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Abstract
The salience network (SN), ventral attention network (VAN), dorsal attention network (DAN) and default mode network 
(DMN) have shown significant interactions and overlapping functions in bottom-up and top-down mechanisms of attention. 
In the present study, we tested if the SN, VAN, DAN and DMN connectivity can infer the gestational age (GA) at birth in 
a study group of 88 healthy neonates, scanned at 40 weeks of post-menstrual age, and with GA at birth ranging from 28 to 
40 weeks. We also ascertained whether the connectivity within each of the SN, VAN, DAN and DMN was able to infer the 
average functional connectivity of the others. The ability to infer GA at birth or another network's connectivity was evalu-
ated using a multivariate data-driven framework. The VAN, DAN and the DMN inferred the GA at birth (p < 0.05). The SN, 
DMN and VAN were able to infer the average connectivity of the other networks (p < 0.05). Mediation analysis between 
VAN’s and DAN’s inference on GA at birth found reciprocal transmittance of change with GA at birth of VAN’s and DAN’s 
connectivity (p < 0.05). Our findings suggest that the VAN has a prominent role in bottom-up salience detection in early 
infancy and that the role of the VAN and the SN may overlap in the bottom-up control of attention.

Keywords Salience network · Ventral attention network · Dorsal attention network · Default mode network · Data-driven 
analysis · Mediation analysis · Bottom-up salience detection

Introduction

To survive the changes and challenges of the external world, 
we need the ability to focus on the multiple sources of stimuli 
that constantly compete for our attention, the so-called “sali-
ency detection”. Saliency detection is a complex mechanism 
that requires a bottom-up mechanism for filtering stimuli 

standing out from a stream of sensory inputs and a higher 
order mechanism for the automatic attraction and consequent 
maintenance of attention on a specific task (Parr and Friston 
2019). The salience network (SN) plays a dominant role in 
the detection of salient stimuli across multiple modalities 
(Crottaz-Herbette and Menon 2006). The role of reality filter 
is specifically attributed to the insula, which together with 
the anterior cingulate cortex, constitutes the main anatomical 
structures to which the SN is anchored (Menon and Uddin 
2010). Saliency detection is also involved in the dynamic 
interaction of sensory and cognitive influences that control 
attention (Menon and Uddin 2010). Attention is controlled 
by two partially segregated networks: the ventral attention 
network (VAN) and dorsal attention network (DAN), form-
ing a twofold attentional control system (Vossel et al.2014; 
Sridharan et al. 2007). The VAN includes the temporopa-
rietal junction (TPJ) and ventral frontal cortex (VFC), is 
dominant in the right hemisphere and is generally activated 
when an unexpected event occurs and breaks one’s atten-
tion from the current task (bottom-up processing). The DAN 
includes the intraparietal sulcus (IPS) and the frontal eye 
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fields (FEF) of each hemisphere and shows sustained acti-
vation when focusing attention on an object and is thought 
to be responsible for goal-directed, top-down processing of 
attention (Corbetta and Shulman 2002). The complex inter-
action of bottom-up and top-down attention mechanism also 
requires the ability to disengage from the constant stream of 
our self-referential thoughts (the so-called “mind wonder-
ing”), a cognitive process attributed to the DMN (Raichle 
2015; Buckner et al. 2008). This postulate is supported by 
the evidence that performance of a goal-directed, non-self-
referential task is accompanied by a decrease in activity in 
the DMN and a corresponding increase in activity in the 
DAN (Anderson et al. 2011; Esposito et al. 2018).

A number of fMRI studies have demonstrated that infants 
and even preterm newborns possess immature forms of 
many of the networks described in the adult (Doria et al. 
2010; Smyser et al. 2010; Toulmin et al. 2015; Stoecklein 
et al. 2020). These studies show that higher order networks 
may be present, even if in a fragmented, immature form, 
even before term, as opposed to the previous concept by 
which the networks develop in parallel with the cognitive 
competences associated with stimulus-dependent thought.

Recent studies adopting machine learning methods, have 
shown that the functional connectivity data (expressed by 
different metrics) and volume data are able to predict pre-
maturity both in cohorts of newborns (Smyser et al. 2016; 
Ball et al. 2016; Chiarelli et al. 2021) and adults (Shang 
et al. 2019) and to classify age in infants aged between 6 and 
12 months (Pruett et al. 2015). These studies support the 
view that a functional architecture of the brain exists before 
birth and constantly evolves, especially during the first year 
of life. Changes in functional connectivity of prematurity 
also manifest in adults, which supports the hypothesis that 
neurocognitive disorders associated with preterm birth might 
represent a disease of brain connectivity (Lubsen et al. 2011).

Most studies based on the functional connectivity of 
newborns and infants have been based on a global analy-
sis of brain networks. Few studies, however, have so far 
attempted to focus on the functional connectivity of high-
order networks, whose structure and function is assumed to 
be immature in early life. The present study seeks to analyze 
the development of functional connectivity of the networks 
involved in the complex interaction of bottom-up and top-
down attention systems and how they influence the func-
tional connectivity of each other. We based our assumption 
on the evidence that the development of the insula begins 
early in the fetal period. This leads us to hypothesize that 
the salience system starts developing very early, probably 
interacting with the immature forms of the other networks 
that combine in the complex mechanism of attention.

