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Syncope, a form of transient loss of consciousness, remains a complex medical condition for which adverse cardiovascular

outcomes, including death, are of major concern but rarely occur. Current risk stratification algorithms have not

completely delineated which patients benefit from hospitalization and specific interventions. Patients are often admitted

unnecessarily and at high cost. Artificial intelligence (AI) and machine learning may help define the transient loss of

consciousness event, diagnose the cause, assess short- and long-term risks, predict recurrence, and determine need for

hospitalization and therapeutic intervention; however, several challenges remain, including medicolegal and ethical

concerns. This collaborative statement, from a multidisciplinary group of clinicians, investigators, and scientists, focuses

on the potential role of AI in syncope management with a goal to inspire creation of AI-derived clinical decision support

tools that may improve patient outcomes, streamline diagnostics, and reduce health-care costs.

(JACC Adv 2023;2:100323) © 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology

Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SYNCOPE: THE CHALLENGE

Syncope, a form of transient loss of consciousness
(TLOC) followed by rapid, complete recovery,1 re-
mains a consequential medical problem.2 Current
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guidelines1,3 stress the importance of distinguishing
syncope from other forms of TLOC and altered states
of consciousness including head trauma, seizures,
drug overdoses, and psychogenic or metabolic causes
(Figure 1). Once syncope is suspected, identifying the
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HIGHLIGHTS

� Syncope remains a complex, difficult to
manage condition associated with
adverse cardiovascular outcomes.

� Artificial intelligence may assist in diag-
nosis, risk stratification, and management
decisions, yet challenges remain.

� Prospective, multicenter, and multidisci-
plinary datasets could serve as the ideal
machine learning platform.

� Further studies should compare machine
learning approaches to existing risk
stratification tools and clinical judgment.

ABBR EV I A T I ON S

AND ACRONYMS

ACC = American College of

Cardiology

AHA = American Heart

Association

AI = Artificial Intelligence

ANN = Artificial Neural

Network

ED = Emergency Department

EMR = Electronic Medical

Record

ESC = European Society of

Cardiology

IIAI = Iowa Initiative for

Artificial Intelligence

ML = Machine Learning

NLP = Natural Language

Processing

TLOC = Transient Loss of

Consciousness
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mechanism and cause are crucial for further
management. However, reliance on history,
physical examination, and clinical acumen
may not be enough.1,4 The history from pa-
tient recollection and observations from
witnesses, if present, may be difficult to
interpret.5

A spectrum of causal and associated con-
ditions, ranging from benign vasovagal faints
to life-threatening arrhythmias and other
cardiopulmonary conditions, further
complicate assessment. Up to 10% of patients
presenting to the emergency department
(ED) with syncope will have serious out-
comes over the short-term; identifying that
high-risk population remains a primary
focus.3 Age is a nonspecific discriminator.
Older individuals may simply be at risk from
concomitant, unrelated, and life-threatening
conditions even if syncope itself is benign.
Occasional younger individuals are at a
continued risk of life-threatening collapse.6 ED phy-
sicians, therefore, face substantial dilemmas in risk
stratification and triage,6,7 particularly for those at
“intermediate risk.”1,3

Syncope risk scores were developed to help pro-
vide a uniform methodology to help risk stratify pa-
tients with syncope. The syncope risk calculators that
have been developed (Supplemental Appendix) are
not clearly better than good clinical assessment.8

These tools have not definitively improved guidance
in predicting short- and intermediate-term risk
(Figure 2) of serious outcomes. Further, these
risk scores are not designed to determine diagnosis,
risk of recurrence, or benefit of hospitalization.
Indeed, these decision rules predict outcomes based
on comorbidities rather than syncope itself. American
and European guidelines give Class IIb recommen-
dations for these tools.1,3

Designated ‘syncope units’ expedite diagnoses,
reduce admissions, and improve outcomes.9 Howev-
er, regional and international differences in re-
sources, training of personnel, and health-care
delivery systems remain barriers.9,10 Their utility is
dependent upon a clinician who is expert in syncope
management.

Current diagnostic and risk assessment strategies
remain variable and imprecise. Despite technological
advances, including novel ambulatory electrocardi-
ography (ECG) monitoring strategies, establishing a
definitive diagnosis in patients with syncope remains
largely dependent on collecting a careful patient
history (highly variable among physicians), but this is
low yield, and many patients remain undiagnosed.
Over many decades management has not changed
significantly.

