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Abstract: Investigating the neural mechanisms underlying both cooperative and competitive joint
actions may have a wide impact in many social contexts of human daily life. An effective pipeline of
analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive
motor task has been missing. We propose an analytical pipeline for this type of joint action data,
which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study
on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were
reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm
suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain,
within-, and between-brain functional connectivity maps were calculated in three frequency bands
(i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized
with graph theoretical measures and a clustering approach. The results of the proof-of-concept study
are in line with recent findings on the main features of the functional networks sustaining cooperation
and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis
of joint action EEG data recorded during cooperation and competition using a turn-based motor task.

Keywords: hyperbrain analysis; electroencephalography; cooperation; competition; intra-brain
coupling; inter-brain coupling; joint action; table tennis

1. Introduction

In everyday life, people often have to coordinate their actions with those of others
in time and space to achieve a shared and public goal that cannot be achieved by acting
individually [1]. This form of interpersonal interaction, referred to as joint action [2], is
characterized by a strict bidirectional interdependence between interacting individuals’
actions and goals [3,4]. However, within a joint action, people are also driven by individual
goals that can be either mutual and complementary (i.e., cooperation) or mutually exclusive
(i.e., competition) [5,6]. Investigating the neural mechanisms underpinning cooperative and
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competitive joint actions may have a wide impact in many social contexts, such as education,
business, industry, and sports, from simple actions to more complex relationships with
mates, colleagues, and competitors, within and between genders [7,8].

The initial approach to the neuroscientific study of joint action was based on the
recording and analysis of individual brain activations. However, this stand-alone ap-
proach was not suitable to capture the neurophysiological mechanisms underpinning the
inherent mutual interdependence characterizing joint action [9–11]. Therefore, neuroscien-
tists introduced the hyperscanning approach to the investigation of inter-brain functional
interactions [12–15]. Nowadays, EEG is considered the most suitable non-invasive neu-
roimaging technique to study the rapid changes occurring in the brains of people involved
in a joint action [12,15–19] because of the high temporal resolution of EEG recordings in the
millisecond timescale [20,21]. Thanks to the availability of wireless, mobile, and lightweight
EEG devices, the recording of brain activity in ecological and naturalistic environments
during the performance of unconstrained tasks involving gross full-body movements is
now possible [22,23]. However, despite the availability of this advanced EEG technol-
ogy, hyperscanning studies have, to date, mainly employed very constrained paradigms
simulating real-life situations, because they permit better control of the experiments and
ensure high-quality EEG, as in cases of music performance [24–26], social games [27–29],
flight simulations involving pilot and co-pilot teamwork [28,30,31], innovative employees’
evaluation in couples of manager–collaborator [32], and jugglers’ teamwork [22,33].

Importantly, most hyperscanning research has focused on cooperative joint action,
because it encompasses diverse social contexts and the studies can rely on established
analytical methods. Also, given the difficulty in identifying tasks that can be both cooper-
ative and competitive, the neural mechanisms sustaining these two types of joint action
have mostly been investigated through comparing the results obtained using different joint
tasks, introducing a methodological bias. Only a few studies have investigated the neural
mechanisms underpinning both cooperation and competition by employing the same task,
although not within an ecological study paradigm [34–37]. Liu and colleagues [34] tried
to concurrently investigate the neural mechanisms of cooperation and competition by
employing the same quasi-ecological task for both conditions, i.e., tennis played through
a video game. Despite the successful implementation of both conditions, this paradigm
strongly differed from a real tennis match in terms of the nature of gameplay, level of
physical activity, sensory feedback and perception, and the mode of social interaction.
Additionally, the design of the cooperation condition, where both players collaborated
against computer-simulated opponents, hindered a clear distinction between cooperative
and competitive dynamics. Hence, the results obtained by Liu and colleagues [34] are not
representative of real-world tennis.

According to the recent recommendations of social neuroscience [38–40], joint action
should be investigated in naturalistic settings involving free full-body movements of the
interacting individuals. However, there is, to date, no consensus or guidelines on the ideal
analytical method(s) to identify the specific features of cooperative and competitive global
brain dynamics and brain-to-brain coupling. The analysis of EEG–hyperbrain data usually
relies on traditional neuroscientific methods such as functional connectivity and synchro-
nization metrics (e.g., synchronization likelihood, phase synchronization index (PSI), phase
locking value or phase lag index [19,41], and topological organization measures to asses fea-
tures of the functional networks (e.g., graph theoretical measures of integration/segregation
of the functional networks [22,33]). These approaches are appropriate to analyze the func-
tional dynamics within one individual brain or between brains during the performance
of cooperative, simultaneous, and continuous joint action tasks [24,31,42,43], but may be
unsuitable to detect the functional dynamics between the brains of individuals involved in
competitive and/or turn-based tasks. As elucidated in two recent studies [34,36], phase
synchrony-based methods may face challenges in scenarios characterized by substantial
variability in the frequency of the actions performed by the interacting individuals, as
occurs in turn-based joint actions, especially when characterized by competitive elements.
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For instance, in tennis games, action frequency is highly variable and the players coordinate
their movements while strategically aiming to disrupt this coordination for a competitive
advantage. The unpredictability and variability of these competitive and turn-based actions
pose challenges for the analysis strategies.

We recently proposed a novel study protocol including free full-body movements,
to meet the recommendations of social neuroscience. We selected table tennis as the joint
action task, as it permits implementation of a naturalistic experimental setting and can
be played in both cooperative and competitive mode [44]. Notably, table tennis is a turn-
based dyadic task that extends the variability of action frequency to both competition and
cooperation. Therefore, analytical methods extensively used in EEG-hyperscanning studies
may not be adequate to detect the characteristic features of the inter-brain neural dynamics
and to differentiate between interaction conditions.

In the present study, we propose an analytical pipeline suited for EEG-hyperscanning
data acquired during a naturalistic protocol employing a turn-based full-body motor task
performed in both cooperative and competitive mode. The pipeline was designed to
quantify the global intra- and inter-brain dynamics sustaining these two modes of the
same turn-based joint action, hence contributing to filling a gap in the investigation of the
neural mechanisms underpinning turn-based joint actions during real-world unconstrained
cooperation and competition. To test the effectiveness of our pipeline, we performed a proof-
of-concept EEG-hyperscanning study on two dyads according to our recently published
table tennis study protocol [44]. Herein, we present the proposed analytical pipeline and
the case study and compare our initial results with the literature. In future, following this
successful proof of concept, we aim to use the positively validated study setup, paradigm,
and analytical pipeline for an extended dataset including EEG-hyperscanning data from
more dyads.

2. Materials and Methods
2.1. Participants

Four non-professional right-handed table tennis players (2 females aged 19 and 21, and
2 males aged 18 and 31) forming two same-gender dyads (one female and one male dyad)
were recruited for our proof-of-concept study. They regularly practiced physical activities,
did not report any neurological, psychological, or dermatological pathologies, and were
not under pharmacological treatment. Written informed consent was obtained from each
participant after explanation of the study. The study complied with the ethical standards
outlined in the Declaration of Helsinki and was approved by the local Ethics Committee
(Ethics Committee of Chieti and Pescara (Italy), meeting minutes N.06 of 11/03/2021).

2.2. Experimental Paradigm

EEG-hyperscanning acquisitions were performed according to our recently published
table tennis protocol, that permits implementing both cooperation and competition within
the same experimental framework [44]. Within this framework, the members of a dyad were
asked to either exchange the ball as they do before a match (cooperation condition) or play
table tennis like in a conventional match (competition condition). With this approach, both
cooperative and competitive joint actions are implemented in an ecological environment,
using the same motor task, with the interacting individuals making the same movements
and having similar skills. This situation makes table tennis an ideal means for investigating
and comparing the brain dynamics sustaining cooperation and competition.

