Topological Mode Analysis on Steroids. Github repos-

itory at https://github.com/louisabraham/tomaster.

Neural Computing and Applications

123

https://github.com/louisabraham/tomaster.

made to vary from 2 to 100 in increments of 2 for both

quantile and normal binning strategies; the parameter

K from 2 to 100 in increments of 1.

The embedding method, during the exploration of the

grid, operates always on the complete graph G, never using

an approximate form like the coarsening method that

makes use of a reduced adjacency matrix of dimension

S. This is one of the most important differences between

GA and GRL frameworks. Table 3, reports the dimension

of the Euclidean space for each embedding method. Such a

parameter has been chosen according to the default one

provided by the library. In addition, Table 3 shows, as

additional attributes, the log-return time series in

correspondence of two well defined embedding methods,

namely the ASNE and NEU_ASNE methods.3 As we will

see in the next section, this feature can greatly improve the

accuracy of the estimation procedure.

3.3 Results

This section outlines and discusses the empirical findings

of the experiment. We will analyze the outcomes of six

embedding methods for the GRL framework (see Table 3)

Table 5 NEPOOL
Method Strategy Comps Grid

parameters

BIC e4 ð%Þ

NEU_Diff2Vec N 3 (50, 12) �1896.41 7.38

NEU_Diff2Vec Q 3 (6, 99) �1896.15 3.66

NEU_GraphWave Q 3 (98, 62) �1896.09 9.46

Diff2Vec N 3 (6, 97) �1895.89 8.80

ASNE Q 3 (2, 19) �1895.76 7.49

Diff2Vec Q 3 (68, 29) �1895.61 4.52

GraphWave Q 3 (30, 92) �1895.56 6.18

ASNE N 3 (16, 30) �1895.24 4.17

NEU_ASNE Q 3 (2, 51) �1894.91 2.49

NEU_ASNE N 3 (18, 43) �1893.61 4.79

GraphWave N 3 (12, 76) �1893.23 7.47

NEU_GraphWave N 3 (12, 93) �1893.23 7.47

GA framework N 3 (22, 95) �1891.19 16.15

GA framework Q 3 (26, 175) �1889.73 18.91

Table 6 SP15
Method Strategy Comps Grid

parameters

BIC e4 ð%Þ

ASNE N 3 (98, 100) �1671.45 9.58

NEU_ASNE N 3 (2, 30) �1671.39 12.54

NEU_Diff2Vec Q 3 (56, 29) �1671.27 6.25

Diff2Vec Q 3 (6, 75) �1671.23 15.26

NEU_ASNE Q 3 (2, 24) �1671.04 8.77

NEU_Diff2Vec N 3 (20, 8) �1670.90 16.78

ASNE Q 3 (38, 56) �1670.48 12.44

GA framework Q 3 (34, 100) �1667.58 22.70

Diff2Vec N 3 (20, 10) �1667.47 0.60

GraphWave Q 3 (14, 75) �1667.13 23.03

NEU_GraphWave Q 3 (82, 46) �1666.67 23.05

GA framework N 3 (16, 105) �1665.84 21.91

GraphWave N 3 (88, 11) �1661.61 21.39

NEU_GraphWave N 3 (42, 22) �1645.86 33.32

3 We extended the applicability of the NEU meta-embedding to the

ASNE approach as well. The method is contained in our repository

https://bit.ly/3zFtbQY.