Artificial intelligence (AI) and machine learning
(ML) may help address some of these issues (Table 1).
Preliminary AI-based risk stratification and diagnostic
methods are encouraging,11 and include predicting
short-term adverse events12,13 and hospitaliza-
tion,14,15 diagnosing vasovagal syncope,16,17 differen-
tiating syncope from other forms of TLOC,18 assisting
in ECG interpretation,19 interpreting ambulatory ECG
monitors and implantable loop recorders,19 and
reviewing records via natural language processing
(NLP).20 However, the ultimate role for AI in syncope
management remains undeveloped. Potential AI so-
lutions could assist with integrating multiple data
inputs, discover unusual associations between risks
and diseases, improve diagnostic capabilities, fore-
cast prognoses, predict treatments, and standardize
syncope care.

The goal of this review is to focus on the potential
application of AI to improve syncope management,
including fundamental AI and ML concepts, potential
clinical endpoints, usable datasets, challenges,
and solutions. Major themes for future AI syncope
projects are listed in Table 2.

UNDERSTANDING AI AND ML

AI is revolutionizing health care.21-23 AI in some
ways is capable of mimicking human cognitive func-
tion. ML, a subset of AI, uses input data to train

https://doi.org/10.1016/j.jacadv.2023.100323


FIGURE 1 Syncope in the Context of Transient Loss of Consciousness

Adapted from the 2018 European Society of Cardiology Guidelines for the Diagnosis and Management of Syncope.3 TIA ¼ transient ischemic

attack; TLOC ¼ transient loss of consciousness.
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decision-making models that improve through expe-
rience24,25 and excel when applied to large data
sets.26 An introduction to AI begins with a glossary of
ML terms (Table 3).
FIGURE 2 Short- and Long-Term Risk Factors in Syncope Patients

Short-Term Risk Factors (≤30 days) 

History: Outpatient clinic or Emergency Department evalu
Male sex 

Older age (>60 years) 

No prodrome 

Palpitations preceding loss of consciousness 

Exertional syncope 

Structural heart disease 

Heart failure 

Cerebrovascular disease 

Family history of sudden cardiac death 

Trauma 

Physical examination or laboratory investigation 
Evidence of bleeding 

Persistent abnormal vital signs 

Abnormal electrocardiogram 

Positive troponin  

Adapted from the 2017 ACC/AHA/HRS Guideline for the Evaluation and
The type of ML most relevant to health care pres-
ently is “supervised learning” where correct answers
are provided by a “teacher” supervising the learning
process, analogous to teaching a child to recognize
Long-Term Risk Factors (>30 days)

ation 
Male sex 

Older age 

Absence of nausea/vomiting preceding syncopal event 

Ventricular arrhythmias 

Cancer 

Structural heart disease 

Heart failure 

Cerebrovascular disease 

Diabetes mellitus 

High CHADS-2 score (congestive heart failure, hypertension, 

age ≥75 years, diabetes mellitus, stroke or transient ischemic attack)

Abnormal electrocardiogram 

Lower glomerular filtration rate 

Management of Patients with Syncope.1



TABLE 1 How AI Could Improve Syncope Management

Purpose Clinical Question

Define the event Is it syncope or another cause of TLOC?

Diagnose the underlying etiology What is the cause of syncope?

Risk stratification Is the patient at risk of short- and long-term
adverse outcomes?

Predict recurrent events How likely is the patient to have syncope
again?

Extract clinical info from ECG findings Does the ECG indicate a cause for syncope?

Determine appropriate ED disposition Hospitalization or discharge?

Assess the need for immediate interventions Acute treatment or chronic assessment?

Evaluate the need for diagnostic tools Is TTE, cardiac catheterization, or telemetry
needed?

Determine long-term management strategies What is the optimal treatment and follow-
up?

The key objectives and clinical questions that potentially could be addressed with AI. Examples of short- and
long-term adverse outcomes are described in Table 4.

AI ¼ artificial intelligence; ECG ¼ electrocardiogram; ED ¼ emergency department; TLOC ¼ transient loss of
consciousness; TTE ¼ transthoracic echocardiography.
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common street vehicles (Figure 3). This requires a
training set of objects which consists of “features” or
descriptors, as well as “classification labels” or an-
swers. For example, 2 wheels ¼ motorcycle, 4
wheels ¼ car. The learning process is iterative with
the objective being to teach the ML algorithm or
“classifier” to maximize the number of correct de-
cisions while minimizing incorrect ones. Once the
classifier is effectively trained on a “training dataset,”
its performance and generalizability is assessed on a
“testing dataset” of never-before-seen data samples.
A common problem in supervised ML is “over-
fitting,”27 when the algorithm is too specific for the
training dataset and cannot be applied to a testing
dataset. For example, if the training dataset is too
small and all cars happened to be red, it may not
accurately label cars of different colors.

