
SoftwareX 23 (2023) 101428

L

a
f
s
(
m
t
b
c
C
R
c
b

i

f

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

JGMP: Java bindings andwrappers for the GMP library
Gianluca Amato, Francesca Scozzari ∗

aboratory of Computational Logic and AI Department of Economic Studies, University of Chieti–Pescara, Pescara, Italy

a r t i c l e i n f o

Article history:
Received 6 April 2023
Received in revised form 24 May 2023
Accepted 31 May 2023

Keywords:
Arbitrary precision arithmetic
Integer numbers
Rational numbers
Floating point numbers
Java

a b s t r a c t

The GNU Multiple Precision Arithmetic Library (GMP) is a widely used library for computing with
arbitrary precision arithmetic. The library has functionally complete bindings for many programming
languages, including .NET, C++, OCaml, Python, Ruby, and Rust, with the notable exception of Java. The
JGMP library provides Java bindings and wrappers for using GMP from within any JVM-based language.
The library has been thoroughly tested and benchmarked.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
Code Ocean compute capsule
Legal Code License GNU LGPL v3.0
Code versioning system used git
Software code languages, tools, and services used Java, Maven
Compilation requirements, operating environments & dependencies JDK (≥11), Maven (≥3.2.5), GMP C library (≥6.1.0)
If available Link to developer documentation/manual https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
Support email for questions gianluca.amato@unich.it

1. Motivation and significance

The GMP (GNU Multiple Precision Arithmetic Library) [1] is
library for computing with arbitrary precision arithmetic (see

or instance [2,3]). It is widely used in many application areas,
uch as security, cryptography, computational algebra systems
such as Mathematica [4] and Maple [5]), financial and approxi-
ation algorithms, static analysis (e.g., [6–11]), in the building of

he GNU Compiler Collection (GCC). Parts of its algorithms have
een proven correct using the Coq proof system [12]. There are
urrently bindings for using GMP from many languages besides
and C++, such as .NET, OCaml, Perl, PHP, Python, R, Ruby, and
ust. Surprisingly, there are no well established and functionally
omplete bindings for Java or other languages based on Java
ytecode.
One of the reasons for this state of affair is that Java has a built-

n implementation of arbitrary precision integer numbers in the

∗ Corresponding author.
E-mail addresses: gianluca.amato@unich.it (Gianluca Amato),

rancesca.scozzari@unich.it (Francesca Scozzari).

BigInteger class, and that the cost of calling native code from
Java is quite high. Therefore, interfacing with GMP has never been
considered worth the effort. However, we beg to dissent from this
argument, for several reasons:

1. The GMP library not only implements arbitrary precision
integers, but also arbitrary precision rational and floating
point numbers, for which there is no alternative in the
standard Java library (BigDecimal implements fixed point
numbers, not floating point ones).

2. Even if we want to restrict our interest to integers, the GMP
library implements many operations and algorithms which
have no counterpart in the standard Java library, such as
many number-theoretic functions.

3. Although in Java the cost of calling native code is high,
when the numbers involved are big the performance of
GMP overcomes this drawback (we will show some bench-
marks in Section 4.1);

4. Sometimes you want to use from Java a native library
which depends on GMP. In this case, you need GMP wrap-
pers to be able to interface with the native library. This
ttps://doi.org/10.1016/j.softx.2023.101428
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101428
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101428&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00223
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
https://javadoc.io/doc/it.unich.jgmp/jgmp/latest/index.html
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:gianluca.amato@unich.it
mailto:francesca.scozzari@unich.it
https://doi.org/10.1016/j.softx.2023.101428
http://creativecommons.org/licenses/by/4.0/


Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

c
(
J
p
e

2

2

T

T
v
t
t
t

d
c
s
G
G
m
f

(
p
a
w

Fig. 1. The structure of the packages and classes in the JGMP library.

is the case, for example, of the PPL (Parma Polyhedra Li-
brary) [13], a well-known library for polyhedral computa-
tion. The authors of the PPL, in their Java bindings, also
had to wrap some functionalities of the GMP. The fact
that each library which needs GMP has to develop its
own wrappers brings a fragmentation of incompatible and
partial solutions.

In this paper we present the JGMP library, which provides
omplete bindings and wrappers for all the GMP data types
integer, rational and floating point numbers) for Java and other
VM-based languages. JGMP aims to become the reference im-
lementation for accessing GMP within Java, by replacing and
xtending all the currently available solutions.