Neural Computing and Applications

123

https://bit.ly/3zFtbQY

and one coarsening method for the GA framework. Due to

the fact that each method includes two different binning

strategies (Quantile and Normal), the comparison will

involve 14 outcomes corresponding to 14 different com-

binations, namely 6 GRL-Q, 6 GRL-N, 1 GA-Q, 1 GA-N

combinations. For each of these 14 combinations, we

determined the best performing model according to the

BIC (Bayesan information criterion) [77, 78]. By model we

mean the combination of method and strategy, the grid

parameters and the number of Gaussian components

determined by the partitioning technique. Therefore, each

model uniquely identifies the initialization point of the

maximum likelihood estimation procedure. By varying the

values of the grid parameters, the best performing model is

the one that minimizes the BIC value. We recall that the

use of the BIC allows us to resolve the model selection

problem by introducing a penalty term for the number of

parameters, dealing with the trade off between the quality

of fit and the simplicity of the model. The penalty dis-

courages overfitting problems because increasing the

number of parameters in the model always improves the

quality of the fit. Tables 4, 5, 6 and 7 show, for each

combination (method?strategy), the best performing

model (method?strategy?numbers of Gaussian

components?grid parameters). The models are sorted by

increasing BIC value, so that the first row of each

table shows the top-performing model (the model with the

lowest BIC value) among the 14 selected models. For each

model, the kurtosis absolute percentage error, e4 is also

reported in order to measure the capability of the model to

capture also the heavy tail phenomenon. e4 is calculated as

the absolute percent difference between the kurtosis of the

empirical log-return distribution and the kurtosis computed

by the model. In this regard, we recall that the moments of

the GMM distribution can be calculated exactly. It should

be emphasized that in all four markets under consideration,

the best fitting model according to the BIC is a three-

component model in both the GA and GRL frameworks.

Table 8 shows the estimation results obtained using a K-

means based initialization technique. Our methodology

outperforms this more conventional approach. In fact, for

each market the BIC value obtained with the this initial-

ization technique is greater than the maximum BIC value

reported in the last row of Tables 4, 5, 6 and 7.

Figure 7 shows for each market the log-return time

series in which log-returns belonging to the communities

identified to initialize the EM algorithm in the case of the

top-performing model are represented with the same color

(left panel). In addition, a two-dimensional reduction of the

multidimensional embedding of the top-performing model

is also shown (right panel). The reduction has been per-

formed by t-distributed stochastic neighbor embedding (t-

SNE) which is a well-suited technique for the visualization

of high-dimensional datasets [79]. The parameters of the

top-performing models are provided in Table 9. The same

table also shows the colors of the communities and the

Table 7 PJM
Method Strategy Comps Grid

parameters

BIC e4 ð%Þ

ASNE N 3 (10, 59) �2379.52 23.01

NEU_Diff2Vec Q 3 (2, 13) �2379.51 20.67

NEU_ASNE N 3 (2, 39) �2379.46 21.81

Diff2Vec Q 3 (42, 7) �2378.98 24.11

NEU_ASNE Q 3 (8, 11) �2378.45 23.70

ASNE Q 3 (84, 99) �2378.27 20.53

NEU_Diff2Vec N 3 (78, 16) �2378.11 18.13

NEU_GraphWave Q 3 (48, 65) �2378.11 24.72

GraphWave Q 3 (96, 8) �2376.66 26.99

Diff2Vec N 3 (2, 12) �2368.06 33.19

GA framework N 3 (14, 255) �2367.62 3.71

GA framework Q 3 (36, 385) �2361.95 43.88

GraphWave N 3 (8, 43) �2361.71 32.34

NEU_GraphWave N 3 (8, 33) �2361.71 32.34

Table 8 K-means results

Comps BIC e4 ð%Þ

PALOVERDE 3 �1236.74 36.24

NEPOOL 2 �1871.05 33.28

SP15 4 �1638.10 3.31

PJM 4 �2337.67 8.05

Neural Computing and Applications

123

number of log-returns belonging to the same community

(count).

Table 10 displays for each market, a selection of three-

components models chosen among the models that mini-

mize the BIC value in grid exploration. The model with the

best BIC is listed, of course, in the first row of each sub-

table. The models listed in the other rows were chosen to

provide a trade-off between the value of BIC and the value

of the kurtosis error coefficient e4. The significance of this

trade-off should be noted. The first row provides a better

match according to the BIC, reproducing well the first three

moments of the empirical log-return distributions. In con-

trast, the last row of each sub-table provides a very inter-

esting compromise reproducing well also the fourth

moment.

Fig. 7 Community

representations of the top-

performing models. Colored

log-return time series (left

panel). Two-dimensional

reduction of the embeddings

(right panel) (Color

figure online)

Neural Computing and Applications

123

Finally, we remark that the NEU approach performs

very well, matching several rows in Table 10, in particular

when it is combined with the Diff2Vec embedding method.