If classification labels are not defined to guide the
learning process, then “unsupervised learning” can
be considered. In unsupervised learning, ML groups
data samples into clusters based on a predefined
TABLE 2 Major Themes in Developing Future AI-Based Syncope Proje

AI could assist clinicians in separating true syncope from other forms of TL

For true syncope cases, AI could assist in diagnosing the underlying etiolog

AI may help identify patient characteristics and comorbidities that affect sh
sudden death, total mortality, AND rehospitalization).

Accurate features (ie, input variables) and labels (ie, output variables) are n

A global, multicenter, and multidisciplinary approach is needed, and a pros
inconsistent and imperfect from a ML perspective.

AI is a promising, wide-reaching clinical tool, but expectations for its ability
must be delineated.

This table summarizes the key themes in this review article.

AI ¼ artificial intelligence; ML ¼ machine learning; TLOC ¼ transient loss of consciou
similarity score. Several models exist for such an
approach, with algorithm choice dependent on the
use.28,29 Traditional applications of unsupervised
learning models are dimensionality reduction, asso-
ciation rule mining, and cluster analysis.28,29 Cluster
analysis has been used across medical disciplines for
several decades.30-33 Clusters, however, do not have
classification labels since that information is not
available during the learning process. Thus, clusters
can be created, but understanding the meaning can
be a complex process pertaining to 2 main questions:
1) how many clusters should be used; and 2) is there
real-world relevance behind the formed clusters?
Mathematical formulations such as the elbow method
can determine the best number of clusters,34 but for
real-world relevance and cluster significance, addi-
tional descriptive, quantitative, and more advanced
statistical approaches may be needed.29,35,36 Popular
algorithms, such as K-means clustering and hierar-
chical clustering can be used to perform neuroimage
segmentation,33 find similarities among breast cancer
patients,37 and phenotype pediatric patients with in-
flammatory bowel disease.35 For syncope patients,
unsupervised learning may yield insights such as
identifying new patient clusters with novel risk fac-
tors or similar responses to treatments, particularly
because the correct label may not be known
definitively.

Despite the practicality and effectiveness of tradi-
tional ML algorithms, “deep learning” receives
widespread attention. Deep learning neural networks
are characterized by a structure of interconnected
layers inspired by the wiring of the human brain.26

Their ability to learn often exceeds that of other ML
approaches, but they are not free of limitations,
including reliance on large training sets, sensitivity to
training set composition, and “black box” character-
istics that escape human understanding. The inability
for one to understand how the computer arrives at a
solution (ie, the black box) forces the clinician to
cts

OC.

y and differentiating benign from life-threatening causes.

ort- and long-term outcomes (eg, 30-d mortality, recurrent episodes,

ecessary for supervised ML.

pective dataset is ideal. Existing retrospective health-care datasets are

to facilitate assessment, triage, and management of syncope patients

sness.



TABLE 3 Glossary of Machine Learning Terms

Artificial Intelligence (AI) Intelligence demonstrated by a nonhuman program capable of solving complex tasks.

Artificial neural network (ANN) A type of DL model which contains an input, output, and any number of hidden layers.

Black box modelsa ML models that are complex, highly non-linear, and whose inner workings are not easily interpretable (e.g., DL models). Relationships
between inputs and outputs cannot be explained. These models are usually more accurate than white box models, but their lack of
explainability and risk of overfitting or spurious correlations are disadvantageous.

Classification model Supervised ML method which uses features (ie, input data) to predict (or classify) labels. Subtypes include binary and multi-class
classification.

Class imbalance When a dataset has a disproportionate number of labels within a classification problem.

Cluster analysis Unsupervised ML method that maps similar data samples into groups. Their significance is then defined by a human observer.

Deep learning (DL) A subset of ML that uses a neural network containing multiple interconnected layers intended to mimic the wiring of the human brain.26

Ensemble learning When multiple independent ML models are combined to create averaged predictions, which frequently perform better than single ML
methods in isolation.

Features Input variables to a ML model.

Feature importance ranking A ML tool used to identify the relative influence each feature has on the chosen outcome.

Labels Output variables from a ML model.

Machine learning (ML) A subset of AI defined as a program that uses a predefined process to learn structures and patterns in data without human involvement.

