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Abstract: Skin aging is a dynamic process that determines structural alterations in ECM and reduc-
tion in dermal fibroblasts. The recent availability on the market of an innovative polycomponent
formulation (KARISMA Rh Collagen® FACE, K) containing noncrosslinked high-molecular-weight
hyaluronic acid (HMW-HA), a human recombinant polypeptide of collagen-1 alpha chain, and car-
boxymethyl cellulose (CMC), attracted our scientific interest in evaluating its biomolecular effects
on human dermal adult and aged fibroblasts. After treatment with increasing K concentrations, cell
proliferation, collagen I, prolyl 4-hydroxylase (P4HA1), an essential protein in collagen biosynthesis,
and α-SMA levels were assessed. The fibroblast contractility, TGF-β1 levels, and oxidative stress
markers were also evaluated. K formulation exposure led to a significant and dose-dependent in-
crease in the proliferation and migration of adult fibroblasts. Of note, the K exposure counteracted
the H2O2-induced aging by promoting cell proliferation, reducing β-galactosidase activity, and
neutralizing the aging-associated oxidative damage. Moreover, an increase in collagen I, P4HA1,
α-SMA, TGF-β1 levels, and improved contractility of adult and aged fibroblasts were observed
after treatment. Overall, our results show evidence that the K treatment is efficacious in improving
biological functions in adult fibroblasts and suppressing the biomolecular events associated with
H2O2-induced cellular aging, thus supporting the regenerative and bio-revitalizing action of the K
formulation helpful in preventing or treating skin aging.

Keywords: polycomponent formulation; skin aging; dermal fibroblast; human recombinant polypeptide
of collagen-1 α chain; TGF-β1; oxidative stress

1. Introduction

Skin structure and physiology are continuously subjected to intrinsic and extrinsic
factors which gradually damage the skin homeostasis, inducing a progressive loss of tissue
integrity and impairment of cellular functions. At the tissue level, the epidermis becomes
thinner due to a progressive slowing of keratinocyte proliferation and differentiation failing.
Of note, the stimulation of the regenerative capacity of keratinocytes is a potential target in
antiaging therapy [1,2]. Regarding the dermal compartment, the cellular and molecular
mechanisms underlying skin aging are associated with the dermal fibroblasts in terms of
number and functionality and with the alteration of ECM homeostasis, involving mainly
collagen, the crucial fiber-forming structural element [3]. In the aged skin, the number
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of dermal fibroblasts functionally active and responsible for the synthesis of the ECM
elements is reduced while an accumulation of aged fibroblasts occurs. These cells are
characterized by altered metabolic functions with reduced collagen synthesis in favor of
increased secretion of inflammatory cytokines, chemokines, and matrix metalloproteinases
(MMPs), degradative enzymes of ECM components, such as collagen fibrils [4]. All these
characteristic features significantly reduce the skin’s regenerative potential [5]. In the
process of aging, the skin structure and integrity are impaired with changes in mechanical
properties and viscoelasticity due to the exhaustion of the ECM components, such as
collagen, elastin, and hyaluronic acid (HA) [6]. Then, during the aging process, the ECM,
which generally serves as the physical support structure for the dermal connective tissue
and makes up the appropriate environment for active and functional dermal cells, is altered
and impacts the functions of the fibroblasts that cannot adhere to it, being the mechanical
forces reduced. The aged dermal fibroblasts appear with collapsed cytoplasm, rounded
shape, and, in particular, a reduced capacity of type I collagen production [7].

For the above, dermal fibroblasts represent one of the most exciting targets of skin
aging prevention or therapy.

To hinder or counteract the critical signs of skin aging, the injectable hydrogel is
one of the most used approaches due to peculiar physicochemical characteristics. The
known clinical efficacy attracted our scientific interest in evaluating deeper the biological
effects on in vitro cellular models. This innovative commercially available polycomponent
formulation (KARISMA Rh Collagen® FACE, K) includes three components, generally
used individually. In particular, K formulation contains, in well-defined proportions, non-
crosslinked high-molecular-weight HA (HMW-HA), recombinant polypeptide of collagen-1
chain, and carboxymethyl cellulose (CMC). HA is an essential constituent of the extra-
cellular matrix with multiple biological activities, including hydration, that contribute to
the firmness and bounciness of the skin. Its hydrophilic properties draw water, endow-
ing improved viscoelasticity to the skin. The literature data extensively report that the
hydrogels containing HA are able to improve skin appearance and texture [8,9]. Clinical
observations demonstrate that the positive effects of injectable hydrogels can be persis-
tent, going beyond the filling impact [10], suggesting that other mechanisms could be
involved to stimulate ex novo collagen synthesis and generally improve the functionality
of fibroblasts. The innovative polycomponent K formulation includes the recombinant
polypeptide α1 chain of type I human collagen synthesized by transgenic silkworms. Due
to its chemical structure, the recombinant α1 chain cannot form the collagen triple helix [11].
When used at concentrations > 5 µg/mL, it promoted the adhesivity and spread of human
dermal fibroblasts (HDFs) similarly to gelatin or native collagen. The results suggested
the advantageous use of recombinant α1 chain of collagen as biomaterial for a variety
of medical applications, having a low risk of bacterial contaminations and a quality of
product easily controlled [11]. It is important to highlight that the collagen for injectable
formulations is generally extracted from different animal sources [12,13], and that the
human collagen formulations are also available as a valid alternative. However, some
pitfalls can be found, such as long preparation times, high costs for the procedure, and
highly skilled teams, so an exciting alternative is represented by recombinant collagens [14].
Carboxymethylcellulose (CMC) is an FDA approved water-soluble polysaccharide, derived
from cellulose [15]. Of note, CMC tends to disperse in water to form a transparent colloidal
solution, i.e., CMC gel, and it is also able to suspend solids in aqueous media and stabilize
emulsions. It is also used as an agent to thicken, bind, and gel and to retain water [16]. The
CMC has been used in the biomedical field due to its biocompatibility, low cost, nontoxicity,
good biodegradability, and low immunogenicity. The numerous rheological properties
of CMC such as mechanical strength, different formability, tunable hydrophilicity, and
viscosity justify a wide range of applications [17] rendering the CMC the material of choice
in injectable formulations [15,18]. Among CMC-based hybrids, the hydrogel has gained
much interest also in pharmaceutical and cosmetic applications, since the CMC ensures
the recommended rheological properties due to its viscosity. In soft tissue engineering, the
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CMC hydrogels offer a softer feel via high spreading accessibility improving the dermal
formulation administration and making it less viscous [19].