First, we explored the association with GA at birth 
and the resting-state functional connectivity (rs-FC) 
extracted from the SN, the VAN, the DAN and the DMN. 

Consequently, we examined the ability of each network to 
infer the mean FC of each other. Given the observation that 
the SN and the VAN have a different, but complementary 
activity of salience detection (Farrant and Uddin, 2015), we 
hypothesize that the SN and the VAN influence each other. 
Moreover, both the SN and the VAN may influence the 
DMN by decreasing its activity and functional connections.

Although the dorsal and ventral networks are special-
ized for distinct attentional subprocesses such us top-down 
controlled attentional selection and the bottom-up selection 
of relevant stimuli, it seems that the two networks work in 
concert to promote a specific attentional process and that 
top-down and bottom-up processing cannot uniquely be 
attributed to one system in isolation. The ventral and dor-
sal attention networks may, therefore, develop in a constant 
dynamic interaction, subsequently evolves into flexible 
attentional control (Shulman et al. 2003, 2007; DiQuattro 
and Geng 2011; Vossel et al. 2014). This assumption led us 
to hypothesize that the ventral and dorsal attention networks 
affect the development of each other. To test this hypoth-
esis, we employed a mediation analysis to assess whether 
the VAN acts as a mediator on the inference on GA at birth 
using DAN. A specular analysis was conducted for DAN act-
ing as mediator on the inference on GA at birth using VAN.

Our study was based on the same dataset of the recent 
study from Chiarelli et al. (2021) and adopted the same 
Machine Learning multivariate data-driven framework 
which allows to consider all the connections within the pre-
dicting network at once without any a-priori assumptions. 
However, we focused on pre-selected higher order networks 
rather than on exploring the effect on prematurity of dif-
ferent functional connectivity metrics extracted from a set 
of regions of interest (ROIs) covering the whole brain (Shi 
et al. 2011). We also further explored the ability of each 
network to infer the connectivity of each other.

Materials and methods

Participants

The present study included a total of 88 healthy neonates 
with GA at birth from 28 to 40 weeks (mean = 33 weeks, 
SD = 3.7 weeks). 43/88 patients were female and 15/88 were 
born at term (> 37 weeks of GA at birth) (Table 1). Informed 
consent was obtained from the parents of all participants, 
and the experimental protocols were approved by the Institu-
tional Review Committee. The neonates underwent standard 
clinical MRI examination within the 40th week of post-men-
strual age (PMA, mean = 40.4; SD = 0.27).

Neonates, born before 37 weeks of GA, were selected 
based on the following exclusion criteria:
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1. Chromosomal abnormality or suspected or proven 
congenital infection (e.g., HIV, sepsis, toxoplasmosis, 
rubella, cytomegalovirus and herpes simplex virus).

2. Neurological abnormalities, including grade III–IV 
intraventricular hemorrhage, cystic periventricular leu-
komalacia, moderate–severe cerebellar hemorrhage or 
lesions in the deep or cortical gray matter.

3. Absent functional MRI.

The inclusion of premature neonates in the study aims at 
testing if the FC of the networks depends on the degree of 
maturation that the brain reaches before birth.

Neonates, born within or after 37 weeks of GA, were 
selected from a group of consecutive neonates without 
asphyxia. The neonates did not present signal abnormalities 
at standard MR sequences and had normal neurologic status 
at a 12-month clinical follow-up.

Data acquisition

MR imaging was performed with a 3 T whole-body system 
(Achieva 3.0 T X-Series) from Philips Healthcare (Best, 
Netherlands) using an eight-channel head-only receiver coil. 
In accordance with several previous fMRI studies in neo-
nates (Ball et al. 2016; Stoecklein et al. 2020), participants 
were fed and then sedated with 0.05 mg oral Midazolam 
per kilogram of body weight immediately prior to clinical 
scans to minimize motion artefacts. Neonates were laid in 
the scanner in a supine position and swaddled in blankets. 
Molded foam was placed around the body to minimize head 
movement. Hearing protection was used through commer-
cially available neonatal earmuffs (MiniMuffs; Natus Med-
ical, San Carlos, California) and adapted ear-canal plugs. 
Heart rate and oxygen saturation were monitored during 
the MR imaging session by an intensive care neonatologist. 
Structural images used in this study were collected using the 
T1-weighted Turbo Field Echo (TFE) sagittal sequence (flip 
angle: 8°; TR: 9 ms; TE: 4.2 ms; voxel size: 1 × 1 × 1  mm3; 
FOV: 200 × 200 × 150  mm3) with a whole-body SAR below 
0.2 W/kg. At the end of standard clinical MRI sequences, 
whole-brain functional images were additionally acquired 

using a T2*-weighted, echo-planar imaging (EPI), FFE axial 
sequence (flip angle: 90°; TR: 1555 ms; TE: 30 ms; voxel 
size: 2.5 × 2.5 × 3  mm3; FOV: 180 × 180 × 75  mm3; slice gap: 
0 mm) with a whole-body SAR within 0.8 W/kg. The func-
tional scan duration was 4 min and 15 s (255 s).

Preprocessing

The MR image pre-processing workflow is reported in 
Fig. 1.

BOLD connectivity was evaluated among 90 subcorti-
cal and cortical ROIs defined by the University of North 
Carolina (UNC) Infant Atlas (Shi et al. 2011). ROI names 
and associated labels are reported in the Supplementary 
Material.