The ASNE approach that makes use of extra information

carried on by log-return time series as additional attribute,

also provides good results. However, the GA framework

remains a plausible option, providing interesting results for

Paloverde and PJM log-return distribution estimates.

Table 9 Top-performing

models: the parameters of the

Gaussian mixture distribution

ac lc r2c Count

PALOVERDE 0.57114370 �0.00051137 0.02063759 1440

0.28607423 �0.00428902 0.00195742 327

0.14278207 0.01178404 0.27665900 58

NEPOOL 0.46221626 �0.01529096 0.02193517 1099

0.39300628 0.00168726 0.00228042 447

0.14477746 0.04316237 0.11832773 279

SP15 0.56324985 �0.00037009 0.02051393 1398

0.12448871 0.00743187 0.20415022 267

0.31226144 �0.00207479 0.00150556 160

PJM 0.59942954 0.00103331 0.01657649 1326

0.07124184 0.00647185 0.16030051 444

0.32932862 �0.00456474 0.00206121 55

Table 10 The trade-off between BIC and e4

Method Strategy Grid

params

BIC e4 ð%Þ Mean Standard

deviation

Skewness Kurtosis

PALOVERDE

NEU_Diff2Vec Q (40, 13) �1246.06 37.16 1.6e�04 0.23 0.11 12.47

NEU_Diff2Vec Q (42, 95) �1215.23 8.29 1.6e�04 0.23 0.32 18.20

NEU_Diff2Vec Q (42, 94) �1214.12 6.53 1.6e�04 0.23 0.34 18.54

GA framework N (6, 335) �1212.52 2.38 1.6e�04 0.23 0.39 19.37

NEU_Diff2Vec N (40, 6) �1207.47 1.48 1.6e�04 0.23 0.35 19.55

NEPOOL

NEU_Diff2Vec N (50, 12) �1896.41 7.38 -1.6e�04 0.17 0.37 8.54

NEU_Diff2Vec Q (2, 34) �1895.94 2.04 -1.6e�04 0.17 0.41 9.04

NEU_Diff2Vec Q (6, 96) �1895.58 0.72 -1.6e�04 0.17 0.41 9.16

NEU_Diff2Vec N (34, 13) �1895.35 0.15 -1.6e�04 0.17 0.42 9.24

NEU_Diff2Vec N (32, 23) �1894.76 0.10 -1.6e�04 0.17 0.39 9.22

SP15

ASNE N (98, 100) -1671.45 9.58 7e-05 0.19 0.07 11.61

NEU_Diff2Vec Q (56, 29) -1671.27 6.24 7e-05 0.19 0.07 12.04

NEU_ASNE Q (2, 22) -1670.45 3.58 7e-05 0.19 0.06 12.38

NEU_Diff2Vec Q (6, 80) -1668.98 0.64 7e-05 0.19 0.05 12.92

NEU_Diff2Vec Q (64, 92) -1668.64 0.08 7e-05 0.19 0.05 12.86

PJM

ASNE N (10, 59) -2379.52 23.01 -4e-04 0.15 0.08 12.33

ASNE N (14, 13) -2374.44 9.04 -4e-04 0.15 0.08 14.57

GA framework N (14, 255) -2367.62 3.71 -4e-04 0.15 0.11 15.42

GA framework N (12, 290) -2363.15 1.72 -4e-04 0.15 0.13 15.74

GA framework N (12, 390) -2362.55 0.15 -4e-04 0.15 0.14 15.99

Neural Computing and Applications

123

4 Concluding remarks

We presented a superframework to handle the initialization

problem of the EM algorithm for mixture models. Our

innovative method emerges from a comparison with a prior

study [27], which we transferred and expanded in a general

superframework based on graph machine learning. We

applied the proposed methodology to estimate Gaussian

mixture models on US wholesale electricity market prices

using two different configurations of the superframework,

namely the GA and the GRL frameworks. Electricity

market prices offer an excellent example of a complex

system that transcends simple modeling. Using complex

networks approaches that link time series and graphs, we

were able to exploit graph-structured information derived

from electricity market data. We have shown that the GA

framework performs better than conventional initialization

methods, such as k-means and random-based techniques

[27]. In this paper, we demonstrated that the GRL frame-

work provides even more accurate results. Indeed, the GRL

framework, incorporating data-driven and unsupervised

graph embedding approaches in conjunction with TDA-

based clustering, has less information loss and a more

conservative design than the GA framework. We found that

structural information can definitely capture the behavior

of time series and the nonlinear relationships between

different observations. In particular, in the GRL framework

we highlight how the combination of NEU meta-embed-

ding applied to Diff2Vec, and the ASNE method stand out

as especially effective embedding models.