Herein, the effects of K formulation treatment at different concentrations and for
different incubation times were evaluated on proliferation, migration, and contraction of
adult and aged HDFs. The influence of K formulation exposure on type I collagen synthesis
pathway was also assessed. Considering the key role of TGF-β1 pathway on collagen I
synthesis, the modulation of its levels was also investigated in both adult and aged dermal
fibroblasts after treatment with K formulation. Furthermore, the ability of K formulation
to counteract oxidative stress associated with H2O2-induced aging process in fibroblasts
was verified. Our findings support the efficacy of K formulation as a promising strategy for
maintaining dermal fibroblast homeostasis and inhibiting critical age-related skin signs.

2. Materials and Methods
2.1. Preparation of K Polycomponent Formulation for Cell Treatments

KARISMA Rh Collagen® FACE, a bio-restorative formulation (following named K)
(kindly provided by Taumedika Srl, Rome, Italy), includes 200 mg/mL high-molecular-
weight hyaluronic acid (HA), 200 µg/mL human recombinant collagen α1 chain, and
40 mg/mL carboxymethylcellulose (CMC). For cell treatments, K was prepared using
the “extraction dilution method” as described by the UNI EN ISO 10993 regulation [20].
Briefly, the procedure was carried out in an extraction medium consisting of DMEM,
supplemented with 10% of fetal bovine serum (FBS), 100 U/mL penicillin, 100 mg/mL
streptomycin, and 2 mM glutamine (complete medium) at 37 ◦C± 1 for 24 h, by continuous
agitation. Subsequently, K was serially diluted and used at different concentrations (range:
0.1–10% v/v, final concentration).

2.2. Cell Systems

Adult normal primary human dermal fibroblast (NHDFs, Adult CC-2511) cell line,
derived from a 47-year-old Caucasian female, was obtained from Lonza/Cell Applications
(Basel, Switzerland) and cultured at low passage (N = 6–9) in complete medium in a
humidified atmosphere of 95% air and 5% CO2 at 37 ◦C. All reagents and consumables
were purchased from EuroClone (West York, UK). At the 15th passage the cells were used
for the experiments.

To induce the aged phenotype, NHDFs at 70% confluence were treated with 25 µM
hydrogen peroxide (H2O2) in PBS for 1 h. Then, the H2O2 solution was replaced with the
complete medium. After 24 h, the cells (aged HDFs) were treated with K formulation at the
different concentrations.

2.3. Treatments and Assessment of Cell Viability and Growth Rate

Cell growth rate was measured by IncuCyte® Live Cell Imager system (Essen Bio-
Sciences, Inc., Ann Arbor, MI, USA) for real-time analysis of cell confluence. Briefly, adult
or aged HDFs were seeded on a 96-well culture plate at 2.5 × 103 cells/well and allowed to
attach overnight. After, the cells were incubated with increasing concentrations (0.1, 0.5,
2, 5, or 10% vol/vol, final concentration) of K. Each treatment condition was replicated in
three different wells, and three independent experiments were carried out. Culture plates
were placed into IncuCyte® instrument, and images were acquired every 4 h from 0 to
72 h after treatment. Two pictures were obtained from several points of the well, at 10×
magnification. To measure the proliferation rate, cell confluence was analyzed by IncuCyte
ZOOM™ software (2020b, Essen Bioscience, Newark, UK).