To facilitate registration with the UNC atlas, an interme-
diate in-house brain template, built by averaging the infants 
T1-weighted anatomical images (Avants et al. 2010, 2011) 
and by segmenting the brain of the average template by 
hand, was first registered to the atlas (Wang et al. 2005). The 
T1 in house template was constructed by using the Advanced 
Normalization Tools (ANTs, http:// stnava. github. io/ ANTs/) 
with default settings (Avants et al. 2010, 2011). After warp-
ing each subject’s anatomical image to the in-house tem-
plate, inverse transformations into the in-house template and 
into each structural image were applied on the UNC Infant 
Atlas to successfully identify the ROIs in the original subject 
anatomical space.

EPI T2*-weighted BOLD images, acquired at rest, were 
pre-processed according to a standard pipeline (Dolgin 
2010), using AFNI (Cox 1996) and FSL (Jenkinson et al. 
2012). The pipeline included: (i) slice time and motion 
correction using the 3dTshift and 3dvolreg functions; (ii) 
marking of motion outliers with the fsl_motion_outliers tool 
using DVARS metric and default setting for the definition of 
outliers (Jenkinson et al. 2012; Pruett et al. 2015); (iii) 4D 
image scaling using fslmaths; (iv) linear and quadratic tem-
poral detrending using 3dDetrer (Churchill et al. 2012). The 
motion parameters (three translations, three rotations and 
motion outliers) were finally regressed out (without scrub-
bing) from the raw BOLD time series, employing the tool 

Table 1  Demographic and clinical information

All newborns (N = 88) GA at birth (weeks)

GA at birth (weeks), mean (SD) 33 (3.75) Association with GA at birth 25–32 (N = 46) 33–36 (N = 25) 37–40 (N = 17)

PMA at scan (weeks), mean (SD) 40 (0) – 40 (0) 40 (0) 40 (0)
Female, n (%) 43 (49) t = 0.34; p = n.s 24 (52) 12 (48) 7 (41)
Multiple gestations, n (%) 37 (42) t = 2.74; p < 0.01 22 (48) 15 (60) 0 (0)
Birth weight at birth (g), mean (SD) 1821 (693) r = 0.88; p <  10–3 1460 (328) 1938 (482) 3210 (423)
APGAR score at birth, mean (SD) 6.4 (2.0) r = 0.14; p = n.s 6.3 (2.1) 7.4 (1.4) 5.3 (2.3)
Number of fMRI volume deemed as outliers 7 (5) r = 0.04; p = n.s 7 (5) 6 (4) 7 (5)

http://stnava.github.io/ANTs/
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3dREMLfit (Bright et al. 2017). Finally, the pre-processed 
BOLD images were co-registered into anatomical images 
and inverse transformations were applied to anatomical 
images to extract the average BOLD signals (expressed as 
relative signal change with time) from each ROI identified 
in the native BOLD spaces. Of note, all registrations were 
performed using the diffeomorphic registration method and 
the mutual information metric from ANTs (Avants et al. 
2010, 2011). Registered images were visually inspected by 
an expert neuroradiologist.

Resting state functional connectivity (rsFC) matrices 
were built by evaluating pairwise associations of BOLD sig-
nals in the 90 ROIs considered also accounting for a global 
signal contribution. In particular, each normalized (z-scored) 
ROI’s BOLD timecourse was regressed on each other nor-
malized ROI’s BOLD timecourse using the normalized 
average (among the 90 ROIs) BOLD signal as an additional 
independent variable within a general linear model (GLM) 
framework (Murphy and Fox 2017). To evaluate undirected 
connections for further analysis, the average between the 
lower and the upper diagonal portions of the connectivity 
matrices was computed.

ROIs selection within the networks of interest

We selected the ROIs for a given network based on previous 
research studies and SN-DMN-VAN-DAN were extracted 

from the compete rsFC matrix. For the SN, we selected the 
insula, anterior cingulate gyrus, amygdala and thalamus, both 
left and right for each region (Menon 2011; Menon and Uddin 
2010). For the DMN, we selected the medial orbital cortex 
(as medial prefrontal cortex), the posterior cingulate gyrus, 
the pre-cuneus and the angular gyrus, both left and right for 
each region (Buckner and DiNicola 2019). For the VAN, we 
selected the medial frontal gyrus, inferior frontal gyrus, infe-
rior parietal lobule, and superior temporal gyrus bilaterally. 
We selected these regions available on the neonatal brain 
atlas in use to include the ventral frontal cortex (VFC) and the 
temporo-parietal junction (TPJ), which are both recognized as 
nodes of the VAN (Corbetta and Shulman 2002; Vossel et al. 
2014). For the DAN, we selected the supplementary motor 
area and the superior parietal gyrus bilaterally. We selected 
these regions available on the neonatal brain atlas in use to 
include the frontal eye filed (FEF) within the SMA and the 
intraparietal sulcus (IPS), which are both recognized as nodes 
of the DAN (Corbetta and Shulman 2002; Vossel et al. 2014).

Statistics

Inference of gestational age (GA) at birth

A multivariate analysis framework was implemented 
to regress GA at birth on rsFC within different networks 
(Fig. 2).