Natural language processing (NLP) ML method of interpreting typed or spoken language and extrapolating its meaning.

Overfitting When a ML model becomes overtrained on one set of data and is not generalizable to another set.

Regression model ML method that predicts a continuous outcome value. Common subtypes include linear and logistic regression, though DL can be used.

Supervised machine learning Training a model using labeled data, analogous to learning from a teacher who provides the questions and correct answers.

Training, validation, and testing
datasets

Partitioned subsets of a dataset that are separately used to train the model, validate its predictive ability, and then test its generalizability
to unseen data.

Unsupervised machine learning Training a model to uncover patterns and structures in an unlabeled dataset. A common example is cluster analysis.

Upsampling A ML training tool that addresses class imbalance by expanding the more infrequent class to provide the ML model a more even number
of examples to learn from. “Downsampling” of the more frequent class may also be used in a similar fashion.

White box modelsa ML models that easily demonstrate how they produce predictions and which input features are influential (eg, linear regression, decision
trees). However, they are often less accurate than black box models because they assume linear relationships between inputs and
outputs, which is rarely true in reality.

Definitions of common ML concepts, adapted from those listed in the Google Developers Machine Learning Education Glossary.24 Portions of this page are modifications based on work created and shared by
Google and used according to terms described in the Creative Commons 4.0 Attribution License. aThese terms were defined by A.R.M., AI expert author.

AI ¼ artificial intelligence; ANN ¼ artificial neural network; DL ¼ deep learning; ML ¼ machine learning; NLP ¼ natural language processing.
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accept results on blind faith. This can lead to over-
confidence and overreliance on the computer algo-
rithm, and erroneous conclusions with clinically
significant ramifications. Ultimately, the clinician
must decide whether the computer output is
reasonable and safe. Just as the clinician may order a
laboratory test that yields an incorrect result, the
output from an ML algorithm may also be in error. In
both cases, the clinician must make the final call and
cannot trust the results blindly. This is also why AI-
based clinical research must be externally validated
with randomized control trials prior to widespread
application.

CLINICAL ENDPOINTS FOR ML

Training supervised ML programs require large data-
sets containing accurate features (ie, inputs) and la-
bels (ie, outputs), so that correct learning can occur.
In health care, ML programs may receive patient-
specific features (eg, symptoms, vital signs, and test
results) and associate these with certain labels (eg,
diagnoses, treatments, and adverse events). These
features and their associated labels can be compiled
into database format, which can then be divided and
used in training, validation, and testing stages. For
syncope, it is paramount to identify which clinical
questions ML can answer. These could be diagnostic
(what caused syncope?), prognostic (what subsequent
adverse event occurred?), or management related
(did triage, testing, or treatment affect outcome?).
Table 1 lists proposed clinical endpoints (eg, event
definition, diagnosis, risk assessment, and ED dispo-
sition) that, if better predicted by a ML model, could
improve patient care.

A ML model that predicts which TLOC patients had
syncope could be helpful. The ambiguous nature of
their presentations (especially in elderly patients)
and uncertainty of their diagnoses make it difficult to
gather the correct labels required for ML. The absence



FIGURE 3 Steps Involved in Supervised Machine Learning

(Top row) A supervised classifier is trained on different types of vehicles (eg, car, truck, and motorcycle). (Bottom row) When given a new set

of vehicles of different colors/model types, the trained classifier can assign the correct vehicle label.
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of any universal gold standard test means the diag-
nosis may never be known with certainty. Even when
the cause is known, confusion may exist regarding
the mechanism. Transient asystole can be a mani-
festation of sinus node disease or simply be a vagal
response. Further, a vagal response can be a singular
event (eg, sight of blood) or a repetitive problem (eg,
temporal lobe seizures or idiopathic). These diag-
nostic uncertainties illustrate the complexities of
TLOC and syncope, which can lead to incorrect labels
and affect the clinical application of ML.

The importance of risk stratification in syncope
patients cannot be overstated. The American College
of Cardiology (ACC)/American Heart Association
(AHA) and European Society of Cardiology (ESC)
guideline committees compiled short- (<30 days) and
long-term (>30 days) adverse events associated with
syncope1,3 (Figure 2). As opposed to diagnostic out-
comes, these adverse events are definitive, report-
able, and already recognized in risk stratification
studies (Supplemental Appendix), and therefore,
more suitable endpoints for supervised ML algo-
rithms. Table 4 summarizes endpoints derived from
previous risk stratification studies. However, it is
critical to ensure that outcomes are syncope specific.
For example, short-term adverse outcomes38 could
overlap with nonsyncopal causes of TLOC (eg,
stroke).