Table tennis sessions took place in a laboratory room (9 × 6 m) with a professional
table tennis table (Cornilleau Table Tennis 500 indoor/outdoor, 274 × 152.5 × 76 cm; 69 kg,
Cornilleau SAS, Bonneuil-les-Eaux, France) positioned at the center of a rectangular area
of about 54 m2. The two dyads were engaged in a total of 15 table tennis sessions of 30 s
duration each (5 cooperative table tennis sessions and 10 competitive table tennis sessions),
in randomized order. During the cooperative sessions, participants were instructed to keep
the ball within the playing area for as long as possible. During the competitive sessions,
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participants had to play as in a real table tennis match. If the ball fell during a session,
participants were instructed to catch another ball and restart the exchange until the end of
the session. Participants were allowed to take short breaks between sessions. The higher
number of competitive sessions (double than for the cooperative condition) is justified by
the relatively lower number of rallies with a duration sufficient for the subsequent analysis,
as described in detail in our study protocol [44].

2.3. Simultaneous Dyadic EEG Recordings

For the dyadic EEG recordings, we used our recently proposed and validated multi-
modal acquisition setup [44], allowing the simultaneous recording of two EEGs and video
streams. EEG was recorded from each volunteer using a gel-based 61-channel setup with
extended 10–20 layout and unipolar CPz reference (CA-205 waveguard original, ANT
Neuro b.v., Hengelo, The Netherlands) in combination with a medically certified mobile
EEG amplifier (EE-225 eego sports, ANT Neuro b.v.). EEG data were acquired at a sam-
pling rate of 1024 samples/s. The anti-alias filter of the amplifier had a cut-off at 1/3 of
the sampling frequency. The device integrates active shielding on all channels to reduce
susceptibility to cable movement. Details on the EEG dataset are provided in Table 1.

Table 1. Specifications of the dyadic EEG dataset. From left to right: number of dyadic EEG datasets,
gender of dyads, age of subjects for each dyad, sampling frequency of EEG recording for each dyad,
recording’s condition, total duration of the EEG recording for each subject and condition.

N. Dyadic EEG
Datasets Gender Age (year) EEG Sampling

Frequency (Hz)
Recording’s
Condition

Total Recording
Duration (m)

2
male

18

1024

cooperative 8.14
31 competitive 16.27

female
19 cooperative 8.27
21 competitive 16.53

Additionally, two video cameras, synchronized with the EEG mobile systems, captured
digital videos at 25 fps. The videos were used for the definition of the rally segments.
During the recordings, system control, remote data monitoring, data synchronization, and
event distribution were ensured by our custom centralized setup as described in Tamburro
et al., 2023 [44]. Figure 1 shows the experimental setting for the two dyads recruited for
the proof-of-concept study. Note that each volunteer was wearing a backpack to house the
EEG amplifier.
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2.4. EEG Data Analysis

To highlight differences in the neural dynamics and brain-to-brain coupling of real-
world cooperation and competition, we employed a combination of methodological ap-
proaches. The analytical procedure consisted of 2 main steps: (1) EEG data preprocessing,
including artifact removal, filtering in 3 frequency bands of interest, and windowing of the
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EEG signals; (2) estimation of functional connectivity maps, graph theoretical metrics, and
functional clusters. Figure 2 shows the pipeline of analysis.
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All analyses were performed using MATLAB (release R2018b; MathWorks, Natick,
MA, United States) and the EEGLAB toolbox (release 14.1.1b; [45]). Computation of graph
theoretical measures relied on formulas implemented in the Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/, accessed on 3 January 2024, Sydney, Australia).

2.4.1. EEG Data Preprocessing

EEG signals were band-pass filtered between 3 and 40 Hz using a zero-phase Hamming-
windowed sinc FIR filter, implemented with the firfilt EEGLAB plugin [46]. By doing so, we
excluded most movement related artefacts from the recordings and kept the information
on brain activations in the frequency bands of interest, i.e., theta, alpha, and beta. In table
tennis, these frequency bands are usually investigated for different reasons: the theta waves
are associated with drowsiness, can be sometimes produced by hyperventilation, and can
be facilitated by particular emotional states or mental processes of problem-solving; alpha
waves are characteristic of mental relaxation, which can occur in expert athletes; beta waves
are typical of active thinking and concentration, and are related to mental and cognitive
processes of various types, anxiety, and state of alert.

Synchronous EEG recording sessions for the members of each dyad were determined
using the start and stop events in the acquisitions. Within each recording session, the
EEG segments corresponding to table tennis rallies (i.e., the actual ball exchanges) were
identified using the videos, permitting us to visually define the instants when each rally
started and ended. According to our study protocol [44], only rallies with a duration ≥ 3 s
were considered for subsequent analysis, because this guarantees that at least one complete
ball exchange occurred within the rally, excluding initial serve. Then, EEG rally segments
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were defined as the segments of the EEG recordings starting 500 ms before the beginning
of the rally and ending 500 ms after the end of the rally. Note that the duration of the rallies
varied between conditions and subjects, as shown in Table 2.

Table 2. Descriptive statistics of the rallies played in cooperative and competitive mode. From left to
right: condition, dyad gender, total number of rallies, mean ± STD of rally duration, range of rally
duration, median of rally duration, 5th and 95th percentiles of rally duration, total duration of the
concatenated EEG trials.

Condition Dyad
Gender

No. of
Rallies

Mean ± STD
(s) Range (s) Median (s)

5th and 95th
Percentiles

(s)

Total Duration of
Concatenated EEG

Trials (s)

COOP
male 16 7.80 ± 4.20 (3.30 ÷ 18.70) 6.50 3.45; 17.11 157.00

female 13 6.70 ± 3.40 (3.50 ÷ 12.60) 5.40 3.52; 12.48 113.40

COMP
male 22 5.00 ± 1.40 (3.20 ÷ 8.20) 4.85 3.32; 7.54 153.90

female 11 3.90 ± 1.50 (3.00 ÷ 7.40) 3.40 3.01; 7.35 65.30

Independent component analysis (ICA) was then used to separate brain data from
physiological (eye blink, eye movement, cardiac, pulse, myogenic) and non-physiological
artifacts (electrode jumps, interference from movements of the EEG cap cables, environ-
mental interference) [47]. For each dyad and condition, ICA was applied to a unique EEG
trial obtained by concatenating all EEG rally segments. Table 2 provides the total duration
of the concatenated EEG trials. Each EEG trial was decomposed into 61 independent
components (ICs) using the squared version of extended infomax, which proved to be
effective for both super- and sub-Gaussian distributions [48]. The topography, time course,
and spectral power of each IC were visually inspected, and the ICs related to artifacts were
identified and disregarded. The denoised EEG trials, reconstructed by reprojecting the
retained non-artifactual ICs onto the sensor space, were then filtered in the three frequency
bands of interest: theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) and separated into
EEG segments corresponding to the previously identified EEG rally segments.

Finally, the denoised EEG rally segments were prepared for the subsequent analysis:
for each frequency band, they were Hilbert transformed to extract the instantaneous phase.
To achieve a sufficient number of functional connectivity maps for statistical analysis,
each Hilbert transformed denoised EEG rally segment was divided into non-overlapping
windows of 500 ms, sufficiently long to guarantee a reliable functional connectivity anal-
ysis [49]. Given that different rallies had different durations, this procedure resulted in a
different number of windows per rally.

2.4.2. Functional Connectivity Estimation

For each window of each EEG rally segment, we pooled together the EEG data of the
two members of the dyad, resulting in a 122 (electrodes) by 512 (samples) matrix of complex
time series. This was carried out for each condition (cooperation and competition) and for
each frequency band (theta, alpha and beta). Then, we estimated hyperbrain functional
connectivity over this matrix, resulting in a 122 by 122 functional hyperconnectivity matrix.
The corrected imaginary part of the phase locking value (ciPLV) [50] was used to estimate
the phase synchronization between the two EEG signals, akin to PLV. However, ciPLV is
highly computationally efficient and, unlike PLV [51], remarkably insensitive to zero lag
synchronization, and therefore, it is highly robust to issues related to volume conduction
effects [50]. We calculated ciPLV as follows:

ciPLVi,j =

1
T

∣∣∣I{xni,t·xnT
j,t

}∣∣∣√
1 −

(
1
T

∣∣∣R{
xni,t·xnT

j,t

}∣∣∣)2
(1)
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where xni,t is the normalized value of the signal x related to the ith electrode at instant
t; the complex signal x, as resulted from the Hilbert transformation, is normalized with
respect to its complex magnitude; I{y} and R{y} stand for the imaginary and real parts of
y, respectively.