. Software description

.1. Software architecture

The software structure of the JGMP library is shown in Fig. 1.
he library consists of two packages:

• it.unich.jgmp: contains all the classes wrapping multi-
precision integer, rational and floating point numbers. This
is the package which developers will generally use.

• it.unich.jgmp.nativelib: contains all the low-level
classes of JGMP. In particular, all the code interfacing with
the native C library is part of this package. Developers
may generally ignore this package, although in the current
version of JGMP there is a very limited set of low level
functionalities which are only available here.

The main classes in the package it.unich.jgmp are:

• MPZ: for multi-precision integer numbers;
• MPQ: for multi-precision rational numbers;
• MPF: for multi-precision floating point numbers.

here are three additional classes: GMP which collects global
ariables and static methods, AllocationMonitor which keeps
rack of the amount of native memory allocated by GMP and calls
he Java garbage collector, and RandState which encapsulates
he current state of random number generators.

The package it.unich.jgmp.nativelib collects all the code
irectly interfacing with the native C library. The most important
lass is LibGMP, which contains the static native methods corre-
ponding to GMP functions, the constants for the size of native
MP structures and some global variables. Some documented
MP functions are actually macros, and they have been reimple-
ented here. Other classes in this package are mostly Java proxies

or the parameter and return types used by the native methods.
For interfacing with native code we use the Java Native Access

JNA) library. Although somewhat slower w.r.t. the standard ap-
roach based on Java Native Interface (JNI) [14,15], JNA allows
ccessing native code entirely within Java, without having to

distribution of binary code quite easier, since we do not have to
deal with different binaries for different operating systems and
CPUs. In order to reduce the overhead of calling C functions, we
use direct mapping almost everywhere, and we treat GMP objects
as black boxes which we keep in the native memory and never
bring on the Java heap.

In the future, we plan to test alternatives to JNA such as the
JNR-FFI library, and the Foreign Linker API of the newest Java
versions.

2.2. Software functionalities

JGMP provides Java bindings and wrappers for accessing the
GMP library from Java and other languages running on the JVM
platform. The main classes MPF, MPQ and MPZ provide wrappers
for multi-precision floating point, rational and integer numbers.
Almost all GMP functions are exposed by wrappers, expect for
a few low-level functions (such as those directly dealing with
limbs). These functions may be used in C for implementing cus-
tom operations, but we deemed them to be scarcely useful in
Java.

The names and signatures in the classes MPF, MPQ and MPZ
have been carefully chosen to adhere to Java naming conventions,
while keeping methods discoverable by the developers who al-
ready know the GMP library. In order to simplify the development
of code without side effects, we have enriched the API provided
by JGMP with side-effect-free methods, which builds new objects
instead of modifying old ones. Finally, JGMP wrappers have been
thoroughly tested by an extensive test suite.

2.2.1. The immutable API
The GMP library, differently from most of the Java arbitrary

precision arithmetic libraries, implements a mutable API. This is
reflected in JGMP. For example, the code fragment

MPZ x = new MPZ(0)
x.addAssign(1)

creates a multi-precision integer number x initialized with 0, and
later changes its value to 1. However, JGMP also implements an
immutable API, which may be preferable for Java programmers.
For example:

MPZ x = new MPZ(0)
MPZ y = x.add(1)

creates a multi-precision integer number x initialized with 0, then
adds 1 to x returning a different object, which is assigned to the
variable y.

The immutable operations are generally slower than the muta-
ble ones. Moreover, there is potentially a problem of uncontrolled
memory allocations. The problem is that, when an MPZ object is
created, a corresponding amount of native memory (outside the
Java heap) is allocated by GMP. When the MPZ object is reclaimed
by the garbage collector, the native memory is correctly deallo-
cated by the cleaner thread implemented by JGMP. However, the
size of the allocated native memory is not used by the JVM to
decide when it is the moment to call the garbage collector. When
we create many big JGMP objects, we can allocate a huge amount
of native memory, although the size of the same objects in the
Java heap is negligible. As a result, the Java garbage collector is
not invoked, and GMP exhausts all the native memory, leading to
the program being killed by the operating system.