To analyze their number and viability, adult or aged HDFs were seeded at a density of
7000 cells/cm2, grown for 18 h, and incubated with K at 0.1–10% final concentration for
72 h in complete medium. Then, the cells were collected, centrifuged for 10 min at 400× g,
and counted with 0.04% trypan blue (EuroClone, West York, UK), using a Bürker chamber,
and visualized with Eclipse 50i microscopy (Nikon, Tokyo, Japan). Untreated cells were
used as controls. For all the other experiments, similar cell conditions were used.
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2.4. Staining Cells for β-Galactosidase Activity

β-Galactosidase activity, a indices of dermal fibroblast cellular aging in vitro, was
assayed using a kit by Cell Signaling Technology (Danvers, MA, USA) according to the
manufacturer’s instructions. After treatments, the aged HDFs were washed with cold PBS
and fixed for 15 min with 1 mL of fixing buffer at room temperature. After washing, the cells
were incubated with 1 mL of β-galactosidase staining solution containing 5-bromo-4-chloro-
3-indolyl-β-d-galactopyranoside (X-gal) for 24 h at 37 ◦C. Images were obtained using a
light microscope (Eclipse 50i, Nikon, Tokyo, Japan). Ten random fields were counted to
determine the percentage of β-galactosidase-positive cells in the total cell population.

2.5. Fluorometric Measurement of Reactive Oxygen Species (ROS) with DCFH-DA

Intracellular ROS production was evaluated using a DCFH-DA probe (Immunological
Sciences, Rome, Italy). The DCFH-DA probe is cell permeable and is subjected to deacetyla-
tion by esterase to produce nonfluorescent DCFH, which is retained in the cytosol. In the
presence of ROS, DCFH is oxidized to fluorochrome 2′,7′-dichlorofluorescein. Thus, this
probe has been utilized as an indicator of oxidative stress in biological systems. Briefly,
after treatments, the aged HDFs were incubated with DCFH-DA solution (25 µM) at 37 ◦C
for 30 min. ROS levels were then analyzed using VICTORX4™ fluorometer (PerkinElmer,
Waltham, MA, USA) with excitation and emission filters of 488 and 535 nm, respectively.
The values obtained were normalized for cell number and expressed as relative fluorescence
unit (RFU)/105 cells.

2.6. Malondialdehyde (MDA) ELISA Kit

The aged HDFs supernatants, recovered following treatment with K at 0.5, 2, or
5% up to 72 h, were assayed for malondialdehyde (MDA) levels by an enzyme-linked
immunosorbent assay (ELISA) kit (Elabscience, Houston, TX, USA) as described in the
manufacturer’s instructions. The values obtained were normalized for cell number and
expressed as ng/105 cells.

2.7. Western Blot Analysis

Western blot was used for protein detection. Cell pellets were washed in PBS and
then lysed in RIPA Lysis Buffer (Merck KGaA, Darmstadt, Germany) added with 100 mM
protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA). Then, to eliminate cell
debris, the samples were centrifuged at 17,949× g, and the total protein concentration
was determined by DC Protein Assay (BioRad, Hercules, CA, USA). A total of 25 µg of
proteins was separated by 10% SDS-polyacrylamide gel electrophoresis and transferred
onto 0.45 µm nitrocellulose membrane sheets (BioRad) for 1 h at 4 ◦C. We used 5% non-
fat dry milk to block the aspecific sites on membranes (one hour at room temperature).
The membranes were then incubated overnight at 4 ◦C with rabbit polyclonal antibody
anti-COL1A1 (Boster Biological Technology, Pleasanton, CA, USA) 1:1000, rabbit mono-
clonal antibody anti-P4HA1 (OriGene, Rockville, MA, USA) 1:1000, or mouse monoclonal
antibody anti-α-actin smooth muscle (ACTA2, α-SMA) (OriGene, Rockville, MA, USA)
1:1000 and mouse monoclonal antibody anti-GAPDH (OriGene, Rockville, MA, USA)
1:1000. Horseradish peroxidase (HRP)-conjugated goat anti-rabbit or rabbit anti-mouse
IgG secondary antibodies at 1:2000 were used (Millipore EMD, Darmstadt, Germany). The
densities of immunoreactive bands visualized by chemiluminescence reagent (ECL, Amer-
sham Pharmacia Biotech, Buckinghamshire, UK) were quantified by chemiluminescence
documentation system ALLIANCE (UVITEC, Cambridge, UK). The data were normalized
to the relative GAPDH bands.

2.8. Immunofluorescence Assay for Type I Collagen

Adult or aged HDFs were grown on coverslips of a 12-well plate (seeded at 7000 cells/cm2)
and untreated or treated with K at 5% for 72 h. At the end of treatment, the cells on the
coverslips, after washing with PBS and formaldehyde fixation (4% for 20 min), were
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permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) for 5 min
and blocked with 3% BSA (Sigma-Aldrich) for 20 min at room temperature. After that,
coverslips were incubated for 18 h at 4 ◦C with rabbit polyclonal antibody anti-COL1A1
(Boster Biological Technology, Pleasanton, CA, USA) at dilution 1:250. FITC conjugated
goat anti-rabbit polyclonal IgG secondary antibody (Millipore EMD, Darmstadt, Germany)
was used at 1:1000 for 1 h at room temperature. VECTASHIELD® Antifade Mounting
Medium with added DAPI (Vector Laboratories, Inc., Burlingame, CA, USA) was used to
mount the coverslips examined at 100×magnifications by fluorescence microscopy (Eclipse
50i, Nikon, Tokyo, Japan).