Fig. 1  Workflow of anatomical and BOLD MR images pre-processing, rsFC computation in the 90 ROIs identified based on the UNC Infant 
Atlas (Shi et al. 2011) and identification of the networks of interest. Connectivity matrices reported are from an exemplar subject
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The number of independent connections were 28 for SN, 
DMN and VAN and 6 for DAN. To account for collinearity 
among ROI connections (Huopaniemi et al. 2009) a partial 
least square (PLS) regression was used (Wold et al. 2006), 
which reduces the predictors to a smaller set of uncorre-
lated components maximally associated with the dependent 
feature/s (Abdi et al. 2013). Of note, the learning process 
(fitting) of the PLS algorithm provides regression loadings 
that can be used to retrieve the weights (β-weights) of the 
original independent variables (Bishop 2006). In order to 
optimize the hyperparameter of the PLS (number of uncor-
related components) and to concurrently evaluate the out-of-
training-sample performance of the algorithm (generaliza-
tion) a tenfold nested cross validation (nCV) was employed 
(Filzmoser et al. 2009). During the tenfold nCV, the number 
of components allowed during the hyperparameter optimiza-
tion were constrained between a minimum of 1 and a maxi-
mum of 6. The expected β-weights of the PLS were finally 
computed by running a single analysis on the complete 
dataset using the rounded average number of components 
(i.e. the optimal number) delivered by the inner loops of 
the tenfold nCV analysis. β-Weights were transformed into 
z scores by dividing them by their expected standard devia-
tion, which was computed relying on repeating the analysis 

on random shuffled outputs  106 times. As a control for pos-
sible effects of motion on the functional connectivity and 
activity results, the multivariate nCV regression was also 
performed on the variance of motion signals.

Inference of mean connectivity

The same multivariate analysis presented in the previous 
paragraph was implemented to test if each network could 
infer the average connectivity of the other three networks.

Mediation analysis

In the last set of statistical analysis, we conducted a media-
tion analysis (Mackinnon 2012) that was performed in order 
to determine whether the cross-validated inference on GA at 
birth using VAN acted as a mediator on the cross-validated 
inference on GA at birth using DAN. The rationale for the 
mediation analysis was to examine if the development of the 
VAN, assumed from the evidence of cross-validate inference 
on GA, can mediate the development of the DAN, assumed 
from the evidence of cross-validated inference on GA.

A second mediation analysis was performed in order to 
determine whether the cross-validated inference on GA at 

Fig. 2  Multivariate PLS analysis implemented to infer GA at birth 
or other networks average connectivity. The optimal number of PLS 
components, the multivariate β-weights and the inference perfor-

mances were estimated through a tenfold nested cross-validation 
scheme. Connectivity matrices reported are from an exemplar subject
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birth using DAN acted as a mediator on the cross-validated 
inference on GA at Birth using VAN.

The mediation analysis was performed using the Sobel 
test (Preacher and Leonardelli 2010).

Results

Data quality and motion artifacts

Thanks to sedation, motion artifacts were almost absent, 
therefore, only a small average number of 7 volumes per 
subject (SD of 5 volumes) was deemed as outliers by the 
algorithm (refer to Table 1) (Ciric et al. 2017). The number 
of motion outliers and the variance of the 6 motion DVARS 
signals showed no significant correlation with GA at birth 
(all r’s < 0.1, all p’s n.s.).

Inference of gestational age at birth

Figure 3 reports the results of the multivariate framework 
in inferring GA at birth relying on connectivities within dif-
ferent networks.

The SN was not able to infer GA at birth using the mul-
tivariate framework implemented (p > 0.05).

The DMN was able to significantly infer GA at birth 
(r = 0.26; df = 86, p = 0.01, 2 PLS components). By looking 

at the statistical relevance (z-score) of the β-weights, the 
strongest positive effects on the inference of GA at birth 
(larger connectivities between DMN ROIs associated with 
older GA at Birth) was found for the connectivity of the 
right medial prefrontal cortex-right pre-cuneus (ORBmed-
R-PCUN-R), left medial prefrontal cortex-right pre-cuneus 
(ORBmed-L-PCUN-L), right posterior cingulate-right 
angular gyrus (PCG-R-ANG-R), right posterior cingulate-
left angular gyrus (PCG-R-ANG-L), left posterior cingu-
late-right angular gyrus (PCG-L-ANG-R).

The VAN could infer GA at birth (r = 0.29; df = 86, 
p = 7∙10–2) with an optimal number of PLS components 
of 5. The strongest effects on the GA predictability, were 
negative effects (lower connectivities between VAN ROIs 
associated with older GA at birth) found for the left medial 
frontal gyrus-inferior parietal lobule, right medial frontal 
gyrus-left inferior parietal lobule, right inferior frontal 
gyrus and left superior temporal gyrus.

The DAN could infer GA at birth (r = 0.25; df = 86, 
p = 0.017) with an optimal number of PLS components 
of 2. The strongest effects on the GA predictability, were 
found for the left and right superior parietal lobules.

Fig. 3  Results of the multivariate framework to infer GA at birth 
based on connectivities within a salience network (SN), b default 
mode network (DMN), c ventral attention network (VAN) and d dor-
sal attention network (DMN). For each predicting network, both the 

association between the true and the inferred GA at Birth and the 
normalized (z-score) beta-weights of the multivariate analysis are 
reported
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Prediction of mean connectivity

Salience network

Results are displayed in Fig. 4a.
The SN was found to significantly infer the average con-

nectivity of the VAN (r = 0.24; df = 86, p = 0.026, 2 PLS 
components). The strongest effect on the predictability of 
the VAN’s mean connectivity, as shown on the beta-weight 
matrix, was found for the left insula-right insula connectiv-
ity. A negative effect was found for the right insula-right 
thalamus connectivity.