In order to overcome this problem, JGMP implements an ex-
perimental feature which, using appropriate hooks provided by
GMP, keeps track of all the native memory allocated by the
library. When the amount of allocated memory is too big, JGMP
rite a single line of code in C. This makes maintenance and

2



Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

m
m
J
f
c

m
g
t
c
t
b
s
j

2

t
v
m

t

a

m
e

anually invoke the Java garbage collector. Unfortunately, this
eans that any memory allocation in the GMP library invokes a

ava method, which degrades performance. For this reason, this
eature is normally disabled and may be enabled manually by
alling AllocationMonitor.enable().
For invoking the garbage collector, we call the System.gc()

ethod. According to the Java API documentation ‘‘Calling the
c method suggests that the Java Virtual Machine expend effort
oward recycling unused objects’’, so execution of the garbage
ollector is only suggested, not forced. Nonetheless, it seems
o work consistently, and this is the method that the Java li-
rary itself uses when it wants to free native memory (see the
ource code of the reserveMemory method in the non-public
ava.nio.Bits class).

.2.2. Thread safety
Thread safety of JGMP depends on thread safety of the na-

ive GMP library. In general, all operations are thread safe, pro-
ided there is no attempt to write to the same GMP object from
ultiple threads. There are some exceptions:

• methods randomAssign, random, random2Assign, ran-
dom2 of the MPZ class are not thread safe, and are marked
as deprecated;

• the memory tracker in the AllocationMonitor class is en-
abled or disabled globally, for all the threads of the program;

• the default precision for floating point numbers (which may
be set by using MPF.setDefaultPrecmethod) is global for
all the threads.

3. Illustrative examples

We show a full, simple example of a program for computing
he factorial of a number.

import it.unich.jgmp.*;

public class FactorialExample {

public static void main(String[] args) {
int x = 100000;
MPZ factorial = factorialMPZ(x);
System.out.println(factorial);

}

public static MPZ factorialMPZ(int x) {
MPZ f = new MPZ(1);
while (x >= 1) {

f.mulAssign(x);
x -= 1;

}
return f;

}
}

The assignment MPZ f = new MPZ(1) creates a new MPZ object
initialized to 1, while f.mulAssign(f, x) computes f*x and
ssigns the result to f.
The following method computes the factorial using the method

ul from the immutable API, which returns f*x without side
ffects.

public static MPZ immutableFactorialMPZ(int x) {
MPZ f = new MPZ(1);
while (x >= 1) {
f = f.mul(x);
x -= 1;

}
return f;

}

In the GitHub project jandom-devel/JGMPBenchmarks it is possi-
ble to find the complete source code, with further examples and
benchmarks.

4. Impact

While the number of projects using GMP is extremely large,
the number of Java projects which exploit the GMP library is
limited. There are several projects where the authors had to
implement a part of the JGMP library (usually exposing only those
GMP functions needed for the projects itself), but in most cases
they do not come with tests and benchmarks, and it is very
difficult to reuse the implementation in a different project.

Having arbitrary precision operations is important not only
for algebraic and cryptographic applications, which are the main
target of these libraries, but also in financial and approximation
algorithms, included static analyzers of software. For instance
the Parma Polyhedra Library, a C++ library widely used in static
analysis, provides a Java interface and thus some Java bindings
for handling GMP objects from Java.

4.1. Benchmarks

We show in this section that, although calling native code
from Java is costly, if the calculation is computationally expensive,
then JGMP is nonetheless faster than the alternatives. We have
compared JGMP with the following libraries:

• Apfloat 1.10.1 [16], an arbitrary precision arithmetic library
implementing integers (Apint), rationals (Aprational),
floating point numbers (Apfloat). The library also im-
plements complex numbers (Apcomplex), that we do not
benchmark here.

• JScience 4.3.1 [17], a comprehensive Java library for the
scientific community. The org.jscience.mathematics.
number package implements arbitrary precision integers
(LargeInteger), rationals (Rational) and floating point
numbers (FloatingPoint). It also implements arbitrary
precision modular integers (ModuloInteger) and floating
point numbers with known uncertainty (Real), that we do
not benchmark here.

• Apache Common Numbers 1.1 [18], part of the well-known
Apache Commons library, implements arbitrary precision
rationals (BigFraction).

• MPFR Java Bindings [19], a set of JNI bindings and wrappers
for the GNU MPFR library. The GNU MPFR library extends
the floating point type of GMP with well-defined rounding
properties. Note that these bindings are only guaranteed to
work with GNU MPFR version 3 which is obsolete.