2.9. Extracellular Collagen Quantification

The extracellular collagen from cell culture supernatants was quantified using the
human type I collagen ELISA kit (Immunological Sciences, Rome, Italy). Adult and aged
HDFs were grown on a 12-well plate (seeded at 7000 cells/cm2) and treated with K at
0.5, 2, or 5% for 72 h in a complete medium. Following the K exposure, the media were
recovered and centrifuged at 1000× g for 15 min to remove the cellular debris/dead cells.
The concentration of collagen I was assayed, and the obtained values were normalized for
cell number and expressed as ng/105 cells.

2.10. In Vitro Scratch Assay

The effect of K formulation on migration/proliferation in adult HDFs was carried
out by scratch assay [21]. The cells were seeded at 20 × 104/cm2 on multiwell plates and
left to grow until reaching confluence. In the absence of the medium, the cell monolayers
were scratched with a 200 µL pipet tip and then washed with PBS to remove debris. Fresh
medium, containing or not K at 0.5, 2, or 5%, was added to the scratched monolayers.
The images were acquired by the inverted light microscope (Eclipse TS100, Nikon, Tokyo,
Japan) at different time points after the scratch (0–24 h). For the quantitative analysis, the
standalone TScratch software was used. The software was able to measure the portion of
the area that was occupied by the cells by a mathematical model and then to calculate the
percentage of wound closure. The experiments were performed in duplicate, and six fields
for each condition were evaluated.

2.11. Collagen Gel Retraction Assay

To evaluate the contraction ability of adult or aged HDFs, the fibroblasts were put into
three-dimensional collagen lattices as previously described [22]. Briefly, acid-extracted type
I collagen (5 mg/mL) mixture was made on ice with rat tail collagen I (Enzo Life Sciences,
Lausen, Switzerland) in acetic acid 0.2%. The solution was then diluted at 3 mg/mL in
sterile water, and the cells were resuspended in complete media (8 × 105 cells/mL).

Resuspended cells (8 × 104/100 µL) were mixed to 300 µL complete media, 200 µL
collagen mixture (3 mg/mL), and the mixture was quickly neutralized with NaOH on ice.
These treatments did not influence the viability and the number of fibroblasts, as revealed
by Trypan blue exclusion test (not shown). A total of 500 µL of the collagen/cell mixture
was placed into each well of a pre-warmed 12-well plate (Corning Incorporated, Corning,
NY, USA). After gel polymerization (at 37 ◦C for 1 h), the media containing or not K (0.5,
2, or 5%) were added in each well. Then, the lattices were accurately detached from the
well. The images of lattices were taken with a digital camera before release and multiple
times after release. The lattice area was evaluated by ImageJ and normalized to pre-release
area (T0).

2.12. TGF-β1 ELISA

TGF-β1 levels were assayed in the cell supernatants by human TGF-β1 ELISA kit
(Sigma-Aldrich, Saint Louis, MO, USA), as reported in the manufacturer’s instructions.
The adult or aged HDFs were plated at 7000 cells/cm2 and exposed to K at 0.5, 2, or 5%
up to 72 h. Next, the media were centrifuged at 1000× g for 15 min to clarify them from
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cellular debris/dead cells. The TGF-β1 concentration was then measured by ELISA kit.
The obtained values were normalized for cell number and expressed as pg/105 cells.

2.13. Statistical Analysis

All data were evaluated by GraphPad Prism version 6.01 (GraphPad Software, San
Diego, CA, USA). To compare the mean values among groups, one-way ANOVA or two-
way ANOVA, followed by Dunnett’s post hoc test, was used. Data were expressed as
mean ± SD or mean ± SEM as reported in figure legends. The p values were considered
statistically significant when lowered than 0.05.