The SN also inferred the average connectivity of the 
DAN (r = 0.29; df = 86, p = 6∙10–3, 6 PLS components). The 
strongest positive effect on the predictability of the DAN’s 
mean connectivity, as shown on the beta-weight matrix, was 
found for the right anterior cingulum-right thalamus con-
nectivity; the strongest negative effect was found for the left 
anterior cingulum-left thalamus connectivity).

All the regions of the SN did not predict the average con-
nectivity of the DMN (p > 0.05).

Default mode network

Results are displayed in Fig. 4b.
The DMN was found to significantly infer the aver-

age connectivity of the SN (r = 0.29; df = 86, p = 7∙10–3, 
6 PLS components). The strongest effects on the predict-
ability of the SN’s mean connectivity, as shown on the 
beta-weight matrix, were negative effects found in the left 

angular gyrus-right pre-cuneus and right angular gyrus-left 
pre-cuneus.

DMN connections did not correctly infer the average con-
nectivity of the VAN (p > 0.05).

The DMN was found to strongly infer the average con-
nectivity of the DAN (r = 0.48; p <  10–3, 4 PLS components). 
The strongest positive effects on the predictability of the 
DAN’s mean connectivity were found for the left and right 
angular gyri. The strongest negative effects were found for 
the left posterior cingulate gyrus—left prefrontal cortex and 
in the right posterior cingulate gyrus—right pre-cuneus.

Ventral attention network

Results are displayed in Fig. 5a.
The VAN was found to significantly infer the average con-

nectivity of the SN (r = 0.34; df = 86, p =  10–3, 1 PLS compo-
nent). The strongest positive effects on the predictability of 
the SN’s mean connectivity were found for the connectivity 
of the medial frontal gyrus with the inferior parietal lobule 
of the contralateral side, bilaterally.

The VAN was found to significantly infer the average con-
nectivity of the DMN (r = 0.22; df = 86, p = 0.044, 2 PLS 
components). The strongest positive effect on the predict-
ability of the DMN’s mean connectivity was found for the 
connectivity of the right inferior frontal gyrus with the right 
inferior parietal lobule.

The VAN strongly inferred the average connectivity of 
the DAN (r = 0.47; p = 4.8∙10–6, 1 PLS component). The 
strongest positive effect on the predictability of the DAN’s 

Fig. 4  Results of the multivariate framework to other network based on connectivities within different networks
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mean connectivity was found for the connectivity of the 
left and right inferior parietal lobule. The strongest nega-
tive effect was found for the connectivity of the left inferior 
frontal gyrus and left inferior parietal lobule.

Dorsal attention network

Results are displayed in Fig. 5b.
The DAN did not predict the average connectivity of 

the SN (p > 0.05) of the DMN (p > 0.05) and of the VAN 
(p > 0.05).

Mediation analysis

Figure 6 reports the outcome of the mediation analyses.

The mediation analysis between VAN’s and DAN’s 
inference on GA at birth found that VAN’s connectivity 
significantly modify the transmittance of change of the 
DAN’s connectivity assumed form evidence of cross-
validated inference on GA at birth (VAN mediates DAN: 
Sobel Test t = 1.969, p = 0.048).

The mediation analysis between DAN’s and VAN’s 
inference on GA at birth found that DAN’s connectivity 
significantly modify the transmittance of change of the 
VAN’s connectivity assumed form evidence of cross-
validated inference on GA at birth (DAN mediates VAN: 
Sobel Test t = 1.910. p = 0.049).

Fig. 5  Results of the multivariate framework to infer average connectivities of another network based on a ventral attention network (VAN), b 
dorsal attention network (DAN)

Fig. 6  Mediation analyses. a 
VAN mediating the relation 
between GA at birth and DAN; 
b DAN mediating the relation 
between GA at birth and VAN
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Discussion

Summary of findings

SN connectivity was found unable to infer the GA at birth. 
The VAN, DAN and the DMN inferred the GA at birth. 
The SN was able to infer the average connectivity of the 
VAN and DAN, but not that of the DMN. The DMN was 
able to infer the average connectivity of the SN and of the 
DAN, but not that of the VAN. The VAN was able to infer 
the average connectivity of all the other networks with the 
highest statistical significance in predicting the connectiv-
ity of the SN and of the DAN. The DAN was not able to 
predict the average connectivity of all the other networks. 
The mediation analysis showed that VAN’s connectivity 
significantly modify the transmittance of change of the 
DAN’s connectivity, as assumed from evidence of cross-
validated inference on GA. Mediation analysis also showed 
that DAN’s connectivity significantly modify the transmit-
tance of change of the VAN’s connectivity, assumed from 
evidence of cross-validated inference on GA.