As a result, we obtained hyperbrain functional connectivity maps, i.e., ciPLV matri-
ces (see Figure 3) composed of 4 quadrants: the upper left quadrant is the within-brain
functional connectivity map of member 1 of the dyad, the lower right quadrant is the
within-brain functional connectivity map of member 2 of the dyad, and the upper right
and lower left quadrants are the between-brain functional connectivity maps of the two
members of the dyad. Note that while the within-brain functional connectivity maps are
symmetrical, the two between-brain maps are not, with one between-brain map being the
transposition of the other within the same hyperbrain functional connectivity map.
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Figure 3. Example hyperbrain connectivity map of ciPLV values for the male dyad during cooperation,
for the theta band. This is a square matrix of 122 electrodes per side (resulting from the sum of
the 61 electrodes used for the EEG recordings of the 2 members of the dyad). Each group of
61 electrodes is ordered as follows: F—frontal electrodes; FC—fronto–central electrodes; C—central
electrodes; CP—centro–parietal electrodes; P—parietal electrodes; PO—parietal–occipital electrodes;
O—occipital electrodes.

Thus, for each EEG rally segment, we obtained a total of N hyperbrain maps, where N
is the number of time windows in the EEG rally segment. Each hyperbrain map was com-
posed of 122 by 122 ciPLV values. This procedure was repeated for each dyad, frequency
band, and interpersonal interaction condition.

Finally, we applied a threshold to the hyperbrain maps to retain only the strongest
functional connections between electrodes. Given that different thresholds could lead
to different study conclusions [52] and that no criterion has been determined so far to
establish the optimal threshold, consistent with other studies [22,53], we opted for a fixed-
cost threshold. We used a cost function of 0.2, retaining the 20% of connections with the
highest ciPLV values. The other connections with lower ciPLV values (80% of the total
connections) were set to 0.
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2.4.3. Graph Theoretical Measures

Graph theoretical concepts enable study of the topological features of the functional
networks represented by the hyperbrain maps, where the ciPLV values represent the
functional links (i.e., edges) between the electrodes (i.e., nodes). If a ciPLV value is zero,
it means that the corresponding two electrodes are not functionally connected or, in the
case of the thresholded maps, that those links are too weak to be considered. Graph
theoretical measures were calculated to characterize the patterns of neural activations
described in the functional connectivity maps and to differentiate between cooperation
and competition, possibly highlighting differences across frequency bands within the same
joint action condition.

To determine the role of nodes in the hyperbrain maps, we calculated strength and
participation coefficient [54]. In graph theory, strength (S) is calculated for each node of a
graph and estimates how strongly connected it is with other nodes in the graph. In other
words, S detects zones of high concentration of edges in a graph. For the ith node of a
graph, S is the sum of the weights of all edges connected to that node, where, in our case,
the weights of the edges are quantified by the ciPLV values (wij) related to the ith node:

Sw
i =

N

∑
j=1

wij (2)

S was determined for each node i of a thresholded hyperbrain map of ciPLV values
(SH) and separately for the thresholded within- and between-brain maps (SWI and SBE,
respectively). In accordance with Müller and colleagues (2013) [55], the SBE was calculated
by subtracting the SWI values from the SH values.

Participation coefficient (P) quantifies the relation between the number of edges
connecting a node outside its community and its total number of edges. Therefore, P is a
measure of node edge distribution across the communities in a network. If a node’s edges
are entirely restricted to its community, its P is 0, whereas when P is close or equal to 1, this
node is strongly connected with nodes in other communities in the network. P for node i is
defined as:

Pi = 1 −
M

∑
m=1

(
eim
ei

)2
(3)

where M is the total number of modules (m) in the graph, eim is the number of edges
between node i and all other nodes in module m, and ei is the total degree of node i in
the network. Given that the participation coefficient can be evaluated only on symmetric
matrices, it was calculated for only the thresholded hyperbrain maps.

To quantify the degree of integration, segregation, and efficiency of the functional
brain networks [56–59] we also calculated local and global efficiency (LE, GE). To do so, we
transformed the thresholded hyperbrain maps into binary adjacency hyperbrain matrices,
where the retained connections were assigned a value of one, whereas the other connections
were kept equal to zero. Given that LE and GE can be evaluated only on symmetric matrices,
they were calculated for only the binary adjacency hyperbrain and within-brain matrices.

LE is a measure of segregation of a network, indicating that efficient information
transfer occurs mainly in the immediate neighborhood of each node. LE also shows how
fault-tolerant the network is, because the transfer of information across the network, being
supported by multiple connections at the local level, can rely on alternative routes in case
of a shortage of connections at the local level. LE is calculated as the harmonic mean of
neighbor–neighbor distances:

LE =
1
N

N

∑
j=1

LEni =
1
N

N

∑
j=1

∑j,k∈Gi
1

djh

NGi

(
NGi − 1

) (4)



Sensors 2024, 24, 2995 9 of 23

where NGi is the number of nodes in subgraph Gi, comprising all nodes’ neighbors of node
i and excluding node i itself, and LEni is the local efficiency of node i determined as the
reciprocal of the shortest path length between neighbors j and h.

GE is a measure of integration in a network, indicating that efficient information
transfer occurs also across distant nodes. GE is primarily influenced by short paths (i.e.,
connection paths between nodes). GE is defined as the average inverse shortest path length
and is calculated as:

GE =
1
N

N

∑
j=1

NEi =
1

N(N − 1)

N

∑
j=1,j ̸=i

1
dij

(5)

where NEi is the nodal efficiency of the node i determined as the normalized sum of the
reciprocal of the shortest path length from a given node to all other nodes in the network,
and dij is the shorthest path length between nodes i and j.

The list of graph theoretical measures calculated for each type of functional connectiv-
ity map (within, between and hyperbrain) is given in Table 3.

Table 3. List of graph theoretical measures calculated for within, between, and hyperbrain maps.
Participation coefficient was computed for weighted and thresholded hyperbrain matrices; strength
was computed for weighted and thresholded within, between, and hyperbrain matrices; LE and GE
were computed for only binary intra-brain matrices.

Graph Theoretical
Measure Within Matrices Between Matrices Hyperbrain

Matrices

Participation coefficient ✓
Strength ✓ ✓ ✓

Global efficiency (GE) ✓ ✓
Local efficiency (LE) ✓ ✓

2.4.4. Clustering Procedure

To identify specific functional patterns sustaining the two joint action conditions,
we applied a clustering procedure to the within- and between-brain maps obtained for
cooperation and competition in the three frequency bands. By doing so, we aimed at
highlighting possible differences in the functional organization of the neural activations
underpinning cooperation and competition.

For each dyad, interaction condition, frequency band, and time window of each EEG
rally segment, the vectors of ciPLV values were extracted from the within- and between-
brain maps. Given that the within-brain maps were symmetrical, we could extract a phase
synchrony vector with 1 × 1830 size (within connectivity vector) from the upper triangular
part of each map. Conversely, given that the between-brain maps were not symmetrical, a
phase synchrony vector with 1 × 3721 size (between connectivity vector) was extracted
from each map.

The within and between connectivity vectors were then grouped by condition and
frequency band, resulting in 12 distinct groups of connectivity vectors. Figure 4 depicts how
4 groups of connectivity vectors were obtained for each frequency band, and how many
connectivity vectors were available in our proof-of-concept study for the identification
of the template maps for cooperation and competition and for the within- and between-
brain maps.

The k-means algorithm [60,61] was applied to each group of connectivity vectors
to identify characteristic functional maps of cooperation and competition in the three
frequency bands. The k-means algorithm was preferred to other similar procedures because
it is computationally efficient and can handle large datasets [60,62].