3. Results
3.1. Effect of K Formulation on Cell Proliferation of Human Adult and Aged Dermal Fibroblasts

To evaluate the biological effects of K formulation, we used two different cultured
fibroblast models. First, a normal human adult fibroblast cell line, derived from a 47-year-
old female subject, was used at low passage (N = 6–9) to recapitulate the behavior of normal
and adult HDFs and treated with different concentrations of K (0.1, 0.5, 2, 5, and 10%, v/v)
for 24, 48, and 72 h. The second used model consisted of HDFs treated with H2O2 25 µM
for one hour according to the one-step model [23] to obtain aged HDFs and then exposed
to K. As shown in Figure 1A, the two models stood out significantly in the proliferation
rate, evaluated by dynamically monitoring up to 72 h and expressed as cell confluence. The
adult HDFs (controls) showed a gradual growth, while in the aged fibroblast model, the
cell confluence, as expected, did not increase remaining constant over time. The effect of
different concentrations (0.1, 0.5, 2, 5, and 10%, v/v) of K formulation on adult and aged
HDFs was first evaluated with respect to cell proliferation. As shown in Figure 1A, the
proliferation rate of the adult HDFs exposed to increasing concentrations of K augmented
more quickly than that of untreated HDFs, and the rise was time- and dose-dependent,
being statistically significant starting from 0.5%. Interestingly, when the aged HDFs were
exposed to K, the cell confluence enhanced in a time- and concentration-dependent manner
compared to that of the relative untreated controls; the 5% concentration was the most
effective in stimulating the proliferation of aged HDFs. The analysis of the K formulation
effect on the cell number showed a similar trend in both models (Figure 1B). The cell
number of the adult HDFs was always significantly greater than aged HDFs. The exposure
of the adult and aged HDFs to K formulation caused a marked increase in the cell number
compared to that in the relative controls as incubation time and concentrations increased.
Notably, 5% K was the most effective concentration in inducing an increase in the cell
number compared to the untreated cells in both the adult and aged HDFs (Figure 1B).
Representative images from microscopic observations of adult and aged HDFs treated
with 5% K for 72 h confirmed the increase in the cell number. The aged HDFs appeared
shrunken and morphologically different from the adult HDFs. After the treatment with 5%
K, the aged HDF morphology returned to that more like of the adult HDFs (Figure 1B). This
result indicates that K formulation could counteract the effects of aging on the proliferation
rate as well as cell morphology. Based on the obtained results, the concentrations of K at
0.5, 2, and 5%, being the most efficacious in stimulating HDF proliferation, were chosen for
the following experiments.
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Figure 1. Effect of K formulation on proliferation rate and cell number of adult and aged HDFs.
(A) Growth curves were analyzed as cell confluence through IncuCyte® instrument and monitored
up to 72 h. Adult and aged HDFs were treated with K formulation at different concentrations (0.1,
0.5, 2, 5, and 10%) in complete medium. Data from one representative out of three independent
experiments are reported as mean ± SD. (B) The cell number of adult and aged HDFs, treated as
described in (A) and stained with trypan blue, was evaluated. Data obtained from three experiments,
in duplicate, are expressed as mean±SEM. Representative phase-contrast microscopic images of
adult and aged HDFs treated for 72 h with K (5%) are shown (10×magnification). The comparative
analysis of groups of data was performed by the two-way analysis of variance (ANOVA) followed by
Dunnett’s post hoc test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3.2. Effect of K Formulation on β-Galactosidase Activity and Oxidative Stress in Aged HDFs

To investigate the effect of K formulation on the aging of HDFs induced by H2O2, we
analyzed the β-galactosidase (β-gal) activity, known as aging biomarker. The aged cells
showing high β-gal activity are stained blue. As shown in Figure 2A, less than 10% of the
adult control cells were positive for β-gal activity, while more than 90% of the aged control
group revealed the presence of positive β-gal cells. The exposure to K at 0.5, 2, and 5%
was able to decrease the positive cell percentage (82.1% ± 4.6, 55.7% ± 3.1, and 39% ± 2.4,
respectively), counteracting the H2O2-induced aging in a concentration-dependent manner,
and this effect was statistically significant at 2 and 5% (Figure 2A).

The oxidative stress due to the increase in reactive oxygen species (ROS) is strictly
associated with a reduced cell proliferation and subsequent cellular aging [24]. Moreover,
ROS are able to promote collagen degradation, induce the accumulation of elastin, and
inactivate the inhibitors of MMPs, responsible for ECM degradation [25]. The high ROS
level produced by aged HDFs is responsible for the MMP expression increase and the
TGF-β signaling inhibition, promoting dermal aging [26]. To investigate the antioxidant
effect of K formulation in the H2O2-induced cellular aging model, we evaluated the ROS
and malondialdehyde (MDA) levels. As shown in Figure 2B, the intracellular ROS levels
were significantly higher in the aged controls than in the adult controls. The K treatment sig-
nificantly reduced them in a concentration-dependent manner constraining H2O2-induced
oxidative stress. Moreover, compared to the adult controls, the secreted MDA levels were
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significantly higher in the aged controls, indicating that H2O2-induced injury caused lipid
peroxidation in HDFs. The K formulation treatment significantly reduced the MDA levels
in a time- and concentration-dependent way (Figure 2C). These results demonstrated that
the oxidative stress generated by H2O2 could be strongly counteracted by K treatment.
Noteworthy, the 5% concentration was able to restore the ROS and MDA levels similar to
the adult controls.
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Figure 2. Effect of K formulation on β-galactosidase activity and oxidative stress in H2O2-induced
aged HDFs. (A) Cellular aging was measured by β-galactosidase staining; the percentage of β-gal
positive cells was determined at different K concentrations. Values are expressed as the means ± SEM
of three independent experiments. Representative images of adult and aged HDFs untreated (Control)
and treated for 72 h with K (5%) are also shown (20×magnification). (B) ROS levels were evaluated
in aged HDFs, using the DCFH-DA assay after treatment. Results are relative to mean values ± SEM
of two experiments performed in duplicate. (C) MDA levels in aged fibroblasts treated for up to 72 h
as described above were assayed in cell supernatants by MDA ELISA kit. Results are relative to mean
values ± SEM of three experiments performed in duplicate. For comparative analysis of groups
of data, one-way or two-way ANOVA followed by Dunnett’s post hoc test was used (** p < 0.01,
*** p < 0.001, **** p < 0.0001).