Inference of GA at birth

SN connectivity was found unable to infer the GA at birth. 
The SN is a large scale network of the heteromodal cor-
tex involved in detecting and filtering salient stimuli, thus 
playing the role of “reality filter”. A major function of 
the anterior insula (AI) node of the SN is the detection of 
behaviorally relevant stimuli (Crottaz-Herbette and Menon 
2006; Eckert et al. 2009; Sridharan et al. 2008; Sterzer and 
Kleinschmidt 2010), while the anterior cingulate cortex 
(ACC) send strong motor output. The insula is the first 
cortical structure to differentiate beginning 6 weeks after 
conception and going under a complex process of matura-
tion between the 13th and the 28th week of gestation, thus 
providing the structural basis for its hub role even before 
term. These findings may suggest that because the insula 
development starts early in fetal life, its connectivity, 
under the influence of early external stimulation, matures 
faster and earlier than other networks (Afif et al. 2007). 
The connectivity of the SN after birth might, therefore, 
be found at a stage that is too late to infer the GA at birth. 
In other words, the functional connectivity of the insula 
after birth might be too mature to variate accordingly with 
the gestational age.

The VAN and the DAN were found to significantly infer 
the GA at birth. The VAN and the DAN are known to 
play a complementary role in the complex mechanism of 
attention. Attention is a complex function that requires 

top-down sensitivity control and a bottom-up mechanism 
for filtering stimuli (Parr and Friston 2017). The bottom-up 
mechanism for filtering stimuli involved in the detection is 
attributed to the VAN (Corbetta and Shulman 2002; Vossel 
et al. 2014). The top-down mechanism (a process that reg-
ulates the relative signal strengths of the different informa-
tion channels that compete for access to working memory) 
(Egeth and Yantis 1997) is attributed to the DAN. The 
VAN is composed of the temporoparietal junction (TPJ) 
and the ventral frontal cortex (VFC) and is thought to be 
lateralized to the right hemisphere of the brain (Corbetta 
and Shulman 2002; Corbetta et al. 2008). Our study found 
that the strongest effects of VAN predictability on the GA 
were negative effects (anti-correlation), which were found 
for the left medial frontal gyrus-inferior parietal lobule. 
A possible explanation might be that the VAN goes under 
early lateralization during infancy, which may account for 
the anti-correlation found in the left hemisphere. The pro-
cess of lateralization might be still incomplete in early life 
(Vossel et al. 2014) and might, therefore, be able to reflect 
the degree of brain development. The DAN is a bilateral 
network comprising the intraparietal sulcus (IPS) and the 
frontal eye fields (FEF) of each hemisphere involved in 
top-down voluntary allocation of goal-driven attention. 
We found that the strongest effects of the DAN predict-
ability on the GA were the left and right superior parietal 
lobules, this finding is coherent with the bilateralism of 
the network. The predictability of both the VAN and the 
DAN on the GA, supports the evidence by which the VAN 
operates with the dorsal attention network (DAN) forming 
a twofold largely interconnected attentional control system 
(Corbetta and Shulman 2002; Corbetta et al. 2008; Vossel 
et al. 2014).

The DMN was found to significantly infer the GA at 
birth. The DMN, a  large-scale brain network  primar-
ily composed of the medial prefrontal cortex, posterior 
cingulate cortex/pre-cuneus and angular gyrus (Raichle 
2015; Buckner et al. 2008), identified with the stream 
of self-referential thoughts, the so-called “resting state” 
(Andrews-Hanna et al. 2010; Raichle 2015). The mental 
state of stimulus-independent thoughts counteracts atten-
tion. This finding is supported by the evidence that the 
DMN is anticorrelated with the DAN (Fair et al. 2007). 
We found that the strongest effects of the DMN on the GA 
predictability was for the connectivity of the right medial 
prefrontal cortex-right pre-cuneus. These findings are in 
line with previous studies showing that the DMN is pre-
sent, even if in a fragmented, immature form, even before 
term (Doria et al. 2010). More specifically, the cortical 
hubs in infants seem to be less present in the prefrontal 
cortex and in the pre-cuneus than in adults. The connectiv-
ity of these cortical hubs might therefore reflect the GA.
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Machine learning and prediction of brain maturity

A number of studies have applied machine learning to pre-
dict brain maturity in pre-term infants and infants born at 
term. In a recent study by Chiarelli et al. (2021), the authors 
examined the effect of prematurity on measures of rs-FC, 
resting state functional connectivity nodal strength (rs-
FCNS), fractional amplitude of low frequency fluctuations 
(fALFF) and regional volume in 90 ROIs, covering the 
whole brain, by performing region-based univariate analysis 
of each metric, to explore the association with GA at birth 
and the spatial consistency across metrics. The study con-
firms that prematurity is associated with a complex pattern 
of bidirectional alterations of regional functional connectiv-
ity brain volume and, and to a lesser extent, with modifica-
tions of fALFF. For rsFC, the results did not suggest strong 
focal effects and no ROI was significantly correlated with 
GA at birth after multiple comparison correction. We ana-
lyzed the same dataset of the recent study from Chiarelli 
et al. (2021), however, the goal of our study was different. 
Although we adopted the same Machine Learning multi-
variate data-driven framework using partial least square 
regression (PLS), which allows us to consider all the con-
nections within the predicting network at once, as opposed 
to Chiarelli’s study, we based our assumptions on an a-priori 
hypothesis based on the interaction of pre-selected networks. 
Moreover, Chiarelli’s analyses were selectively conducted 
on positive rsFC correlations whereas in our study VAN’s 
strongest prediction on GA were negative effects.