• GMP4J [20], an old JNI-based wrapper for GMP that imple-
ments arbitrary precision integers. Among the prior work
discussed in Section 4.2, we have chosen to benchmark
GMP4J since it uses JNI (and therefore offers a way to eval-
uate the performance benefits of this technology w.r.t. JNA)
and is not tailored to a specific application.

In the case of JGMP we benchmark both the mutable and im-
mutable APIs, while for all the other libraries only the immutable
API is available. We consider the following four benchmarks:

• Factorial: computes the factorial of the numbers n = 10,
100, 1 000, 10 000, 100 000.

• Prime: computes the next 100 pseudo-primes starting from
n = 10, 100 and 1 000. We only benchmark the MPZ, Java
BigInteger and GMP4J BigInteger classes since Apint
and LargeInteger have no specific support for computing
the next pseudo-prime number.
3

https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://jscience.org/
http://jscience.org/
http://jscience.org/
http://jscience.org/
http://jscience.org/
http://jscience.org/
http://jscience.org/
http://jscience.org/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J


Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

t
s
u
b
w
O
C
a
p
C
c
J

Table 1
Benchmark results. We show the mean execution time in ms of each procedure, together with its 99.9% confidence interval (computed
assuming a normal distribution). Benchmark have been executed on an Intel Core i5-2500K clocked at 1.6 GHz with 16 GB of RAM,
running Ubuntu Linux 22.04, under OpenJDK 11 64-Bit Server VM. The maximum Java heap size is set to 2 GB.
Factorial

n 10 100 1,000 10,000 100,000

JGMP built-in (MPZ) 0.010 ± 0.002 0.010 ± 0.003 0.023 ± 0.002 0.718 ± 0.001 23.416 ± 0.168
JGMP mutable (MPZ) 0.013 ± 0.002 0.078 ± 0.001 0.888 ± 0.009 26.503 ± 0.072 2485.123 ± 4.904
JGMP immutable (MPZ) 0.107 ± 0.026 1.075 ± 0.213 10.499 ± 2.739 killed killed
GMP4J (BigInteger) 0.037 ± 0.003 0.370 ± 0.025 4.932 ± 0.203 killed killed
Java (BigInteger) ≈10−3 0.009 ± 0.001 0.607 ± 0.004 68.328 ± 0.220 8574.014 ± 21.485
Apfloat (Apint) 0.007 ± 0.001 0.080 ± 0.001 1.841 ± 0.028 163.048 ± 5.076 19362.493 ± 442.535
JScience (LargeInteger) ≈10−3 0.010 ± 0.001 0.953 ± 0.025 121.901 ± 0.567 16497.285 ± 49.511

Prime

n 10 100 1,000

JGMP mutable (MPZ) 0.417 ± 0.010 8.572 ± 0.040 6937.242 ± 80.031
JGMP immutable (MPZ) 1.306 ± 0.406 9.065 ± 0.145 6993.390 ± 34.124
GMP4J (BigInteger) 0.614 ± 0.048 8.705 ± 0.052 6967.942 ± 39.874
Java (BigInteger) 8.562 ± 0.229 90.019 ± 0.503 8753.752 ± 16.732

PiFraction

steps 1 10 100 1,000

JGMP mutable (MPQ) 0.043 ± 0.009 0.070 ± 0.008 0.428 ± 0.005 5.032 ± 0.045
JGMP immutable (MPQ) 0.085 ± 0.017 0.439 ± 0.092 4.469 ± 0.875 50.356 ± 11.657
Apfloat (Aprational) 0.022 ± 0.001 1.762 ± 0.041 876.600 ± 9.320 113077.876 ± 1006.002
Apache Commons (BigFraction) ≈10−3 0.007 ± 0.001 2.577 ± 0.030 951.747 ± 1.104
JScience (Rational) 0.002 ± 0.001 0.029 ± 0.001 3.705 ± 0.021 1145.914 ± 33.544
PiFloat