3.3. Effect of K Formulation on Type I Collagen Synthesis in Adult and Aged HDFs

As type I collagen predominates in the dermis and is also responsible for the tensile
strength of skin tissue, we assessed if the K formulation exposure was able to influence
the collagen I levels. The intracellular collagen I levels, detected by the Western blot and
immunofluorescence (Figure 3A and Figure 3B, respectively), were basically lower in the
aged HDFs than in the adult HDFs, as expected [27]. The Western blot analysis showed that
intracellular type I collagen expression was significantly upregulated in the adult HDFs
exposed to K at all tested concentrations (Figure 3A). Of note, an increase in the type I
collagen levels was observed when the aged HDFs were exposed to K formulation, with
significantly higher levels at 2 and 5%, compared to the aged controls. To confirm these
results, we performed the immunofluorescence analysis (Figure 3B). The adult HDFs treated
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with the highest concentration of K displayed more intense and widespread type I collagen
staining than the untreated cells. Of interest, also aged HDFs treated with 5% K showed a
substantial increase in staining for collagen I compared to the relative controls. The levels
of collagen secreted by the adult and aged HDFs were assayed in supernatant, using an
ELISA kit (Figure 3C). Preliminary tests excluded the possibility that ELISA could detect
the recombinant polypeptide α1 chain of type 1 collagen in the K formulation (not shown).
In the adult HDFs, K treatment at 0.5, 2, and 5% induced a significant and dose-dependent
increase in extracellular type I collagen, showing an increase percentage of approximately
26–32%, 40–46%, and 48–52%, compared to the controls, respectively. As expected, the aged
HDFs secreted lower basal levels of collagen than the adult control HDFs, with a reduction
of approximately 35–40%. Interestingly, also in aged HDFs, the exposure to K at 0.5, 2,
and 5% induced a significant and dose-dependent increase in the extracellular collagen
levels with an increase percentage of about ~15–18%, 30–35%, and 30–36%, compared to
untreated cells, respectively. After K treatment, the collagen concentration in aged HDFs
were restored and were not significantly different from those of the controls (Figure 3C).
We also evaluated the expression of P4HA1 protein, a key player in collagen synthesis,
in the adult and aged HDFs treated with increasing concentrations of K formulation for
72 h. As shown in Figure 3D, the basal levels of P4HA1 in the adult HDFs were higher than
those in the aged HDFs. Interestingly, a dose-dependent increase in P4HA1 expression was
observed in the adult HDFs treated with K when compared to control cells. Following K
exposure, an increasing trend of the P4HA1 levels was observed in aged fibroblasts being
significant at 2 and 5% (Figure 3D).
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Figure 3. Effect of K formulation on type I collagen levels and synthesis in adult and aged HDFs.
(A) Western blot assay for intracellular collagen I was performed on adult and aged HDFs treated
with increasing concentrations of K for 72 h. The values obtained by densitometric analysis were nor-
malized vs. GAPDH protein. Data are reported as the means± SEM of two independent experiments.
Images of representative immunoblots are shown. (B) Representative immunofluorescence images of
adult and aged HDFs treated for 72 h with K (5%) and stained with anti-collagen I antibody (green).
Nuclei were counterstained with DAPI (blue). The images are representative of three independent
experiments in duplicate. All images were acquired at 100× magnification. (C) Collagen levels in
fibroblasts treated as described above were evaluated in cell supernatants, using ELISA kit. Results
are relative to mean values ± SEM of three experiments performed in duplicate. (D) P4HA1 levels
were evaluated by Western blot analysis on adult and aged HDFs treated as described above. In all
cases, the comparative analysis of data was performed using one-way ANOVA followed by Dunnett’s
post hoc test (* p < 0.05, ** p < 0.01, *** p < 0.001).
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3.4. Effect of K Formulation on Fibroblast Contraction and Migration Activity

As already reported [28,29], the fibroblasts basally express the α-SMA protein, which
contributes to cell-generated mechanical tension, and whose expression increases in ac-
tivated fibroblasts, improving their contractile activity. To verify whether the increase
in collagen synthesis was associated with fibroblast contraction activity, the expression
of α-SMA in the adult and aged HDFs treated with increasing concentrations of K was
investigated using the Western blot method. As shown in Figure 4A, in the adult HDFs,
the α-SMA protein expression enhanced in a dose-dependent way even if the upregulation
was statistically significant at 5%. Of note, also in the aged HDFs, the treatment induced
an increase in the α-SMA levels which was statistically significant at 2 and 5%. With the
aim to evaluate the functional effect of K on the contractile machinery of the adult and
aged HDFs, a 3D collagen gel contraction assay was used. The cells were seeded into
a three-dimensional collagen latex, and after latex polymerization, the complete media
containing increasing concentrations of K formulation were added. The results show that
the K treatment at 0.5, 2, and 5% after 24 h led to a marked and concentration-dependent
decrease in the collagen lattice areas with a percentage of decrease compared to the control
group of approximately 5–10%, 44–47%, and 78–82%, respectively. The obtained results
indicate the ability of K to improve the contractility of HDFs embedded in collagen lattices.
Interestingly, the aged HDFs, which showed a lower contractility function compared to
the adult controls of ~20–25%, as evidenced by the larger disc size, recovered this function
with the K treatment. The polycomponent formulation was able to increase the contractility
also in aged HDFs in a concentration-dependent manner (Figure 4B).
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for 72 h. Following the densitometric analysis, the obtained values were normalized vs. GAPDH
protein. Values are expressed as the means ± SEM of two independent experiments. Representative
immunoblots are also shown. (B) Collagen gel retraction assay was performed on adult and aged
HDF-populated collagen lattices following K treatment. The gel contraction was evaluated by
digital camera, and the lattice area was assessed by ImageJ and normalized to pre-release area (T0).
Normalized area values are reported as mean ± SEM of three independent experiments in duplicate.
Representative images of lattices at T0 and 24 h after treatments are also shown. The yellow dotted
circles mark the lattice’s edges. The comparative analysis of data was performed using one-way
ANOVA followed by Dunnett’s post hoc test (* p < 0.05, *** p < 0.001, **** p < 0.0001).