Smyser et al. (2016) have applied a SVM—multivariate 
pattern analysis (MVPA) classification method and SVR 
(SVM regression) to infants’ rs-fMRI data and developed 
a model to estimate an infant’s GA at birth based upon rs-
fMRI data collected at term equivalent PMA. Performing 
RSN-specific analyses revealed that higher order RSNs, such 
as DMN, cingulo-opercular, DAN and SN, contributed to 
successful categorization of pre-term infants and infants 
born at term. These findings are partially in line with our 
results since, in our study, the SN was not able to predict 
the GA. A possible explanation might be study subjects 
included very pre-term infants (23–28 weeks). We hypoth-
esize that, since before the 28th week, the maturation of the 
insula is not completed, it might be capable of predicting 
brain maturity.

Ball et al. have combined high dimensional independent 
component analysis (ICA), representing the FC data into 
functional nodes and networks the with machine learning 
techniques to test the hypothesis that preterm birth results 
in specific alterations to FC. Although Ball did not divide 
the edges into networks, it is possible to compare Ball’s 
edges to the statistical relevance of beta-weights on the 
inference of GA at birth. Interestingly, Ball’s discrimina-
tory edges comprehend the connections between the insula 

and anterior cingular region. However, Ball’s edges do not 
contain the connection between the right prefrontal cortex 
and the pre-cuneus (left and right), the connection between 
the left medial prefrontal gyrus and left inferior parietal 
lobule and the connection between the left and right supe-
rior parietal lobules, representing the connections with the 
strongest effect on the inference on GA at birth, respectively, 
for the DMN, the VAN and DAN in our study. One possible 
explanation might be the inclusion of very pre-term infants 
(24–28 weeks) in Ball’s cohort of patients. A second expla-
nation might be that, using multiple iterations to select the 
discriminative edges in the network model, may induce the 
selection of isolated connections, which, within the archi-
tecture of a network, may instead show different effects on 
the inference of GA at birth. Representing brain connections 
through networks’ architecture might better reflect the actual 
brain’s connectivity structure (Rosenthal et al. 2018).

By adopting the SVM method, Pruett et al. (2015) were 
able to classify, above chance, 6- versus 12-month-old 
infants on FC data. The selection of functionally defined 
seeds enabled the identification of the cingulo-opercular, 
dorsal attention, fronto-parietal and salience network for 
6- vs. 12-month old classification, thus proving that higher 
order networks are able to discriminate infants age during 
the first year of life. The SN might be able to discriminate 
between 6 and 12 month following the rapid development of 
the other structure other than the insula composing the SN 
(Gilmore et al. 2018).

Shang et al. adopted automated machine learning pipe-
lines on gray matter volume and amplitude of low-frequency 
fluctuation (ALIFF) data to characterize multivariate brain 
patterns that separated full-term born from very preterm 
born adult subjects. Interestingly, the decrease of ALIFF in 
the right insula was able to discriminate between adults born 
at-term and adults born very pre-term, suggesting that, for 
very preterm infants, the insula might not have completed its 
process of maturation. The study highlights how the altera-
tion of functional connectivity in preterm infants may persist 
through adulthood (Schafer et al. 2009).

Inference of average connectivity

The SN connections were found to significantly infer the 
average connectivity of the VAN (p = 0.026). Interestingly, 
also the VAN was found to strongly infer the mean func-
tional connectivity of the SN (p =  10–3). These findings seem 
to be in agreement with previous studies showing that the 
function of the VAN overlaps with that of the SN in salience 
detection (Dosenbach et al. 2008; Uddin 2015; Farrant and 
Uddin 2015). Uddin and Farrant proposed that the VAN and 
the SN have overlapping nodes in the region surrounding 
the VFC and anterior insula. They also speculated that in 
children, these two networks may be less segregated than 
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in adults, and that bottom-up salience processes and atten-
tion to environmental stimuli may be over-represented in the 
child’s brain (Farrant and Uddin 2015). The SN connections 
inferred the average connectivity of the DAN (p = 6∙10–3). 
A possible explanation to this finding is that the overlap-
ping nodes between SN and VAN (Farrant and Uddin 2015) 
are part of the twofold, interconnected, attentional system 
composed by VAN and DAN, therefore the SN may infer 
DAN’s connectivity.

The SN did not infer the average connectivity of the DMN 
(p > 0.05). The DMN, on the contrary, was found to signifi-
cantly infer the average connectivity of the SN (p = 7∙10–3). 
This finding seems to oppose to the role of the SN in modu-
lating the background activity of the DMN to elicit detec-
tion of salient stimuli and facilitate goal-directed behavior. 
However, since the function of the CEN is likely reduced in 
infancy (Gao et al. 2015), this finding might also indicate 
that the SN function in switching attention to goal-directed 
behavior matures with the development of the executive 
functions (Teffer and Semendeferi 2012). The VAN was 
found to significantly infer the average connectivity of the 
DMN (p = 0.044). This finding may suggest an interaction 
of the two networks during the development of cognitive 
and attention skills, unexplored by previous studies, with a 
functional interplay between the bottom-up attention system 
of the VAN and internally oriented processing attributed to 
the DMN (Kim 2010).