To simplify issues of clinical complexity, AI could
focus on one element in isolation, such as the ECG.
The ECG provides fairly objective information that
can diagnose life-threatening cardiogenic causes of
syncope. As mentioned earlier, AI-enhanced ECG
interpretation is already in early development.19,39

Focus on this objective measure could allow
improved oversight after an unreliable subjective
history. The widespread use of wearable devices can
also provide data for otherwise subjective events.40,41

ML algorithms have been applied to wearable devices
to detect generalized tonic-clonic seizures with high
sensitivity.42 ML has the advantage of analyzing large
amounts of data, a task that would otherwise be
overwhelming and time consuming.

Predicting future adverse events can help with
immediate management decisions, including
discharge strategy. After extracting key historical and
risk-defining features, physicians may err on the side
of admission in abundance of caution. While it is
crucial to avoid discharging a high-risk patient
without proper treatment, health risks and costs from
inappropriate admissions should also be considered.
Choosing the best disposition from the ED is a

https://doi.org/10.1016/j.jacadv.2023.100323


TABLE 4 Endpoints of Interest From Syncope Risk-Stratification Studies

Short-Term Risk Endpoints
(<30 d)

Long-Term Risk Endpoints
(>30 d Up to 1 y)

Clinical endpoints specific to syncope � Death
� Myocardial infarction
� Life-threatening arrhythmia
� Pulmonary embolism
� Return to ED
� Early readmission
� Falls
� Trauma
� Hemorrhage requiring transfusion of at least

2 U of packed red blood cells

� Death
� Cardiopulmonary resuscitation
� ICU admission

Procedural endpoints specific to syncope � Pacemaker or defibrillator placement
� Percutaneous coronary intervention
� Cardiopulmonary resuscitation
� Carotid artery interventions

� Pacemaker or defibrillator
placement

Clinical and procedural endpoints not specific
to syncope

� Cerebrovascular accident
� Subarachnoid hemorrhage
� Acute surgery or endoscopic intervention

� Antiarrhythmic therapy

This table summarizes the potential endpoints derived from previous risk stratification studies (Supplemental Appendix) that could serve as predictable outputs in a machine-
learning algorithm.

ED ¼ emergency department; ICU ¼ intensive care unit.
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multifaceted decision point that deserves attention in
future ML-based syncope studies.

Syncope recurrence is another important endpoint.
ML may predict who is at greatest risk for recurrence
or readmission. In addition to improving treatment
strategies and cost-conscious care, it could improve
patient counseling. While providers focus on adverse
outcomes, patients may be more concerned with
recurrence, even if the cause is benign. Compared to
other outcomes, which are difficult to extract from
electronic medical record (EMR) datasets, recurrent
syncope may be easier to account for because data on
patients returning to the ED with a diagnosis of syn-
cope are often available (assuming they present to the
same facility or network). This could also better-
predict hospital length of stay, a key metric for
health-care costs and resource allocation.

The effectiveness and applicability of the ML al-
gorithm depends on the quality of data provided as
well as the algorithm chosen. A common challenge
with clinical endpoints in syncope is a lack of reliable
classification labels (eg, inaccurate diagnosis codes,
unavailable follow-up data). However, precise
knowledge of these labels, while optimal, may not be
totally necessary. Unsupervised learning can be
considered if defined outcomes are not available; this
type of learning is only useful for identifying imagi-
native patterns through clusters or broad associa-
tions. Alternatively, multiple ML decision makers can
be employed (eg, cascading weak classifiers, boost-
ing, or ensemble approaches), which can enhance
overall performance, but this does not address
imperfect labels directly. Similarly, through
multicenter human collaboration, we can compile
many real-life patient examples and their associated
features and labels, and combine them into a
consensus dataset for uniform agreement.

USABLE DATASETS

Reliable datasets containing accurate features and
labels are ideal for ML, but current EMR databases can
be inconsistent, incomplete, or inaccurate.43 No
matter how good the clinical history and assessment,
if documentation is faulty, classification labels may
be inadequate. For example, labels may include
diagnosis codes that provide incomplete information.
Narrative information from the provider note is often
more specific and accurate, thus AI-based NLP tools
can be used to automatically extract and label ele-
ments from massive volumes of raw textual data.
Moreover, to predict adverse outcomes using ML, it is
important for the training set to have access to
follow-up data after discharge. Some patients die or
suffer adverse events that are not reported back to
the ED. Similarly, some patients may need to see
syncope specialists in the clinic and have follow-up
tests (eg, tilt table testing) to achieve a correct
diagnosis and treatment plan. Capturing this infor-
mation requires data from ED, inpatient, and outpa-
tient encounters, and is essential for correct decision
labeling.