The optimal number of clusters (i.e., templates of functional connectivity vectors) was
identified by repeating the k-means algorithm with k varying from 1 to 10 and estimating
the Calinski–Harabasz criterion for each k value [63]; the optimal number of clusters
corresponds to the k value for which the Calinski–Harabasz criterion, sometimes called the
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variance ratio criterion, provides the highest index value. Using this value of k ensures
that clusters with large between-cluster variance and clusters with small within-cluster
variance are well defined. The k-means clustering procedure [60,61] was applied to each
group of connectivity vectors using the identified optimal k, and the functional connectivity
templates were reconstructed for each group of connectivity vectors.
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Figure 4. Procedure to obtain the connectivity vectors for each frequency band. The numbers listed
refer to our proof-of-concept study and represent the connectivity vectors of between and within type,
in cooperation and competition condition for each respective frequency band to which the clustering
procedure was applied.

2.4.5. Statistical Analysis

Statistical analysis was performed only on the graph metrics. No statistical analysis
was performed on the results of the clustering procedure because no sufficient templates
could be reconstructed from 2 dyads.

To detect significant topological differences between the functional connectivity maps
obtained for cooperation and competition in the three frequency bands, the Wilcoxon
rank sum test was separately applied to each graph metric evaluated for the within-brain,
between-brain, and hyperbrain maps. The significance level was set at 0.05, and the
statistical analysis was performed with a two-tailed approach. Separately for cooperation
and competition and for each frequency band, the strength of each node was averaged
across time windows and the EEG rally segments of the thresholded within- and between-
brain maps. The 61 values of strength obtained per condition and frequency band were
then compared.

Similarly, the participation coefficient of each node of the (122 × 122) thresholded
hyperbrain maps was averaged across time windows and EEG rally segments separately for
cooperation and competition and for each frequency band. The 122 values of participation
coefficient obtained per condition and frequency band were then compared.

Finally, local and global efficiency of the binary adjacency hyperbrain and within-brain
maps were averaged across windows separately for interaction condition and frequency
band. The LE and GE values obtained per condition and frequency band were then com-
pared between interaction conditions for each frequency band. Although the numbers of LE
and GE values were quite small (38 values for cooperation and 24 values for competition),
we applied the Wilcoxon rank sum test because it has been demonstrated to be robust for
small samples [64].

To investigate potential functional correlations between strength and participation
coefficient in the two experimental conditions, we performed a Pearson’s correlation
analysis of the hyperbrain maps obtained for cooperation and competition in the three
frequency bands, reporting the correlation coefficient r and the significance level (p-value)
of the null hypothesis.

The Pearson’s correlation analysis was also applied to the results of the cluster analysis
to investigate whether a tendency towards the predominance of one cluster over the other(s)
occurred in the two interaction conditions.
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3. Results
3.1. Graph Theoretical Measures
3.1.1. Strength

The descriptive statistics of strength and the results of the two-tailed Wilcoxon rank
sum test for cooperation and competition in each frequency band are reported in Table 4.
The results highlight a significant difference between cooperation and competition for both
within- and between-brain maps in the alpha and beta bands.

Table 4. Descriptive statistics and results of the Wilcoxon rank sum test on strength calculated on the
within- and between-brain maps. From left to right: type of connectivity map, type of joint action
condition, and for each frequency band: mean ± STD, median (5th and 95th percentile), p-value of
the two-tailed Wilcoxon rank sum test computed at a significance level of 0.05.

Theta Alpha Beta
Connectivity
Map Condition Mean ± STD

(s)
Median
(Percentiles)
(s)

p Mean ± STD
(s)

Median
(Percentiles)
(s)

p Mean ± STD
(s)

Median
(Percentiles)
(s)

p

Within COOP 13.82 ± 0.28 13.80
(13.44; 14.24) 0.34 12.37 ± 0.26 12.35

(11.95; 12.85) <0.001 6.72 ± 0.17 6.72
(6.43; 7.00) <0.01

COMP 13.77 ± 0.26 13.75
(13.32; 14.17) 13.04 ± 0.29 13.07

(12.57; 13.56) 6.83 ± 0.17 6.83
(6.55; 7.12)

Between COOP 13.51 ± 0.63 13.50
(12.51; 14.42) 0.46 12.37 ± 0.32 12.36

(11.80; 12.88) <0.001 6.75 ± 0.30 6.78
(6.14; 7.15) <0.01

COMP 13.46 ± 0.53 13.49
(12.60; 14.39) 11.96 ± 0.47 11.97

(11.26; 12.74) 6.68 ± 0.21 6.66
(6.33; 7.04)

As expected, we observed that the average strength tended to decrease with the
increasing frequency for both cooperation and competition regardless of the type of con-
nectivity map. We can also see that, for cooperation, strength is reduced from the within-
to the between-brain map in the theta band, whereas it remains almost unchanged for the
alpha and beta bands. Conversely, for competition, we observed a reduction of the average
strength from the within- to the between-brain maps for all frequency bands. It is also
worth noting that strength in the alpha and beta bands during competition was higher in
the case of cooperation in the within-brain maps, whereas it was lower for cooperation in
the between-brain maps. The box plots for strength are reported in Figure S1.

Figure 5 shows the topographical plots for strength in the within and between matrices
for cooperation and competition and the three frequency bands. The values of strength
shown have been averaged for each node across the 4 members of the 2 dyads participating
in our proof-of-concept study.

For the theta band (Figure 5a), no clear predominance of any node (i.e., electrode) in
terms of links with other nodes was observed for the within-brain maps. Conversely, a
significant increase of connections was observed in some prefrontal nodes and in the poste-
rior area in the between-brain maps during cooperation, together with a small reduction in
connections for the nodes in the central area. This effect was reduced in the between maps
related to competition.

For the alpha band (Figure 5b) and the within-brain maps, a high level of connections
was observed only in the right fronto–temporal electrodes during cooperation, whereas
during competition, high levels of connections were observed for the frontal, temporal,
parietal, and occipital areas. In the between-brain map for cooperation, the pattern of
strength across nodes remained almost unchanged with respect to the within-brain map,
whereas the between-brain map for competition showed a substantial decrease in strength
for all nodes, with the exception of a few prefrontal electrodes.

In the beta band (Figure 5c), although all strength values were much lower than those
in the other two frequency bands, we observed that in the within-brain maps, the nodes
with higher numbers of connections were in the central and occipital areas for cooperation
and in the temporal, parietal, and occipital areas for competition. In the between-brain map,
during cooperation, we observed an increase of nodes with high numbers of connections in
the occipital area with respect to the within-brain map, whereas the between-brain map
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during competition showed a reduction in strength with respect to both cooperation and
the within-brain map for competition, with only some nodes in the central–parietal area
having higher strength values.
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Figure 5. Topographical plots of average strength for the 61 nodes of the within- and between-brain
matrices in the three frequency bands: (a) theta, (b) alpha, and (c) beta band. The left column of each
subfigure shows the average strengths of nodes across all time windows and across all respective
rallies in the weighted and thresholded within-brain matrices in the respective bands. The right
column of each subfigure shows the results for the between-brain matrices in the respective bands.
The upper row shows the results for the cooperation condition, whereas the bottom row shows the
results for the competition condition, respectively.

3.1.2. Participation Coefficient

The descriptive statistics of participation coefficient and the results of the two-tailed
Wilcoxon rank sum test for cooperation and competition in each frequency band are re-
ported in Table 5 and shown in Figure S2. The results highlight a significant difference
between cooperation and competition in all frequency bands, with the participation coeffi-
cient always being higher during competition. We observed that the participation coefficient
increased with increasing frequency during both joint action conditions, although more
markedly during cooperation than competition. Finally, it is worth noting that the mean
values of the participation coefficient were always greater than 0.45, indicating a relatively
uniform link distribution with other nodes within the hyperbrain maps.

Table 5. Descriptive statistics and results of the Wilcoxon rank sum test on participation coefficients.
From left to right: type of connectivity map, type of joint action condition; and for each frequency
band: median of strength across nodes, 5th and 95th percentiles of strength, p-value of the two tailed
Wilcoxon rank sum test computed at a significance level of 0.05.