To investigate the effect of K formulation on cell migration in the adult HDFs, the
wound healing assay was performed, and the rate of scratched monolayer closure in the
absence or presence of K at 0.5, 2, or 5% was evaluated by observing the repopulation of the
area between the wound edges at different time points after the lesion. To quantitatively
analyze the effect of K formulation on the closure of the wounded area, the images obtained
by inverted light microscope were acquired at different time points after scratching and
converted to percentage closure (% closure), using a mathematical model able to automat-
ically calculate the portion of the area occupied by the cells. The analysis of an in vitro
scratch assay showed that the closure percentage at 6, 12, and 24 h increased in the adult
HDFs treated with K compared to the controls in a concentration-dependent way, and it
was significant at 2 and 5%. Since the scratch wound assay was performed in the presence
of the serum, we can conclude that K formulation was able to accelerate the wound closure,
stimulating both cell migration and proliferation of the adult HDFs (Figure 5). Figure 5
shows the representative microscopic images at 24 h.
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to 72 h with increasing concentrations of K formulation. After the K exposure, the TGF-β1 
levels in the supernatant of the adult HDFs enhanced in a time- and concentration-
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the adult and aged HDFs. 

Figure 5. Effect of K formulation on cell migration of HDFs. The quantitative results of wound healing
assay in NHDFs treated with increasing concentrations of K. The wound closure was recorded at 0, 6,
12, and 24 h after the scratch and reported as the wound closure rate (% vs. relative T0) of scratched
monolayers. Showed data are the mean± SEM of two independent experiments in duplicate. Two-
way ANOVA followed by Dunnett’s post hoc test was used (** p < 0.01, *** p < 0.001, **** p < 0.0001) to
compare the groups of data. Representative images at 24 h of NHDF monolayer re-epithelialization
(the wound edges at T0 are blue dashed lines) are also shown (10×magnification).

3.5. Effect of K Formulation on Extracellular Secretion of TGF-β1 by Adult and Aged HDFs

Taken into account that TGF-β1 represents a key regulator of fibroblast proliferation,
collagen production, and extracellular matrix renewal in human skin [30,31], we evaluated
the extracellular secretion of TGF-β1 in the adult and aged HDFs treated for up to 72 h
with increasing concentrations of K formulation. After the K exposure, the TGF-β1 levels
in the supernatant of the adult HDFs enhanced in a time- and concentration-dependent
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way. Of note, in the aged HDFs showing the secreted basal levels of TGF-β1 lower than
those in the adult cells, the K treatment induced an increase in the TGF-β1 levels at all
tested concentrations (Figure 6). These results suggested that K formulation could induce
the synthesis of the collagen through the TGF-β1 pathway involvement in the adult and
aged HDFs.
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levels in adult and aged fibroblasts untreated (Control) or treated for up to 72 h with K at different
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4. Discussion

In the present study, we investigated the biological effects of an innovative polycompo-
nent formulation in adult HDFs and in a H2O2-induced aging model of HDFs. Dermal
fibroblasts play a crucial role in the production of ECM components and in maintaining skin
homeostasis. Skin aging is characterized by reduced numbers of fibroblasts and lower levels
of ECM proteins, which decrease elasticity and tonus, resulting in atrophy, wrinkling, and
increased fragility of the skin [5,26]. Skin fibroblasts are largely used as cellular model for
in vitro cellular aging studies. Moreover, fibroblast H2O2-induced aging is a well-known
model of accelerated aging in vitro, as it mimics skin aging in vivo. Aged fibroblasts are
characterized by a cell cycle arrest with long-term loss of proliferative capacity [32]. Here,
we report that K treatment promoted proliferation not only in the adult cells but also in the
aged HDFs, in a time- and concentration-dependent manner, and improved the changes in
the cell morphology counteracting cellular aging. In addition, the K formulation reduced
in the aged HDFs the percentage of cells positive for β-gal activity, an aging-associated
biomarker, in a concentration-dependent manner. The increased β-galactosidase activity
resulted from a rise in the number and size of lysosomes, which consequently led to an
elevated lysosome content in aged cells [33].