Retrospective national datasets, which have
proven useful in epidemiologic studies, pose chal-
lenges for ML. The authors attempted to evaluate
patients through the United States National

https://doi.org/10.1016/j.jacadv.2023.100323
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Emergency Department Sample, which includes
approximately 25 million syncope patients presenting
to the ED over 10 years. This database captures
patient-specific events via International Classifica-
tion of Diseases codes. Information regarding ED
visits and subsequent inpatient stays is provided;
however, there is no information about events tran-
spiring after discharge, making it difficult to predict
any meaningful clinical outcomes. Likewise, other
large administrative databases in the United States,
though useful in many areas of medical research, are
insufficient for ML-based analysis of syncope pa-
tients. Publicly funded datasets in other countries are
beset by similar problems. Denmark, for example, has
access to 5 million patients’ data, including diagnoses
and prescriptions, but ECGs, blood pressures, and
laboratory testing are not available, providing insuf-
ficient granularity for ML. Several other datasets
show potential for data mining, such as the Medical
Information Mart for Intensive Care-IV, which con-
tains deidentified data from ED and intensive care
unit encounters.44 Other institutional data may also
be available upon request through internal
mechanisms.45

Considering the inadequacies of current retro-
spective datasets, the creation of prospective, multi-
center, and multinational datasets involving EDs,
hospitals, ambulatory clinics, and syncope units is
desirable. The clinical objectives and proposed steps
of such a collaborative AI project are outlined in the
Central Illustration. The dataset would utilize a pre-
specified, expert-adjudicated data collection process
from which precise features and labels could be
determined and verified. It would be committee-
based for agreement across continents. This could
be an ideal dataset on which to train a robust super-
vised ML algorithm. While it will be an enormous
undertaking, its creation will be necessary. Early at-
tempts are exemplified in the work of Grant et al,13

who prospectively collected multicenter cohort data
from 8,000 patients and found that ML models
matched the Canadian Syncope Risk Score in predic-
tive performance of 30-day adverse outcomes. Addi-
tional datasets of such size and granularity will be
needed to compare ML approaches with current
clinical practice.

CHOOSING A ML APPROACH

There is no universal ML method across all tasks.
Choosing an algorithm depends on various factors
such as the goal of the study (eg, supervised, unsu-
pervised), nature of the dataset (eg, linear vs non-
linear, continuous vs categorical values, degree of
incompleteness, and presence of bias), and compu-
tational or resource constraints. Specific ML tasks
must be clarified, such as binary decision problems
(eg, should a syncope patient be admitted or not?),
multi-class decision problems (eg, what is the cause
of syncope?), or regression problems (eg, what is the
patient’s calculated risk score value?). Once these
functions are established, several ML methods are
chosen, tested on a mutual dataset, and the best
performing method is selected. Alternatively, multi-
ple methods may be used jointly in an ensemble
approach, which frequently outperforms individual
ML methods.

For supervised learning, many ML methods are
available. One popular tool for ML design, SciKit
Learn,46,47 lists >100 traditional ML training
methods from which to choose. Some popular tools
for deep learning include Tensor Flow, Keras, and
Pytorch.48-50 Detailed description of ML methods is
out of scope for the current article.
CHALLENGES AND SOLUTIONS

There are several challenges to using AI in syncope
management, but solutions exist (Table 5). Some is-
sues are inherent to syncope; others are universal to
health-care datasets. Tackling these areas requires
sensible dataset construction and collaboration be-
tween clinicians and data scientists.

A critical challenge to apply supervised ML to
clinical data is data incompleteness. In addition to
insufficient feature and label collection, data may be
clinically irrelevant (eg, administrative datasets) or
constrained by the data available at a given timepoint
(eg, clinicians modify their decision-making with
arrival of new test results). The data collection pro-
cess itself is also limited by the capabilities of the
facility where it occurs. These challenges highlight
the importance of evaluating potential datasets in
terms of feature/label reliability and their suitability
for ML. Prospective approaches can ensure datasets
are tailor-fit for ML on the front-end, if large enough
cohorts can be obtained.