The proposed superframework proves to be a very

flexible tool of analysis that can be further developed.

Indeed, the ability to incorporate a wide variety of methods

within its functional building blocks makes it extremely

adaptable to very different empirical situations. From this

point of view, three main directions of our future research

will be: (i) since the output of the graph encoding block

using MTF can be interpreted as an image [30, 31], we can

exploit an image classification transfer learning technique

[80] to generate the embedding in the graph compression

step and use an image pretrained VGG-16 deep convolu-

tional neural network [81] for this feature extraction; (ii)

combine embedding and coarsening procedures in the

graph compression block, as it is done in other contexts

[82, 83], and test the accuracy of the results; (iii) use the

initialization blocks as a self-supervised learning frame-

work to discover communities and assign them to different

dynamics [84, 85]. We have left these topics for future

study.

Funding Open access funding provided by Università degli Studi G.

D’Annunzio Chieti Pescara within the CRUI-CARE Agreement.

Data Availability The US wholesale electricity prices time series data

that support the findings of this study are available from repository

Wholesale Electricity and Natural Gas Market Data, https://www.eia.

gov/electricity/wholesale/.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Albert R, Barabási A (2002) Statistical mechanics of complex

networks. Rev Modern Phys 74(1):47–97. https://doi.org/10.

1103/RevModPhys.74.47

2. Vespignani A (2018) Twenty years of network science. Nature

558:528–529

3. Hyttinen A, Plis S, Järvisalo M, Eberhardt F, Danks D (2017) A

constraint optimization approach to causal discovery from sub-

sampled time series data. Int J Approx Reason 90:208–225.

https://doi.org/10.1016/j.ijar.2017.07.009

4. Xie Y, Chen C, Gong M, Li D, Qin AK (2021) Graph embedding

via multi-scale graph representations. Inf Sci 578:102–115.

https://doi.org/10.1016/j.ins.2021.07.026

5. Laengle S, Lobos V, Merigó JM, Herrera-Viedma E, Cobo MJ,

De Baets B (2021) Forty years of fuzzy sets and systems: a

bibliometric analysis. Fuzzy Sets Syst 402:155–183. https://doi.

org/10.1016/j.fss.2020.03.012

6. Newman ME (2003) The structure and function of complex

networks. SIAM Rev 45(2):167–256

7. Newman M (2010) Networks: an introduction. Oxford University

Press, Oxford, pp W677–W682

8. Yang Y, Yang H (2008) Complex network-based time series

analysis. Phys Statist Mech Appl 387(5–6):1381–1386

9. da Fontoura Costa L, Rodrigues FA, Travieso G, Boas PRV

(2005) Characterization of complex networks: a survey of mea-

surements. Adv Phys 56:167–242

10. Zou Y, Donner RV, Marwan N, Donges JF, Kurths J (2019)

Complex network approaches to nonlinear time series analysis.

Phys Rep 787:1–97. https://doi.org/10.1016/j.physrep.2018.10.