Theta Alpha Beta
Connectivity
Map Condition Mean ± STD

(s)
Median
(Percentiles)
(s)

p Mean ± STD
(s)

Median
(Percentiles)
(s)

p Mean ± STD
(s)

Median
(Percentiles)
(s)

p

Hyperbrain
COOP 0.50 ± 0.01 0.50

(0.48; 0.51)
<0.001

0.51 ± 0.01 0.51
(0.49; 0.52)

<0.001
0.57 ± 0.01 0.57

(0.55; 0.60)
<0.001

COMP 0.55 ± 0.01 0.55
(0.53; 0.57) 0.55 ± 0.01 0.55

(0.54; 0.58) 0.60 ± 0.01 0.59
(0.57; 0.61)

To better explore how the roles of nodes varied between cooperation and competition
across frequency bands, we calculated the Pearson correlation between participation co-
efficient and strength for the hyperbrain maps. Figure 6 shows the average participation
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coefficient (PC) and strength (S) values of individual hyperbrain matrices under the two
experimental conditions and for the three frequency bands, on a PC-S plan.
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Figure 6. Scatterplots of Pearson’s correlation results of the associations between average participation
coefficient and average strength of hyperbrain matrices, respectively, for each frequency band:
(a) results for the theta band in cooperation vs. competition condition; (b) results for the alpha band
in cooperation vs. competition condition; (c) results for the beta band in cooperation vs. competition
condition. Lines indicate the direction of relationship between average participation coefficient and
average strength in hyperbrain matrices.

The Pearson’s correlation test revealed that a significant positive correlation existed
between participation coefficient and strength in the theta band for both conditions (see
Table 6). This indicates that, for the theta band, an increase in participation coefficient
is generally associated with an increase in strength in both cooperation and competition,
although with higher values for both metrics during competition. This result may indicate
that, for the same value of participation coefficient under the two experimental conditions
(i.e., for the same type of functional organization of connections in the network), the quantity
and robustness of connections during competition is higher than during cooperation. No
significant correlation between participation coefficient and strength was found for the
alpha or beta bands.

Table 6. Pearson correlation results of relation between participation coefficient and strength. From
left to right: condition of interaction, Pearson value (R), p-value (p) with a significance level of 0.05,
frequency bands.

Condition Theta Alpha Beta

COOP
R 0.37 0.15 0.03
p <0.001 0.09 0.80

COMP
R 0.35 −0.03 0.11
p <0.001 0.73 0.22

3.1.3. Local and Global Efficiency

Table 7 shows the descriptive statistics and results of the Wilcoxon rank sum test
for LE and GE for the binary adjacency hyperbrain and intra-brain maps. The same
results are shown as box plots in Figure S3. The results of the Wilcoxon rank sum test
show that a significant difference between cooperation and competition was found only
for GE estimated on the within-brain maps in the alpha band (GEcoop = 0.693 ± 0.0141,
GEcomp = 0.700 ± 0.0171; p = 0.007; z = 2.7017; effect size = 0.243). We can also observe
that GE remained almost constant in both cooperation and competition in the within
and hyperbrain maps and across frequency bands (GE ≈ 0.7). Conversely, LE, which
was much lower than GE in the within-brain maps (mean LE ranging between 0.365 and



Sensors 2024, 24, 2995 14 of 23

0.373), substantially increased in the hyperbrain maps, becoming greater than GE (mean LE
ranging between 0.728 and 0.748), although this change was not significant. Overall, these
results indicate that, at the level of individual functional networks, the flow of information
is more efficient at a global than local level, whereas, at the level of hyperbrain networks,
the flow of information becomes equally efficient at the global and local levels.

Table 7. Descriptive statistics and results of Wilcoxon rank sum test for LE and GE. From left to right:
type of connectivity map, graph metric, type of joint action condition; and for each frequency band:
mean ± STD, median, 5th and 95th percentiles, p-value of the two-tailed Wilcoxon rank sum test
computed at a significance level of 0.05.

Theta Alpha Beta

Connectivity
Map Metric Condition

Mean ± STD (s)
p

Mean ± STD (s)
p

Mean ± STD (s)
pMedian

(Percentiles) (s)
Median

(Percentiles) (s)
Median

(Percentiles) (s)

Within

LE

COOP

0.372 ± 0.010

0.308

0.372 ± 0.007

0.594

0.365 ± 0.009

0.691

0.373 (0.354;
0.383)

0.372 (0.363;
0.385)

0.366 (0.351;
0.380)

COMP

0.371 ± 0.009 0.373 ± 0.009 0.365 ± 0.009

0.372 (0.355;
0.385)

0.372 (0.360;
0.388)

0.366 (0.349;
0.378)

GE

COOP

0.689 ± 0.021

0.647

0.693 ± 0.014

0.007 **

0.698 ± 0.014

0.257

0. 694 (0.645;
0.715)

0. 693 (0.671;
0.721)

0. 699 (0.677;
0.723)

COMP

0.693 ± 0.019 0.700 ± 0.017 0.701 ± 0.016

0. 693 (0.660;
0.721)

0. 699 (0.672;
0.731)

0. 700 (0.672;
0.727)

LE-GE
COOP <0.001 <0.001 <0.001

COMP <0.001 <0.001 <0.001

Hyperbrain

LE

COOP

0.748 ± 0.006

0.672

0.744 ± 0.005

0.662

0.729 ± 0.005

0.544

0. 749 (0.739;
0.757)

0. 744 (0.735;
0.751)

0. 728 (0.721;
0.738)

COMP

0.748 ± 0.007 0.745 ± 0.005 0.728 ± 0.004

0. 747 (0.739;
0.759)

0. 745 (0.734;
0.752)

0. 728 (0.723;
0.736)

GE

COOP

0.698 ± 0.001

0.563

0.699 ± 0.001

0.622

0.700 ± 0.001

0.050

0. 698 (0.696;
0.700)

0. 699 (0.698;
0.700)

0. 700 (0.700;
0.700)

COMP

0.698 ± 0.001 0.699 ± 0.001 0.700 ± 0.001

0. 698 (0.696;
0.700)

0. 699 (0.698;
0.700)

0. 700 (0.700;
0.700)

LE-GE
COOP <0.001 <0.001 <0.001

COMP <0.001 <0.001 <0.001

3.2. Results of the Clustering Procedure

In our proof-of-concept study, for cooperation, 942 and 471 connectivity vectors were
available for the within- and between-brain maps, respectively, in each frequency band,
whereas for competition, 718 and 359 connectivity vectors were available for the within-
and between-brain maps, respectively, in each frequency band.
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Based on the Calinski–Harabasz criterion, the optimal number of clusters for each
group was k = 2. Therefore, two representative vectors of connectivity were extracted
for each of the 12 groups of connectivity vectors. These representative vectors were then
transformed into template connectivity maps (or canonical clusters) for the within- and
between-brain maps for the three frequency bands considered. Figure 7 shows the two
canonical clusters extracted for all conditions and frequency bands.
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Figure 7. Plots of the canonical clusters obtained for the theta (panel a), alpha (panel b), and beta
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In each cluster, the x and y axes refer to the electrodes, ordered as follows: frontal, fronto–central,
central, centro–parietal, parietal, parietal–occipital, occipital electrodes from left to right in the x axis
and from top to bottom in the y axis, respectively.

Due to the low number of subjects involved in our proof-of-concept study (two dyads,
hence, four subjects), no statistical analysis could be performed to detect significant differ-
ences between the template connectivity maps characterizing cooperation and competition.
However, we can observe that, for all frequency bands, distinct clusters were extracted
for cooperation and competition, and these differences were more pronounced for the
between-brain maps than for the within-brain maps. In particular, we observed that a
higher number of connections between the parieto–occipital and frontal areas character-
ized the within-brain canonical maps in all frequency bands and conditions, whereas the
between-brain canonical maps were characterized by a connectivity pattern that linked
most brain areas of one member of the dyad with a reduced number of brain areas of the
other member of the dyad.