Defining the event or diagnosing the cause of
syncope continues to rely on a subjective history from
the patient or witness. NLP is likely to help incorpo-
rate some of this meaningful information. Dipaola
et al20 developed an NLP algorithm using chart review
and was able to locate 571 syncope patients from over
30,000 separate EMRs.

Using ML to diagnose the variety of causes for
TLOC and syncope could be made easier through
more simplified approaches, such as focusing on only



CENTRAL ILLUSTRATION Harnessing AI to Improve Syncope Management

Statz GM, et al. JACC Adv. 2023;2(3):100323.

This diagram outlines clinical objectives and proposed steps of AI-based initiatives to improve syncope management. Created with Biorender.com. AI ¼ artificial

intelligence; OH ¼ orthostatic hypotension; TLOC ¼ transient loss of consciousness; VVS ¼ vasovagal syncope.
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basic distinctions (eg, vasovagal syncope vs ortho-
static hypotension). Hussain et al16 employed a sup-
port vector machine model capable of using patient
vital signs during the head-up tilt test to diagnose
vasovagal syncope. Raphan et al17 developed a ML
approach to identify vasovagal responses in an ani-
mal model during tilt table testing. Wardrope et al18

used patient and witness questionnaires to develop
a ML model that accurately predicted the diagnosis in
86% of 249 patients known to have syncope, epilepsy,
or psychogenic nonepileptic seizures. If correct labels
can be achieved, ML techniques such as feature
importance ranking51 can assess the relative contri-
bution of patient symptoms, vital signs, or lab results
toward achieving the correct diagnosis. There are
many ML approaches used for feature importance
ranking, (eg, gain, coverage, and permutation
importance) and now deep-learning approaches are
emerging.52

Risk stratification can be assessed if follow-up data
are obtained, which depends on gathering clinical
data from both inpatient and outpatient encounters.
Because short-term syncope-specific adverse events
are rare, robust statistical inferences can only be
made from large cohorts of individuals and a suffi-
cient number of adverse events. This dispropor-
tionate outcome data, termed “class imbalance,” is
problematic for supervised ML approaches. Specific



TABLE 5 Challenges and Potential Solutions in Using AI for Syncope

Challenges Potential Solutions

Identifying syncope and its underlying cause relies on a subjective history Use natural language processing tools to mine information from unstructured data
sources (eg, clinical notes)

There is no gold standard for syncope Use prospective datasets, focus only on basic diagnostic distinctions (eg, vasovagal
syncope, orthostatic hypotension)

Electronic medical records often contain inaccurate information not suitable
for supervised ML

Identify reliable features and known correct labels that are well-documented, use
prospective datasets, and apply ML techniques (eg, ensemble approaches)

Adverse cardiovascular outcomes occur in a minority of patients, resulting in
imbalanced classification

Utilize larger datasets; apply ML techniques (eg, upsampling, downsampling)

Low-, intermediate-, and high-risk is difficult to define, personalized
outcomes must be clarified

Perform phenotypic profiling via unsupervised ML (eg, cluster analysis)

Predicting short- and long-term adverse events requires follow-up data Utilize data from EDs, hospitals, ambulatory clinics, and syncope units

Syncope is a ubiquitous clinical entity that spans multiple settings and
demographics

Develop multidisciplinary, multicenter, and international collaborations

Retrospective health-care datasets are imperfect Use expert-validated prospective datasets

AI is complex; expectations may be inaccurate Collaborate with AI experts

AI may cause medicolegal and ethical dilemmas relating to patient
autonomy, safety, and privacy

Educate physicians and beware of AI-related clinical risks; collaborate with medical
ethics experts

The main challenges and potential solutions in using AI to improve syncope management.

AI ¼ artificial intelligence; ED ¼ emergency department; ML ¼ machine learning.
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ML methods such as “upsampling” can help deal with
imbalanced data at the training level. When upsam-
pled, the more infrequent or minority class (eg, syn-
cope patients with adverse outcomes) can be
expanded to provide the ML model a more even
number of examples from both classes. Down-
sampling of the majority class can also be done.
Despite these challenges, the latest syncope AI pro-
jects exploring risk stratification are encouraging.11

Costantino et al12 used artificial neural networks
(ANNs) and prospective datasets to predict short-term
(<7-10 days) adverse events after syncope and found
them comparable, if not superior, to current risk
stratification tools, though not via direct head-to-
head comparison. Based on the same data used to
develop the Canadian Syncope Risk Score, Grant
et al13 developed 4 ML models to predict short-term
(<30 day) adverse outcomes after ED disposition
that matched the Canadian Syncope Risk Score in
performance. Prospective studies are needed to
compare ML approaches to existing risk stratification
tools and clinical judgment.