steps 1 10 100 1,000

JGMP mutable (MPF) 0.050 ± 0.018 0.076 ± 0.016 0.480 ± 0.005 4.614 ± 0.038
JGMP immutable (MPF) 0.071 ± 0.013 0.366 ± 0.077 3.338 ± 0.800 31.651 ± 5.556
Java (BigDecimal) 0.005 ± 0.001 0.153 ± 0.001 1.590 ± 0.007 15.259 ± 0.109
Apfloat (Apfloat radix 10) 0.003 ± 0.001 0.564 ± 0.006 6.234 ± 0.086 63.531 ± 0.891
Apfloat (Apfloat radix 2) 0.003 ± 0.001 0.525 ± 0.009 5.919 ± 0.092 59.682 ± 0.612
JScience (FloatingPoint) 0.007 ± 0.001 0.301 ± 0.004 3.219 ± 0.192 31.595 ± 0.288
MPFR Java Bindings (BigFloat) 0.032 ± 0.003 0.200 ± 0.024 1.853 ± 0.271 18.239 ± 2.864

• PiFraction: computes an approximation of π as a rational
number using the generalized continued fraction

π = 3 +
12

6 +
32

6 +
52

· · ·

Different expansions were tried, with number of approxima-
tion steps equal to 1, 10, 100 and 1000.

• PiFloat: implements the same computation as described
above but using floating point numbers with 1024 bits
of precision in the mantissa instead of rationals (actually,
BigDecimal uses fixed point numbers, but we decided to
benchmark it together with the others). Note that MPF and
MPFR use a binary representation, BigDecimal and Float-
ingPoint use a decimal representation and Apfloat may
use both. For classes with a decimal representation, preci-
sion has been set to ⌊1024 · log10 2⌋ = 308 digits.

Benchmarking programs running on the JVM is not an easy
ask, since a lot of factors may impact the execution speed,
uch as just-in-time compilation and garbage collection. We have
sed the JMH (Java Microbenchmark Harness) to perform the
enchmarks, using 5 forks, each fork composed of 5 iterations for
arming up the JVM and 5 iterations for collecting the results.
n top of this, we have tried to reduce the effect of automatic
PU performance scaling by disabling Turbo Boost and setting
fixed clock for the CPU, low enough to avoid overheating the
rocessor. In particular, the results have been obtained on an Intel
ore-i5 2500K clocked at 1.6 GHz with 16 GB of RAM. The source
ode for all the benchmarks may be found in the jandom-devel/
GMPBenchmarks GitHub repository.

The results of the benchmarks are shown in Table 1 and
depicted in Fig. 2. They show that, expect a few easy cases, JGMP
with the mutable API is faster than all the other libraries. This
is particularly true when the GMP library provides a specific
built-in function, like for instance the factorial. When using the
immutable API, instead, the performance may reach and surpass
that of the other libraries only for very costly computations.
Nonetheless, the immutable API may be useful when performance
is not a problem, since it is easier to use and more common
among Java programmers. Note that GMP4J is consistently faster
than the immutable API of JGMP due to the use of JNI instead of
JNA. The gap is larger for small computations, where the overhead
of calling native code is higher.

Note that, for the Factorial benchmark, the immutable API
shows the phenomenon discussed in Section 2.2.1, which causes
the exhaustion of native memory. For this benchmark, we show in
Table 2 the results when the allocation monitor is enabled. In this
case, all benchmarks may be performed without crashing. The
downside is that enabling the allocation monitor causes a drop
in performance, not only in the immutable case, but also for the
mutable and built-in cases, where it brings limited benefit due to
the small amount of native memory consumed.

The problem of native memory exhaustion may also be faced
by manually placing calls to System.gc() within the user code.
A careful positioning of these calls may achieve better perfor-
mance than what it is possible with an automatic mechanism like
our allocation monitor, at the expense of more work for the user
of the library. As an example, in Tables 2 it is possible to find the
results of the factorial benchmarks when calling System.gc()
before each computation of the factorial. With this particular
choice, the results are worse than what the allocation monitor
achieves for smaller values of n (when the overhead of calling
4

https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks
https://github.com/jandom-devel/JGMPBenchmarks


Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

t
a

b
b
S

n
c

Fig. 2. Graphs for the benchmarks in Table 1.

he garbage collector before each computation is quite high), but
re better with large values of n.
Finally, in Table 3 we show some results concerning the

ehavior of the garbage collector for the same benchmarks in Ta-
le 2. If neither the allocation monitor nor the manual
ystem.gc() calls are in use, the number of garbage collector

events is quite small. For a big n, it is actually too small, leading
to memory exhaustion. If we manually call System.gc(), the
umber of events is generally quite high, with the single ex-
eption of n = 100 000 with the immutable API. This explains

the low performance of this approach for small values of n. The
results with the allocation monitor are a good trade-off between
the other approaches. However, since the allocation monitor pays
the cost of an additional overhead for each memory allocation,
the execution time may be higher than the manual method even
if the garbage collector is invoked less frequently.