To explore whether a predominant cluster could be identified, the Pearson’s correlation
was computed between each template connectivity cluster extracted from each group and
each connectivity vector in the same group. Table 8 reports for each member of each dyad
the percentage of times that each cluster had a higher correlation than the other cluster
with the connectivity vectors for each group. By doing so, we provide an idea of how
representative one cluster can be of the functional patterns sustaining cooperation and
competition in the different frequency bands. For instance, it occurred that one cluster was
more representative than the other under both interaction conditions for one member of
the dyad (theta band, cluster 1 for P1 in the female dyad; alpha band, cluster 1 for P2 in
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the female dyad; beta band, cluster 2 for P2 in the female dyad; beta band, cluster 1 for P2
in the male dyad), while, at times, the predominant cluster changed between cooperation
and competition (theta band, cluster 2 to cluster 1 for P2 in the female dyad; theta band,
cluster 2 to cluster 1 for P1 in the male dyad; beta band, cluster 2 to cluster 1 for P2 in the
female dyad).

Table 8. Pearson’s correlation between connectivity vectors and representative clusters. In the first
row, the two experimental conditions. From left to right: frequency band, dyad gender, subject in
each dyad, percentage of connectivity vectors represented by cluster 1 and cluster 2 in each group of
connectivity vectors (per experimental condition, frequency band, and subject in the dyads).

Dyad
Gender

Subject
Cooperation Competition

Cluster 1
(%)

Cluster 2
(%)

Cluster 1
(%)

Cluster 2
(%)

Theta
female

P1 60 40 61 39
P2 45 55 57 43

male
P1 41 59 54 46
P2 50 50 57 43

Alpha
female

P1 45 55 50 50
P2 57 43 55 45

male
P1 62 38 44 56
P2 45 55 51 49

Beta
female

P1 44 56 46 54
P2 43 57 53 47

male
P1 50 50 57 43
P2 56 44 54 46

4. Discussion

The proposed pipeline was specifically conceived for the analysis of EEG-hyperscanning
data recorded in a naturalistic environment and employing a turn-based motor task (i.e.,
table tennis) that is suitable not only for cooperative but also for competitive joint actions.
However, this choice implies a revision of the traditional approaches used for both pre-
processing and processing of EEG-hyperscanning data. First, the selection of a naturalistic
type of interpersonal interaction implied the use of a motor task with the drawback of
producing motion-related artefacts that may heavily affect the EEG recordings. Second,
the unpredictability and variability of competitive (and turn-based) actions pose analytical
challenges, rendering traditional analytical approaches less effective and imposing the
identification of a novel analytical approach suitable to detect functional synchronization
even in conditions of variable frequency of action.

To cope with the first problem, we designed a dedicated preprocessing pipeline which
included both band-pass filtering and ICA decomposition. Employing a band-pass filter
with a high-pass cutoff frequency set at 3 Hz, we can mitigate the effects of artifacts typically
associated with body movements during intense and complex activities. In fact, although
there are currently no guidelines or standardized approaches to manage motion-related
artifacts in the EEG, previous studies have shown that motion artifacts mainly affect lower
frequencies up to about 2 Hz for more intense and complex movements [65,66]. Therefore,
the choice of a band-pass filter with a high-pass cutoff frequency of 3 Hz was determined
by the intention to mitigate motion-related artifacts in the EEG recordings. In association
with a low-pass cutoff frequency set at 40 Hz, our band-pass filter permits removal of most
physiological and non-physiological interferences affecting the EEG without removing the
neural frequencies relevant to the study of joint action, namely the theta, alpha, and beta
bands. Indeed, the literature suggests that the application of both high-pass and low-pass
filters enhances signal quality, especially for intentional movements [65,66]. Finally, the
inclusion of an ICA-based preprocessing step permits decomposition of the EEG signals and
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identification of those signal components containing physiological and non-physiological
artifacts that have frequency content included in the range between 3 and 40 Hz, making
our denoising methodology more robust.

A novelty in our proposed processing step regards the use of an algorithm suitable
for the analysis of turn-based competitive EEG-hyperscanning signals. In line with the
EEG-hyperscanning literature on cooperative vs. competitive joint actions, we employed
a zero-lag-insensitive, phase synchrony-based approach. Previous studies have usually
employed the phase locking value (PLV) to estimate the phase synchronization between
two EEG signals in the comparison between cooperation and competition [34–36]. Liu and
colleagues (2021) [34] and Sinha and colleagues (2016) [35] did not obtain significant results,
whereas Léné and colleagues (2021) [36] succeeded in differentiating cooperation from
competition. However, it must be noted that Léné and colleagues did not use an ecological
study paradigm, but a computer-based fast button-response task. Therefore, they did not
demonstrate the applicability of PLV (or other functional connectivity algorithms) in the
analysis of competition data acquired during the performance of an ecological motor task.
Differently from these studies, we employed the corrected imaginary part of the phase
locking value (ciPLV; [50]), a recently introduced measure of phase synchrony that offers
several advantages in the study of neural coupling—particularly during competition—
compared with PLV. These advantages include (1) high computational efficiency; in fact,
the employment of ciPLV avoids some computationally expensive operations, achieving
a 100-fold speedup over the PLV algorithm; (2) strong symmetry with coherence; ciPLV
exhibits robust symmetry with coherence, one of the suggested approaches for studying
competitive joint actions in the context of EEG hyperscanning [36]; (3) high robustness in
the presence of volume conduction, along with the ability to ignore zero-lag connectivity
while accurately estimating nonzero-lag connectivity [50].

From the EEG signals recorded during cooperation and competition, we obtained
hyperbrain, within-, and between-brain maps representing the functional connectivity as-
sociated with the two interaction conditions. To highlight the main features of these maps,
we employed four graph theoretical measures. Strength was used to identify the nodes
with more connections with other nodes in the network, hence providing an indication of
the relative functional importance of all nodes within a network. Participation coefficient is
a measure of node edge distribution across the communities in a network; hence, it assesses
the extent to which a node is functionally involved in various parts of the network rather
than being strongly specialized in a specific community. High participation coefficients
indicate that the various parts of a network are strongly interconnected, implying less
specialization. This may reflect increased integration and information sharing among dif-
ferent areas of the neural network during social interactions. Conversely, low participation
coefficients suggest that the different communities in a network are less interconnected,
highlighting a greater functional specialization in different brain areas under specific so-
cial conditions. To further examine the interrelation between the number of connections
per node and their distribution across the network during cooperation and competition,
we calculated the correlation between strength and participation coefficient. Finally, the
functional efficiency of the hyperbrain and within-brain networks was assessed in terms
of network integration and segregation by calculating global and local efficiency (GE and
LE), respectively. GE indicates how efficiently the transfer of information within a network
occurs at a global level, whereas LE estimates the local efficiency of a functional network,
namely, how efficiently a node communicates with its immediate neighbors.

To validate the proposed analytical pipeline, we performed a proof-of-concept study
on two dyads playing table tennis, according to our recently published protocol [44]. We
first observed a reduction in strength in the within- and between-brain networks from low
frequencies (theta) to higher frequencies (beta) during both cooperation and competition.
Indeed, recent studies in table tennis have highlighted a theta-dominance in anterior [67]
and parieto–occipital areas [68], associated with increased visuomotor and cognitive de-
mands. Our results, shown in the topographical plots of average strength for both within-
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and between-brain maps, are in agreement with these findings, revealing an increased theta
engagement in the frontal and occipital brain areas. This result also aligns with the conclu-
sions of Liu and colleagues [34], who emphasized the role of the theta band in interpersonal
neural coupling during a motion-sensor racket task. Furthermore, Liu and colleagues [34]
found increased alpha and beta activity in the occipital areas during cooperation, which
decreased during competition. Our results also show an increased between-brain synchro-
nization in the beta band within the occipital area that may be due to the shared attention
and visual information processing between the cooperating subjects [69–73]. Moreover,
the strength reduction observed for the alpha and beta bands in the between-brain maps
during competition with respect to what was observed in the within-brain maps can be
ascribed to a tendency of the members of the dyad to adopt different strategies during
competition, when they focus more on their own performance [34,74].