Compounding the challenges with risk assessment,
specifying the definition of low-, intermediate-, and
high-risk patients in syncope remains controversial.
While underlying cardiovascular comorbidities
augment risk, their relationship to syncope and how
syncope itself affects outcomes that are age-, gender-,
and disease-dependent. How to integrate these ob-
servations effectively into a robust, but useful, model
for all disease entities has evaded clinicians. It is
possible that unsupervised cluster analysis with
phenomapping techniques53,54 could help identify
distinct subtypes or phenotypes within the syncope
population, and unique risk or prognostic profiles
could be explored to quantify a patient’s risk of
adverse outcomes.

In addition to predicting adverse outcomes, un-
derstanding hospitalization predictions can be useful.
Falavigna et al14 used an ANN model that predicted
hospitalization with a sensitivity of 100% and speci-
ficity of 79%, which outperformed the Osservatorio
Epidemiologico sulla Sincope nel Lazio score and San
Francisco Syncope Rule score. Lee et al15 also utilized
an ANN approach to predict short (#48 hours) vs long
(>48 hours) hospital length of stay with an area under
the curve of 0.81.

Figure 4 shows proposed steps to using AI to
improve various facets of syncope management,
including the ideal data collection strategy, potential
inputs and outputs, as well as sequential stages of
ML. It is important to realize the iterative nature of
this process in which several models are serially
tested and optimized. This allows for parameter
tuning at each iteration to increase accuracy of the
validation set (while avoiding overfitting), with
eventual selection of the best model for imple-
mentation into an augmented intelligence platform.
These models must be validated prior to widespread
use, and because ML algorithms may not consider a
patient’s preference regarding treatment or workup,
they must be personalized and balanced with shared
decision-making.

Pairing human physicians with powerful AI tech-
nology to make clinical decisions may create several
medicolegal and ethical challenges. AI performs



FIGURE 4 Developing a ML Model for Syncope

Proposed steps to build a ML model for syncope. (First row) Emphasizing importance of large scale, prospective, and international datasets. (Second row) Potential

inputs (left) and outputs (right) of a ML model to address the main clinical objectives in syncope management while recognizing underlying ethical principles. (Third

row) ML pipeline showing sequential stages of a supervised ML project. (Fourth row) Descriptions of each stage in the ML pipeline. Created with Flaticon.com and

Biorender.com. TLOC ¼ transient loss of consciousness.
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without an emotional basis which limits its intelli-
gence. Moreover, ethics are not built into AI models
yet. Presently, AI could serve as ‘an aid’ to clinical
management but it would be hard to imagine that
ML-based prediction algorithms and platforms (ie,
IBM Watson) could ever supplant human judgment,
especially when it comes to making complex clinical
decisions. Collaboration between AI experts and hu-
man doctors could foster an optimal approach to pa-
tient care.

Physicians bear ultimate responsibility and liability
for clinical decisions and management. Using AI in
management decisions may lead to unintended con-
sequences. AI may threaten patient preference,
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autonomy, safety, privacy, and confidentiality, and it
is important for any AI-derived decision-making to be
fair and free from discrimination. The American
Medical Association recognizes that “addressing the
added risk to patient privacy and confidentiality,
parsing out the boundaries between the physician’s
and machine’s role in patient care, and adjusting the
education of future physicians to proactively
confront the imminent changes in the practice of
medicine” are important steps.55 Proper education of
physicians and awareness of AI-related clinical risks
may enhance compliance with regulations and as-
suage legal risks for health-care professionals and
institutions.56

CONCLUSIONS

AI shows potential in providing novel strategies to
improve the care of syncope patients, but exactly how
and to what degree, is presently unknown. This re-
view article, based on a multidisciplinary interna-
tional contingent, highlights the clinical objectives,
current challenges, and potential solutions to using
AI for the evaluation and management of syncope. No
matter the clinical endpoints pursued, understanding
the capabilities and ingredients for ML is essential.
Patient-centered responsibility and liability for clin-
ical decisions based on AI is paramount. The devel-
opment of sizeable, high-quality datasets and
clinically relevant ML models will require collabora-
tive partnerships among clinicians, data scientists,
medicolegal experts, and leaders in the field. Such
collaboration should foster a reality where AI will
complement rather than compete with the current
state-of-the-art in syncope management.
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