The VAN was able to strongly infer the average con-
nectivity of the DAN (p = 4.8∙10–6). On the contrary, the 
DAN did not infer the average connectivity of any of the 
other networks, suggesting that it might be too early for the 
DAN to properly interact with other networks. A number of 
studies have shown that VAN and DAN are in competition 
during visual and verbal tasks (Anticevic et al. 2010; Todd 
et al. 2015; Matsuyoshi et al. 2010; Majerus et al. 2012) and 
that the higher the load of the task, the higher the activation 
of the DAN and the higher the deactivation of the VAN. 
Nevertheless, there is consistent evidence showing that 
VAN and DAN are specialized networks that work together, 
promoting a flexible attentional system in which top-down 
and bottom-up processing cannot be uniquely attributed to 
one single system in isolation (Shulman et al. 2003, 2007; 
DiQuattro and Geng 2011; Vossel et al. 2014). Our findings 
lead us to hypothesize a conjoint development of the VAN 
and DAN with a prominent role of the VAN and, therefore, 
the bottom-up attention system during fetal life and early 
infancy. The two networks form an immature twofold atten-
tion system that matures with the growing ability of the top-
down attention system to counteract the bottom-up system. 
Our hypothesis is further supported by a recent study by 
Suo et al. (2021), underpinning the stable and reliable ana-
tomical connections of the DAN and the VAN via functional 
connectors, demonstrating that the functional interaction of 

the VAN and the DAN is supported by a solid anatomical 
structure.

Mediation analysis

The mediation analysis of the VAN’s inference over the 
DAN, found that VAN’s connectivity significantly modify 
the transmittance of change of the DAN’s connectivity with 
GA at birth, assumed from evidence of cross-validated 
inference on GA at birth (VAN mediates DAN: Sobel Test 
t = 2.14, p = 0.032). A specular analysis of the DAN’s infer-
ence over the VAN found that DAN’s connectivity signifi-
cantly modify the transmittance of change on the VAN’s 
connectivity with GA at birth, assumed from evidence of 
cross-validated inference on GA at birth (DAN mediates 
VAN: Sobel Test t = 1.969, p = 0.048). This finding further 
supports the theory of a twofold, largely interconnected 
attentional control system (Corbetta and Shulman 2002; 
Corbetta et al. 2008; Vossel et al. 2014) and suggests that 
the bottom-up and top-down attention systems affect the 
development of each other. We hypothesize that maturation 
is crucial for the development of attention networks and 
prematurity may, therefore, substantially affect their archi-
tecture and function (Posner and Rothbart 2012; Nie et al. 
2013; Wolf and Pfeiffer 2014; Wen et al. 2019).

Strengths and limitations

This is the first study performed on a cohort of neonates to 
show that the VAN may influence the connectivity of the 
SN, the DMN and the DAN. Interestingly, the SN influenced 
the VAN and the DAN, but not the DMN. We believe our 
findings suggest a prominent role of the VAN in the bottom-
up salience detection in early infancy and that the VAN and 
the SN may overlap in their roles of bottom-up control of 
attention. Although a small number of studies have adopted 
machine learning methods to assess if FC metrics were able 
to predict the GA at birth, this is the first study to focus on a 
small group of networks of higher order. The evidence that 
the SN is not able to predict GA at birth, as opposed to the 
other higher order networks we analyzed, is a novel finding 
that we thought to be the result of the early development of 
the insula, which goes under a complex process of matura-
tion between the 13th and the 28th week of gestation (Afif 
et al. 2007). Such an early pattern of maturation would be 
less impaired by the effect of prematurity.

Our studies has some limitations. First, the atlas we 
used to select the seed regions for each network only iden-
tifies coarse regions. However, this limitation is provided 
by the absence of efficient brain anatomy segmentation 
tool in newborns. Second, the number of subjects was not 
very large considering that we studied four different net-
works using a multivariate analysis framework. A short 
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BOLD acquisition time (4 min), driven by the limited time 
available for conducting a relatively non-clinical evalua-
tion in a clinical environment. To reduce motion artifacts 
and maximize the efficacy of the standard clinical evalua-
tion, newborns were also mildly sedated using Midazolam. 
Although Midazolam might have altered brain activity 
and hemodynamics, an effect of Midazolam should be 
observed in all subjects and should, therefore, not affect 
regression analyses that exploit subject-specific altera-
tions. Another limitation of the present retrospective study 
is the minimally essential clinical information available. 
A limitation of the statistical analysis is that the results of 
the mediation analysis are uncorrected. Although infants 
with evident alterations at standard radiological assess-
ment were excluded from the analysis and no relationship 
was found between the main available clinical variable, the 
APGAR score soon after birth, and the extent of prematu-
rity, the presence of subtle clinical confounders cannot be 
definitely ruled out.

Future studies should replicate the present study with a 
larger cohort of patient with larger sets of clinical data avail-
able. Moreover, longer acquisition time should be taken into 
consideration together with a no sedation approach. Manual 
segmentations of ROI should be also performed for a more 
precise delineation of brain regions in neonates.

Conclusions

This is the first study performed with a cohort of neonates 
with a multivariate data-driven framework (i.e. machine 
learning framework) to suggest a prominent role of the VAN 
in the bottom-up salience detection in early infancy and that 
the VAN and the SN may overlap in their roles of bottom-up 
control of attention. We also found reciprocal influence of 
VAN and DAN on the development of each other network.

The SN was the only network in our analysis unable to 
infer the gestational age at birth.

This finding may indicate that the stage of maturation 
of the SN at birth might be too advanced to infer the GA.
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