005. (Complex network approaches to nonlinear time series
analysis)

11. Silva VF, Silva ME, Ribeiro P, Silva F (2021) Time series

analysis via network science: concepts and algorithms. WIREs

Data Min Knowl Discov 11(3):1404. https://doi.org/10.1002/

widm.1404

12. Tofallis C (2008) Selecting the best statistical distribution using

multiple criteria. Comput Ind Eng 54(3):690–694. https://doi.org/

10.1016/j.cie.2007.07.016

Neural Computing and Applications

123

https://www.eia.gov/electricity/wholesale/
https://www.eia.gov/electricity/wholesale/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/j.ijar.2017.07.009
https://doi.org/10.1016/j.ins.2021.07.026
https://doi.org/10.1016/j.fss.2020.03.012
https://doi.org/10.1016/j.fss.2020.03.012
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1002/widm.1404
https://doi.org/10.1002/widm.1404
https://doi.org/10.1016/j.cie.2007.07.016
https://doi.org/10.1016/j.cie.2007.07.016

13. Wang Y, Yam RCM, Zuo MJ (2004) A multi-criterion evaluation

approach to selection of the best statistical distribution. Comput

Ind Eng 47(2–3):165–180. https://doi.org/10.1016/j.cie.2004.06.

003

14. Li L, Kumar Damarla S, Wang Y, Huang B (2021) A gaussian

mixture model based virtual sample generation approach for

small datasets in industrial processes. Inf Sci 581:262–277.

https://doi.org/10.1016/j.ins.2021.09.014

15. Chen Y, Cheng N, Cai M, Cao C, Yang J, Zhang Z (2021) A

spatially constrained asymmetric gaussian mixture model for

image segmentation. Inf Sci 575:41–65. https://doi.org/10.1016/j.

ins.2021.06.034

16. Ramos-López D, Masegosa AR, Salmerón A, Rumı́ R, Langseth

H, Nielsen TD, Madsen AL (2018) Scalable importance sampling

estimation of gaussian mixture posteriors in bayesian networks.

Int J Approx Reason 100:115–134. https://doi.org/10.1016/j.ijar.

2018.06.004

17. Quost B, Denœux T (2016) Clustering and classification of fuzzy

data using the fuzzy em algorithm. Fuzzy Sets Syst 286:134–156.

https://doi.org/10.1016/j.fss.2015.04.012. (Theme: Images and
Clustering)

18. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood

from incomplete data via the em algorithm. J Royal Statist Soc

SerB (Methodolog) 39(1):1–22. https://doi.org/10.1111/j.2517-

6161.1977.tb01600.x

19. Baudry J-P, Celeux G (2015) Em for mixtures: initialization

requires special care. Statist Comput. https://doi.org/10.1007/

s11222-015-9561-x

20. McLachlan GJ, Peel D (2000) Finite mixture models series in

probability and statistics. Wiley, New York

21. Hipp J, Bauer D (2006) Local solutions in the estimation of

growth mixture models: Correction to hipp and bauer (2006).

Psycholog Methods 11:305–305. https://doi.org/10.1037/1082-

989X.11.3.305

22. Shireman E, Steinley D, Brusco M (2015) Examining the effect

of initialization strategies on the performance of gaussian mixture

modeling. Behav Res Methods. https://doi.org/10.3758/s13428-

015-0697-6

23. Steinley D, Brusco M (2011) Evaluating mixture modeling for

clustering: recommendations and cautions. Psycholog Methods

16:63–79. https://doi.org/10.1037/a0022673

24. Biernacki C, Celeux G, Govaert G (2003) Choosing starting

values for the em algorithm for getting the highest likelihood in

multivariate gaussian mixture models. Computat Statist Data

Anal 41(3–4):561–575

25. Yu L, Yang T, Chan AB (2019) Density-preserving hierarchical

em algorithm: simplifying gaussian mixture models for approx-

imate inference. IEEE Trans Patt Anal Mach Intell

41(6):1323–1337. https://doi.org/10.1109/TPAMI.2018.2845371

26. Panić B, Klemenc J, Nagode M (2020) Improved initialization of

the em algorithm for mixture model parameter estimation.

Mathematics 8:373. https://doi.org/10.3390/math8030373

27. Mari C, Baldassari C (2022) Unsupervised expectation-maxi-

mization algorithm initialization for mixture models: a complex

network-driven approach for modeling financial time series. Inf

Sci 617:1–16. https://doi.org/10.1016/j.ins.2022.10.073

28. Voit J (2013) The statistical mechanics of financial markets.

Theoretical and mathematical physics. Springer, Berlin, pp 08–52

29. Mari C, Baldassari C (2021) Ensemble methods for jump-diffu-

sion models of power prices. Energies. https://doi.org/10.3390/

en14082084

30. Campanharo A, Sirer M, Malmgren R, Ramos F, Amaral L

(2011) Duality between time series and networks. PloS one

6:23378. https://doi.org/10.1371/journal.pone.0023378

31. Pineda AM, Ramos FM, Betting LE, Campanharo AS (2020)

Quantile graphs for eeg-based diagnosis of alzheimer’s disease.