The values of the participation coefficient obtained for the hyperbrain maps during
competition indicate increased interconnections across various parts of the functional
network compared with cooperation. This result suggests the occurrence of enhanced
hyperbrain interactions during competition that may reflect improved information sharing,
probably due to the need to cope with conflicts arising from heightened cognitive and
motor demands. In contrast, the lower participation coefficient values obtained during
cooperation may relate to the shared goal of establishing coordinated behavior, which
aligns with the common private goal of keeping the ball in play for as long as possible,
which requires lower cognitive and motor resources. The observation that higher values
were found in the beta band could indicate that this frequency range is particularly relevant
to the dynamics of competition. Indeed, the beta band is primarily associated with motor
function; it is implicated in the planning, control, and execution of movements [75,76],
particularly for complex and rhythmic motor tasks [77], fast-paced activities [78], and
precision tasks [79]. Therefore, increased global interconnection in this band may be related
to the more intricate, intense, and precise movements that characterize competition in
comparison to cooperation.

The results of correlation between strength and participation coefficient indicated that
enhanced node connectivity and the degree of interconnection among different network
communities were positively correlated in the theta band for both cooperation and compe-
tition. This finding suggests that the presence of nodes with a high number of connections
facilitates the occurrence of network-wide functional connections, emphasizing the role
of the theta band in hyperbrain network dynamics. The finding that this correlation—
although stronger during competition—existed in both interaction conditions aligns with
previous results emphasizing that the theta band seems independent of the type of social
interaction but is closely related to the nature of the task [67,68].

The calculation of global and local efficiency demonstrated that the hyperbrain maps
were characterized by a more segregated than integrated functional efficiency across all
frequency bands, in both cooperation and competition, with no significant differences
between the two conditions. This result suggests that the integration and segregation
of cortical areas in table tennis may be independent of the interaction condition. On
the other hand, the within-brain networks exhibited greater integration than segregation,
with alpha showing significantly higher integration during competition than cooperation.
In agreement with our previous observations on strength and participation coefficients
in cooperation and competition, the observed prevailing segregation of the hyperbrain
networks might also support the notion that, during joint action, the interacting individuals
were focused on coping with the planning, control, and execution of the complex, rhythmic
and fast-paced movements required during competition, thus relying on more self-centered
playing strategies. A similar result was found in our previous work on dyadic cooperative
juggling [33], where the reduced global efficiency during interpersonal coordination was
associated with increased task difficulty compared with individual juggling, suggesting
that reduced global efficiency could be due to the increased difficulty associated with
interactive juggling.
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Another novel element in our analytical pipeline relates to the identification of
functional connectivity clusters distinctive of cooperation and competition in the theta,
alpha, and beta bands. By means of the k-means algorithm and Calinski–Harabasz
criterion [60–63], we determined the optimal number of canonical clusters for each in-
teraction condition and frequency band and extracted characteristic patterns of functional
connectivity representative of the main neural activations sustaining cooperation and
competition. Although the results obtained in our proof-of-concept study should be in-
terpreted with caution because of the low number of analyzed subjects, distinct clusters
for cooperation and competition were nonetheless extracted, providing an indication that
this clustering approach can lead to interesting results in larger groups of subjects. For
instance, the more intense functional connectivity observed between parieto–occipital and
frontal areas in the within-brain canonical maps was in line with the results for strength and
may suggest a predominant involvement of cognitive and sensorimotor areas to respond
to the demands of the turn-based and competitive task. Conversely, the between-brain
canonical maps highlighted connectivity patterns where most of the brain areas of one
dyad member were linked with a reduced number of brain areas of the other dyad member.
This pattern might indicate a leader–follower dynamic, potentially indicating how playing
styles—such as offensive and defensive strategies, characterized by different behaviors
and physiological responses [80,81]—may be reflected in distinctive functional connectivity
patterns during joint action.

The low Pearson’s correlation values obtained when correlating the canonical clusters
with each connectivity vector in the 12 groups underscore that a larger number of datasets
should be analyzed. However, these correlation values still demonstrate that for each group
of connectivity vectors, there is a general tendency towards the prevalence of one canonical
cluster over the other. Interestingly, the predominant clusters generally differed between
cooperation and competition within each group and frequency band. The predominance
of one canonical cluster for a specific interaction condition and frequency band might
be confirmed in a larger group of dyads, hence providing precious information on the
prevalent functional connectivity patterns sustaining cooperation and competition.

5. Conclusions and Future Directions

The results of our proof-of-concept study were in line with the findings of other studies
on competition, hence showing that the proposed analytical pipeline has the potential to
effectively characterize and differentiate the neural dynamics sustaining different joint
action conditions during the performance of naturalistic turn-based motor tasks. Based
on the promising outcomes of the analysis of the EEG data recorded in the two dyads, we
will employ the proposed analytical pipeline in a larger dataset of dyadic EEG recordings
acquired during table tennis, once available.

One of the main challenges in the analysis of EEG–hyperbrain data collected during
the execution of a motor joint action task relates to the removal of artifacts due to rapid
body movements. In the proposed pipeline, we adopted a combination of band-pass
filtering and ICA decomposition, which removed most large amplitude fluctuations. We
are presently developing a novel analytical approach dedicated to the identification and
removal of motion-related artifacts. The effectiveness of this approach will be tested in a
large set of EEG-hyperscanning data and assessed in comparison with existing methods.
Once established, this novel approach will be included in our proposed pipeline.

Possible future improvements of the proposed analytical pipeline also regard the
identification and inclusion of other connectivity measures capable of elucidating the
roles of players in a table tennis match. As suggested by our results on clustering, in
joint action—especially during competition—a leader–follower interplay may be detected.
The characterization of these roles could be beneficial for a deeper understanding of the
neural basis of joint action. As well, the estimation of affective components through
the analysis of psychophysiological signals such as heart rate variability or respiration
rate [82], might lead to a more reliable comparison between cooperation and competition.
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These are already included in our table tennis study protocol [44] but were not collected
during the proof-of-concept study, which focused on just EEG data analysis. Future dyadic
acquisitions in table tennis will strictly follow our study protocol to provide a multimodal
dataset on the multiple physiological activations during cooperative and competitive joint
action, hence providing a valuable base for the testing and improvement of the proposed
analytical pipeline.

Supplementary Materials: The following are available online at https://figshare.com/s/89bc32b8
6d46162cd6b3, accessed on 3 January 2024, Figure S1: Box plots of global strengths for the within-
and between-brain matrices, Figure S2: Box plots of global participation coefficient for the hyperbrain
matrices, Figure S3: Box plots of local efficiency (LE) and global efficiency (GE) for the within-brain
and hyperbrain matrices.

Author Contributions: Conceptualization, G.T., P.F. and S.C.; methodology, G.T., R.B., P.F., A.D.F.,
F.Z. and S.C.; software, G.T. and R.B.; formal analysis, G.T. and R.B.; resources, S.C.; data curation,
G.T., R.B., P.F. and A.D.F.; writing—original draft, G.T.; writing—review and editing, G.T., R.B., P.F.,
A.D.F., K.R., M.K., F.Z. and S.C.; supervision, S.C.; funding acquisition, S.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by European Union under the H2020-MSCA-RISE-2020 pro-
gramme (EMBRACE Project ‘tEchnology for Multimodal inter-BRain dynAmiCs invEstigation’—
Grant Agreement nr. 101007521).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the local institutional Ethics Committee of the University
“G. d’Annunzio” of Chieti-Pescara, Italy (Ethics Committee of Chieti and Pescara, meeting minutes
N.06 of 11/03/2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The EEG datasets used in this study are available online at the Figshare
repository via the following links: https://figshare.com/s/93fe79bf39683c61d4b7; https://figshare.
com/s/a8d3475b16f590e7f945, accessed on 20 December 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carston, R.; Herbert, H. Clark, Using Language. Cambridge: Cambridge University Press, 1996. Pp. Xi+432. J. Linguist. 1999, 35,

167–222. [CrossRef]
2. Sebanz, N.; Bekkering, H.; Knoblich, G. Joint Action: Bodies and Minds Moving Together. Trends Cogn. Sci. 2006, 10, 70–76.