Obviously, instead of calling System.gc() before each com-
putation, with the help of the results in Table 3, it is possible
to design a smarter policy which reduces the number of garbage
collector events and leads to a better performance.
5



Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

d

p
t

J
i

c
t

Table 2
Benchmark results (in ms) comparing JGMP on the Factorial example with
ifferent policies for the garbage collector: without any explicit call (no), using

the allocation monitor (monitor) and with manual call before each computation
(manual). Benchmark conditions, as well as the results for JGMP without
allocation monitor, are the same as in Table 1. The allocation monitor is
configured to keep the allocated native memory size under 2 GB and the garbage
collector used is G1.
n gc calls built-in mutable immutable

10
no 0.010 ± 0.002 0.013 ± 0.002 0.107 ± 0.026
monitor 0.014 ± 0.002 0.030 ± 0.004 0.175 ± 0.029
manual 9.636 ± 0.207 10.146 ± 1.380 9.351 ± 0.123

100
no 0.010 ± 0.003 0.078 ± 0.001 1.075 ± 0.213
monitor 0.026 ± 0.003 0.167 ± 0.004 1.684 ± 0.291
manual 9.463 ± 0.120 9.896 ± 0.957 9.486 ± 0.145

1,000
no 0.023 ± 0.002 0.888 ± 0.009 10.499 ± 2.739
monitor 0.039 ± 0.001 2.084 ± 0.022 16.008 ± 2.130
manual 9.599 ± 0.152 9.880 ± 0.133 13.400 ± 0.388

10,000
no 0.718 ± 0.001 26.503 ± 0.072 killed
monitor 0.769 ± 0.003 43.504 ± 0.245 181.680 ± 6.547
manual 10.385 ± 0.156 35.321 ± 0.305 82.890 ± 0.740

100,000
no 23.416 ± 0.168 2485.123 ± 4.904 killed
monitor 24.086 ± 0.081 2724.031 ± 14.217 4231.681 ± 37.543
manual 33.388 ± 0.945 2466.160 ± 18.080 3302.939 ± 51.672

Table 3
Benchmark results comparing JGMP on the Factorial example with different
olicies for the garbage collector as in Table 1. The count column reports the
otal number of calls, and the time column the time spent in the garbage
collector in ms.
n gc calls built-in mutable immutable

count time count time count time

10
no 132 130491 146 42370 129 127061
monitor 175 48654 119 19167 182 46230
manual 21987 242868 21813 242211 21529 241032

100
no 135 134024 49 6319 130 125125
monitor 153 35446 22 2112 187 43919
manual 21958 242358 21141 240931 21155 239207

1,000
no 57 16646 12 415 138 104802
monitor 80 11592 12 300 178 52693
manual 21923 241210 20511 226433 15970 201453

10,000
no 0 – 15 162 killed
monitor 15 684 20 215 81 27932
manual 20579 228356 6726 74206 2986 78069

100,000
no 0 – 1 10 killed
monitor 1 13 8 76 350 17044
manual 7266 80638 125 1356 96 18998

4.2. Related works

There are several GitHub projects providing GMP wrappers for
ava (see Table 4), but they only implement arbitrary precision
ntegers. Moreover, most of them are inactive projects.

The gmp-java [21] project is a script which, given the source
ode of the GNU Compiler for Java (GCJ) (version 4.6.1), extracts
he implementation of the BigInteger class, which is based on
the GMP library, and compile it under a new name, to avoid
name clashes. Therefore, the output library has exactly the same
interface as the standard BigInteger class. The GMP-java [22]
library provides wrappers for the mpz type, but for a limited
selection of operations which does not include, for example,
any root or number theoretic function. The GMP4J [20] is also
a wrapper for the mpz type, but with more features than the
previous ones. It implements most of the GMP operations, expert
for some number theoretical ones. It is designed to be a drop-in
replacement for the standard BigInteger class.