Plos one 15(6):0231169

32. Zhang R, Zheng F, Min W (2018) Sequential behavioral data

processing using deep learning and the markov transition field in

online fraud detection. arXiv preprint arXiv:1808.05329

33. Hansen F, Elliott H (1982) Image segmentation using simple

markov field models. Comput Graph Image Process

20(2):101–132

34. Cai C, Wang D, Wang Y (2021) Graph coarsening with neural

networks. arXiv preprint arXiv:2102.01350

35. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online

learning of social representations. In: Proceedings of the 20th

ACM SIGKDD international conference on knowledge discovery

and data mining. KDD ’14, pp. 701–710. ACM, New York, NY,

USA. https://doi.org/10.1145/2623330.2623732

36. Sun Z, Deng Z, Nie J-Y, Tang J (2019) Rotate: knowledge graph

embedding by relational rotation in complex space. arXiv pre-

print ArXiv:abs/1902.10197

37. Rozemberczki B, Kiss O, Sarkar R (2020) Karate Club: An API

Oriented Open-source Python Framework for Unsupervised

Learning on Graphs. In: Proceedings of the 29th ACM interna-

tional conference on information and knowledge management

(CIKM ’20), pp. 3125–3132. ACM

38. Girvan M, Newman ME (2002) Community structure in social

and biological networks. Proceed Natl Acad Sci

99(12):7821–7826

39. Rozemberczki B, Sarkar R (2020) Fast sequence-based embed-

ding with diffusion graphs. CoRR ArXiv:abs/2001.07463

40. Donnat C, Zitnik M, Hallac D, Leskovec J (2018) Learning

structural node embeddings via diffusion wavelets.

pp 1320–1329. https://doi.org/10.1145/3219819.3220025

41. Liao L, He X, Zhang H, Chua T-S (2018) Attributed social net-

work embedding. IEEE Trans Knowl Data Eng

30(12):2257–2270. https://doi.org/10.1109/tkde.2018.2819980

42. Yang C, Sun M, Liu Z, Tu C (2017) Fast network embedding

enhancement via high order proximity approximation,

3894–3900. https://doi.org/10.24963/ijcai.2017/544

43. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008)

Fast unfolding of communities in large networks. J Statist Mech

Theory Exp 2008(10):10008. https://doi.org/10.1088/1742-5468/

2008/10/p10008

44. Chazal F, Guibas LJ, Oudot SY, Skraba P (2013) Persistence-

based clustering in riemannian manifolds. J ACM. https://doi.org/

10.1145/2535927

45. Skrlj B, Kralj J, Lavrac N (2019) Embedding-based silhouette

community detection. CoRR ArXiv:abs/1908.02556

46. Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of

persistence diagrams. Discrete Computat Geom 37(1):103–120.