Skin aging is closely associated with oxidative stress, a phenomenon characterized
by an imbalance between reactive oxygen species (ROS) and antioxidants [34,35]. High
levels of ROS oxidize cellular proteins, DNA, and lipids, inducing inflammation, oxidative
damage, and aging in the dermal fibroblasts. The levels of MDA may reflect the lipid
peroxidation level as well as the degree of the consequent cellular damage [36]. In particular,
the MDA is able to destroy the cell membrane integrity, affect the cell structure and ion
transport, and lead to dysfunction of cellular energy metabolism. We then evaluated
the antioxidant activity of the K formulation against H2O2-induced oxidative stress on
aged HDFs. Our findings showed that after treatment with K formulation, the H2O2-
induced upregulation of the intracellular ROS and MDA levels significantly reduced in a
dose-dependent manner, thus effectively exerting antioxidant effects.
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One manifestation of human skin aging is losing type I collagen [26]. It is the most
abundant collagen in the skin and is responsible for maintaining tissue architecture. In
addition, collagen I significantly regulates many biological processes, including cell ad-
hesion, proliferation, and differentiation. Here we show the ability of K formulation to
induce a significant and dose-dependent increase in the intracellular and extracellular
levels of type I collagen in adult or aged HDFs. Collagen synthesis is regulated by several
post-translational modifications that are fundamental for proper stability, assembly, and se-
cretion of triple-helical procollagen, as well as for cleavage of the N- and C-propeptides, self-
assembly of collagen into fibrils, and cross-linking of the fibrils [37]. Prolyl-4-hydroxylases
(P4H), an enzyme that catalyzes the hydroxylation of proline residues of procollagen, is
essential for the folding of newly synthesized procollagen polypeptide chains into stable
triple-helical molecules [38]. Furthermore, the P4H expression levels are associated with the
rate of collagen synthesis; thus, it can be considered a “rate-limiting enzyme” in collagen
production [39]. Considering the crucial role of P4H in collagen synthesis, we evaluated
the ability of the polycomponent formulation to influence its expression. In the present
study, the P4H levels that were basally higher in the adult HDFs compared to aged HDFs
were affected by K formulation, as a significant increase in P4H was observed in both cell
models as K concentrations increased. Considering that P4H is an essential determinant in
initiating collagen biosynthesis, its increased expression level reflects the correct formation
of a functional collagen fibril. We also show evidence that the K treatment led to a higher
expression of α-SMA protein, supporting a link between the increase in collagen synthesis
and activation of fibroblasts. Over the years, it has become increasingly clear that mechani-
cal forces regulate the synthesis and remodeling of ECM proteins [40]. The contractility
of dermal fibroblasts is closely related to physiological processes such as wound healing,
wrinkling, angiogenesis, and inflammatory response. Notably, a reduction in collagen
expression and ECM degradation can impair the attachment of dermal fibroblasts within
the dermis, resulting in a change in cellular morphology with less mechanical force [41]. In
our experimental conditions, the contractile activity between the adult and aged HDFs was
quite different under baseline conditions; the treatment with K formulation improved the
contractile activity in both models.

The TGF-β1 pathway plays an essential role in cell contractility, as it initiates the
activation of fibroblasts by inducing the expression of α-SMA [41]. Moreover, TGF-β1
is a significant regulator of ECM activities, controlling the production of matrix metallo-
proteinases (MMPs) and serving as the primary regulator of collagen synthesis. Several
in vitro studies [30,42] have shown that the ECM undergoes progressive deterioration and
fragmentation during skin aging due to reduced collagen transcription resulting from the
attenuated TGF-β1 pathway. Moreover, oxidative damage also impaired TGF-β1 signal-
ing due to the elevation of ROS that, reducing the type II TGF-β receptor (TβRII) and
SMAD3 protein levels, decrease collagen synthesis [43,44]. Indeed, aged HDFs showing a
significantly lowered TGF-β1 expression express less collagen than young fibroblasts. Our
results show the ability of K formulation to induce a dose- and time-dependent increase
in the TGF-β1 secretion relative to the controls in both models. Our findings support the
notion that this polycomponent formulation could efficiently activate TGF-β1 signaling in
fibroblasts, significantly synthesizing collagen I.

To the best of our knowledge, this is the first study showing in vitro the biologi-
cal effects of a polycomponent formulation of non-crosslinked HMW-HA, recombinant
polypeptide of collagen-1 chain, and CMC. Moreover, our results add to the growing
literature indicating that in vitro cellular models may be viable tools for testing the effect of
medical devices without resorting to an animal study. Indeed, according to the European
Directive 63/2010/EU, in vitro methods could significantly contribute to limiting the use
of animal models to evaluate the biological response of medical devices.

An overall interpretation of our results is that the combination of these bioactive
components, being able to improve the biological activities in adult fibroblasts, as well as
counteract H2O2-induced fibroblast aging, could be used to maintain skin homeostasis,
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accelerate post-wounding healing, and treat critical age-related skin signs. Additional
research will be needed to deepen further understanding of the involvement of signaling
pathways underlying the polycomponent formulation’s antiaging and antioxidant effects
and evaluate its ability to prevent fibroblast aging.
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