[CrossRef] [PubMed]
3. Searle, J.R. Collective Intentions and Actions. In Chapter 19 in “Intentions in Communication”; Cohen, P.R., Morgan, J.L., Pollack,

M.E., Eds.; System Development Foundation Benchmark Series; The MIT Press: Cambridge, MA, USA, 1990; ISBN 9780262270540.
[CrossRef]

4. Decety, J.; Sommerville, J. Shared Representations between Self and Other: A Social Cognitive Neuroscience View. Trends Cogn.
Sci. 2004, 7, 527–533. [CrossRef]

5. Deutsch, M. A Theory of Co-Operation and Competition. Hum. Relat. 1949, 2, 129–152. [CrossRef]
6. Vonk, R. Effects of Cooperative and Competitive Outcome Dependency on Attention and Impression Preferences. J. Exp. Soc.

Psychol. 1998, 34, 265–288. [CrossRef]
7. Krueger, F.; Meyer-Lindenberg, A. Toward a Model of Interpersonal Trust Drawn from Neuroscience, Psychology, and Economics.

Trends Neurosci. 2019, 42, 92–101. [CrossRef]
8. Oullier, O.; Basso, F. Embodied Economics: How Bodily Information Shapes the Social Coordination Dynamics of Decision-

Making. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 291–301. [CrossRef] [PubMed]
9. Sebanz, N.; Knoblich, G. Progress in Joint-Action Research. Curr. Dir. Psychol. Sci. 2021, 30, 138–143. [CrossRef]
10. Hari, R.; Kujala, M.V. Brain Basis of Human Social Interaction: From Concepts to Brain Imaging. Physiol. Rev. 2009, 89, 453–479.

[CrossRef]
11. Liu, T.; Pelowski, M. Clarifying the Interaction Types in Two-Person Neuroscience Research. Front. Hum. Neurosci. 2014, 8, 276.

[CrossRef]
12. Czeszumski, A.; Eustergerling, S.; Lang, A.; Menrath, D.; Gerstenberger, M.; Schuberth, S.; Schreiber, F.; Rendon, Z.Z.; König, P.

Hyperscanning: A Valid Method to Study Neural Inter-Brain Underpinnings of Social Interaction. Front. Hum. Neurosci. 2020, 14,
39. [CrossRef]



Sensors 2024, 24, 2995 21 of 23

13. Montague, P. Hyperscanning: Simultaneous fMRI during Linked Social Interactions. NeuroImage 2002, 16, 1159–1164. [CrossRef]
14. Mu, Y.; Cerritos, C.; Khan, F. Neural Mechanisms Underlying Interpersonal Coordination: A Review of Hyperscanning Research.

Soc. Personal. Psychol. Compass 2018, 12, e12421. [CrossRef]
15. Nam, C.S.; Choo, S.; Huang, J.; Park, J. Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on

Hyperscanning Studies. Appl. Sci. 2020, 10, 6669. [CrossRef]
16. Lee, S.; Cho, H.; Kim, K.; Jun, S.C. Simultaneous EEG Acquisition System for Multiple Users: Development and Related Issues.

Sensors 2019, 19, 4592. [CrossRef] [PubMed]
17. Minagawa, Y.; Xu, M.; Morimoto, S. Toward Interactive Social Neuroscience: Neuroimaging Real-World Interactions in Various

Populations. Jpn. Psychol. Res. 2018, 60, 196–224. [CrossRef]
18. Sänger, J.; Lindenberger, U.; Müller, V. Interactive Brains, Social Minds. Commun. Integr. Biol. 2011, 4, 655–663. [CrossRef]

[PubMed]
19. Zamm, A.; Debener, S.; Sebanz, N. The Spontaneous Emergence of Rhythmic Coordination in Turn Taking. Sci. Rep. 2023, 13,

3259. [CrossRef] [PubMed]
20. Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [CrossRef]
21. Gross, J. Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron 2019, 104, 189–204. [CrossRef]
22. Filho, E.; Bertollo, M.; Robazza, C.; Comani, S. The Juggling Paradigm: A Novel Social Neuroscience Approach to Identify

Neuropsychophysiological Markers of Team Mental Models. Front. Psychol. 2015, 6, 799. [CrossRef] [PubMed]
23. Filho, E.; Bertollo, M.; Tamburro, G.; Schinaia, L.; Chatel-Goldman, J.; di Fronso, S.; Robazza, C.; Comani, S. Hyperbrain Features

of Team Mental Models within a Juggling Paradigm: A Proof of Concept. PeerJ 2016, 4, e2457. [CrossRef] [PubMed]
24. Müller, V.; Lindenberger, U. Intra- and Interbrain Synchrony and Hyperbrain Network Dynamics of a Guitarist Quartet and Its

Audience during a Concert. Ann. N. Y. Acad. Sci. 2023, 1523, 74–90. [CrossRef] [PubMed]
25. Müller, V.; Sänger, J.; Lindenberger, U. Hyperbrain Network Properties of Guitarists Playing in Quartet. Ann. N. Y. Acad. Sci.

2018, 1423, 198–210. [CrossRef] [PubMed]
26. Sänger, J.; Müller, V.; Lindenberger, U. Intra- and Interbrain Synchronization and Network Properties When Playing Guitar in

Duets. Front. Hum. Neurosci. 2012, 6, 312. [CrossRef] [PubMed]
27. Babiloni, F.; Cincotti, F.; Mattia, D.; Mattiocco, M.; De Vico Fallani, F.; Tocci, A.; Bianchi, L.; Marciani, M.G.; Astolfi, L. Hyperme-

thods for EEG Hyperscanning. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and
Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3666–3669.

28. Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; Isabella, R.; De Vico Fallani, F.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.; et al.
Study of the Functional Hyperconnectivity between Couples of Pilots during Flight Simulation: An EEG Hyperscanning Study.
In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston,
MA, USA, 30 August–3 September 2011; pp. 2338–2341.

29. Fallani, F.D.V.; Nicosia, V.; Sinatra, R.; Astolfi, L.; Cincotti, F.; Mattia, D.; Wilke, C.; Doud, A.; Latora, V.; He, B.; et al. Defecting or
Not Defecting: How to “Read” Human Behavior during Cooperative Games by EEG Measurements. PLoS ONE 2010, 5, e14187.
[CrossRef] [PubMed]

30. Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; He, E.J.; Roy, A.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.; et al. Cortical
Activity and Functional Hyperconnectivity by Simultaneous EEG Recordings from Interacting Couples of Professional Pilots. In
Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego,
CA, USA, 28 August–1 September 2012; pp. 4752–4755.

31. Toppi, J.; Borghini, G.; Petti, M.; He, E.J.; Giusti, V.D.; He, B.; Astolfi, L.; Babiloni, F. Investigating Cooperative Behavior in
Ecological Settings: An EEG Hyperscanning Study. PLoS ONE 2016, 11, e0154236. [CrossRef] [PubMed]

32. Venturella, I.; Gatti, L.; Venutelli, M.E.; Balconi, M. When Brains Dialogue by Synchronized or Unsynchronized Languages.
Hyperscanning Applications to Neuromanagement. Neuropsychol. Trends 2017, 21, 35–51. [CrossRef]

33. Stone, D.B.; Tamburro, G.; Filho, E.; di Fronso, S.; Robazza, C.; Bertollo, M.; Comani, S. Hyperscanning of Interactive Juggling:
Expertise Influence on Source Level Functional Connectivity. Front. Hum. Neurosci. 2019, 13, 321. [CrossRef]

34. Liu, H.; Zhao, C.; Wang, F.; Zhang, D. Inter-Brain Amplitude Correlation Differentiates Cooperation from Competition in a
Motion-Sensing Sports Game. Soc. Cogn. Affect. Neurosci. 2021, 16, 552–564. [CrossRef]

35. Sinha, N.; Maszczyk, T.; Zhang, W.; Tan, J.; Dauwels, J. EEG Hyperscanning Study of Inter-Brain Synchrony during Cooperative
and Competitive Interaction. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Budapest, Hungary, 9–12 October 2016; pp. 004813–004818. [CrossRef]

36. Léné, P.; Karran, A.J.; Labonté-Lemoyne, E.; Sénécal, S.; Fredette, M.; Johnson, K.J.; Léger, P.-M. Is There Collaboration Specific
Neurophysiological Activation during Collaborative Task Activity? An Analysis of Brain Responses Using Electroencephalogra-
phy and Hyperscanning. Brain Behav. 2021, 11, e2270. [CrossRef]
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