https://doi.org/10.1007/S00454-006-1276-5

47. Chazal F, De Silva V, Glisse M, Oudot S (2016) The structure

and stability of persistence modules, vol 10. Springer, Berlin

48. Cohen-Steiner-Marc FC, Oudot GG (2008) Proximity of persis-

tence modules and their diagrams

49. Smyth P (2021) Mixture Models and the EM Algorithm. https://

www.ics.uci.edu/*smyth/courses/cs274/notes/mixture_models_

EM.pdf

50. Liu L, Wang Z (2018) Encoding temporal markov dynamics in

graph for visualizing and mining time series. In: workshops at the

Thirty-Second AAAI conference on artificial intelligence

51. Chen J, Saad Y, Zhang Z (2022) Graph coarsening: from scien-

tific computing to machine learning. SeMA J 79(1):187–223

52. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen

P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R,

Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del

Rı́o JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K,

Neural Computing and Applications

123

https://doi.org/10.1016/j.cie.2004.06.003
https://doi.org/10.1016/j.cie.2004.06.003
https://doi.org/10.1016/j.ins.2021.09.014
https://doi.org/10.1016/j.ins.2021.06.034
https://doi.org/10.1016/j.ins.2021.06.034
https://doi.org/10.1016/j.ijar.2018.06.004
https://doi.org/10.1016/j.ijar.2018.06.004
https://doi.org/10.1016/j.fss.2015.04.012
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1007/s11222-015-9561-x
https://doi.org/10.1007/s11222-015-9561-x
https://doi.org/10.1037/1082-989X.11.3.305
https://doi.org/10.1037/1082-989X.11.3.305
https://doi.org/10.3758/s13428-015-0697-6
https://doi.org/10.3758/s13428-015-0697-6
https://doi.org/10.1037/a0022673
https://doi.org/10.1109/TPAMI.2018.2845371
https://doi.org/10.3390/math8030373
https://doi.org/10.1016/j.ins.2022.10.073
https://doi.org/10.3390/en14082084
https://doi.org/10.3390/en14082084
https://doi.org/10.1371/journal.pone.0023378
http://arxiv.org/abs/1808.05329
http://arxiv.org/abs/2102.01350
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/2001.07463
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1109/tkde.2018.2819980
https://doi.org/10.24963/ijcai.2017/544
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/2535927
https://doi.org/10.1145/2535927
http://arxiv.org/abs/1908.02556
https://doi.org/10.1007/S00454-006-1276-5
https://www.ics.uci.edu/%7esmyth/courses/cs274/notes/mixture_models_EM.pdf
https://www.ics.uci.edu/%7esmyth/courses/cs274/notes/mixture_models_EM.pdf
https://www.ics.uci.edu/%7esmyth/courses/cs274/notes/mixture_models_EM.pdf

Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE

(2020) Array programming with NumPy. Nature

585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

53. Faouzi J, Janati H (2020) pyts: a python package for time series

classification. J Mach Learn Res 21(46):1–6

54. Cui P, Wang X, Pei J, Zhu W (2018) A survey on network

embedding. IEEE Trans Knowl Data Eng 31(5):833–852

55. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y,

Jaiswal S (2017) graph2vec: Learning Distributed Representa-

tions of Graphs. https://doi.org/10.48550/ARXIV.1707.05005.

arXiv.org/abs/1707.05005

56. Ye F, Chen C, Zheng Z (2018) Deep autoencoder-like nonneg-

ative matrix factorization for community detection

pp 1393–1402. https://doi.org/10.1145/3269206.3271697

57. Perozzi B, Kulkarni V, Chen H, Skiena S (2017) Don’t walk,

skip!: Online learning of multi-scale network embeddings. Pro-

ceedings of the 2017 IEEE/ACM international conference on

advances in social networks analysis and mining 2017

58. Rozemberczki B, Allen C, Sarkar R (2021) Multi-scale attributed

node embedding. J Complex Netw 9:14

59. Yang C, Sun M, Liu Z, Tu C (2017) Fast network embedding

enhancement via high order proximity approximation,

3894–3900. https://doi.org/10.24963/ijcai.2017/544

60. Leskovec J, Sosič R (2016) Snap: a general-purpose network

analysis and graph-mining library. ACM Trans Intell Syst

Technol (TIST) 8(1):1

61. Peixoto T (2014). The graph-tool python library. https://doi.org/

10.6084/M9.FIGSHARE.1164194.V13

62. Lancichinetti A, Fortunato S (2009) Community detection algo-

rithms: a comparative analysis. Phys Rev E 80:056117. https://

doi.org/10.1103/PhysRevE.80.056117

63. Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological

persistence and simplification. Discr Computat Geom

28:511–533

64. Zomorodian A, Carlsson G (2005) Computing persistent

homology. Discr Computat Geom 33(2):249–274

65. Koontz WLG, Narendra PM, Fukunaga K (1976) A graph-theo-

retic approach to nonparametric cluster analysis. IEEE Trans

Comput 25(09):936–944

66. Koontz WLG, Narendra PM, Fukunaga K (1975) A branch and

bound clustering algorithm. IEEE Trans Comput C

24(9):908–915. https://doi.org/10.1109/T-C.1975.224336

67. Owen M (2007) Practical signal processing. Cambridge Univer-

sity Press, Cambridge

68. Che Z, Purushotham S, Cho K, Sontag D, Liu Y (2018) Recurrent

neural networks for multivariate time series with missing values.

Sci Rep 8:6085

69. French KR (1980) Stock returns and the weekend effect. J Financ

Econom 8:55–69

70. Mantegna RN, Stanley HE (1999) Introduction to econophysics:

correlations and complexity in finance. Cambridge University

Press, Cambridge

71. Stekhoven DJ, Bühlmann P (2011) MissForest-non-parametric

missing value imputation for mixed-type data. Bioinformatics

28(1):112–118. https://doi.org/10.1093/bioinformatics/btr597

72. Cleveland WS (1979) Robust locally weighted regression and

smoothing scatterplots. J Am Statist Assoc 74(368):829–836.

https://doi.org/10.1080/01621459.1979.10481038

73. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an

approach to regression analysis by local fitting. J Am Statist

Assoc 83:596–610. https://doi.org/10.1080/01621459.1988.

10478639

74. Dagum EB, Bianconcini S (2016) Seasonal adjustment methods

and real time trend-cycle estimation. Statistics for social and

behavioral sciences. Springer, Berlin

75. Geman H (2005) Commodities and commodity derivatives:

modeling and pricing for agriculturals metals and energy. The

Wiley Finance Series, Wiley

76. Geman H, Roncoroni A (2006) Understanding the fine structure

of electricity prices. J Bus. https://doi.org/10.1086/500675

77. Aho K, Derryberry D, Peterson T (2014) Model selection for

ecologists: the worldviews of aic and bic. Ecology

95(3):631–636. https://doi.org/10.1890/13-1452.1

78. Boubaker O, Jafari S (2018) Recent advances in chaotic systems

and synchronization: from theory to real world applications, 1st

edn. Academic Press Inc, USA

79. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne.

J Mach Learn Res 9(11):2579

80. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q

(2020) A comprehensive survey on transfer learning. Proceed

IEEE 109(1):43–76

81. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:

1409.1556

82. Fahrbach M, Goranci G, Peng R, Sachdeva S, Wang C (2020)

Faster graph embeddings via coarsening. In: international con-

ference on machine learning, pp 2953–2963. PMLR

83. Liang J, Gurukar S, Parthasarathy S (2021) Mile: a multi-level

framework for scalable graph embedding. Proceed Int AAAI

Conf Web Soc Media 15:361–372

84. Ma Q, Li S, Zhuang W, Li S, Wang J, Zeng D (2021) Self-

supervised time series clustering with model-based dynamics.

IEEE Trans Neural Netw Learn Syst 32(9):3942–3955. https://

doi.org/10.1109/TNNLS.2020.3016291

85. Lovrić M, Milanović M, Stamenković M (2014) Algoritmic

methods for segmentation of time series: an overview. J Contem

Econom Bus Issues 1(1):31–53

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/ARXIV.1707.05005
http://arxiv.org/abs/org/abs/1707.05005
https://doi.org/10.1145/3269206.3271697
https://doi.org/10.24963/ijcai.2017/544
https://doi.org/10.6084/M9.FIGSHARE.1164194.V13
https://doi.org/10.6084/M9.FIGSHARE.1164194.V13
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1109/T-C.1975.224336
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1086/500675
https://doi.org/10.1890/13-1452.1
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TNNLS.2020.3016291
https://doi.org/10.1109/TNNLS.2020.3016291

	A graph-based superframework for mixture model estimation using EM: an analysis of US wholesale electricity markets
	Abstract
	Introduction
	Problem statement
	Related works
	Purpose

	The methodology
	Overview
	Graph encoding with Markov transition fields
	Graph compression
	Graph coarsening
	Graph embedding

	Graph partitioning
	The louvain method
	ToMATo clustering

	The experiment
	Data preprocessing
	Distribution estimation: the experimental setup
	Results

	Concluding remarks
	Open Access
	References