Table 4
GMP Bindings for Java.
URL last commit native

interface

https://github.com/infinity0/gmp-java [21] 12 years ago JNI
https://github.com/dfdeshom/GMP-java [22] 10 years ago JNI
https://github.com/altmind/GMP4J [20] 10 years ago JNI
https://github.com/mathybit/java-gmp [23] 5 years ago JNA
https://github.com/square/jna-gmp [24] 2 years ago JNA

Both java-gmp [23] and jna-gmp [24] have been specifically
developed for accelerating the standard BigInteger class: they
do not directly expose to the user a class corresponding to the
mpz native type and only implements a limited selection of in-
teger operations which are useful for cryptography applications.
Despite the limitations, some of these libraries have been used
several times in other projects. For instance, jna-gmp [24] is used
in 23 GitHub projects (all in Java except one in Scala).

GMP has also been used by the Kaffe virtual machine [25]
and the GNU Classpath [26] implementation of the Java standard
library. Both projects are now essentially abandoned.

5. Conclusions

JGMP implements a set of wrappers for the GMP (GNU Multi-
ple Precision Arithmetic) library which is functionally complete,
extensively tested and performant. The library is memory and
thread safe. It provides both mutable and immutable versions of
most operations, and it is specifically designed to adhere to Java
naming conventions. This allows to have an easy and complete
way to deal with arbitrary precision arithmetic in Java and other
Java bytecode based languages. The library is available in the
Maven central repository with group id it.unich.jgmp and
artifact id jgmp, so that it is very simple to use in a Java project.
The JGMP library has been tested on Linux, Windows 10 and
macOS (on the x86-64 architecture).

The additional package it.unich.jgmpbenchmarks provides
some benchmarks which compute factorials, probable prime num-
bers, and approximations of π . Contrary to the common thought
that calling an external library in Java may slow down the exe-
cution, the benchmarks in the previous section show that using
the JGMP library may improve the performance and outperforms
the other libraries in most cases, in particular when you have to
compute with very large numbers.

We think that JGMP has all the qualities to take the role
of the standard Java wrapper for the GMP library, and it has a
great potential to be widely used in many Java projects, so that
other developers and researchers which wants to use GMP in Java
projects do not need to waste time implementing ad-hoc and
incomplete solutions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.
6

https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp


Gianluca Amato and Francesca Scozzari SoftwareX 23 (2023) 101428

R
eferences

[1] The GNU Multiple Precision Arithmetic Library URL https://gmplib.org.
[2] Bailey David H. High-precision floating-point arithmetic in scientific

computation. Comput Sci Eng 2005;7(3):54–61. http://dx.doi.org/10.1109/
MCSE.2005.52.

[3] Bailey David H, Barrio R, Borwein JM. High-precision computation: Mathe-
matical physics and dynamics. Appl Math Comput 2012;218(20):10106–21.
http://dx.doi.org/10.1016/j.amc.2012.03.087.

[4] Wolfram Research, Inc. Mathematica, Version 13.2. URL https://www.
wolfram.com/mathematica/.

[5] Maplesoft. Maple URL https://www.maplesoft.com/products/Maple/.
[6] Journault Matthieu, Miné Antoine, Monat Raphaël, Ouadjaout Abdelraouf.

Combinations of reusable abstract domains for a multilingual static
analyzer. In: Verified Software. Theories, Tools, and Experiments. 11th
International Conference, VSTTE 2019, New York City, NY, USA, July 13–14,
2019, Revised Selected Papers. Lecture Notes in Computer Science, 12031,
Berlin Heidelberg: Springer; 2020, p. 1–18. http://dx.doi.org/10.1007/978-
3-030-41600-3_1.

[7] Vojdani Vesal, Apinis Kalmer, Rõtov Vootele, Seidl Helmut, Vene Varmo,
Vogler Ralf. Static race detection for device drivers: the Goblint approach.
In: Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering. New York, NY, USA: ACM; 2016, p. 391–402.
http://dx.doi.org/10.1145/2970276.2970337.

[8] Kirchner Florent, Kosmatov Nikolai, Prevosto Virgile, Signoles Julien,
Yakobowski Boris. Frama-C: A software analysis perspective. Form Asp
Comput 2015;27(3):573–609. http://dx.doi.org/10.1007/s00165-014-0326-
7.

[9] Amato Gianluca, Di Maio Simone Di Nardo, Scozzari Francesca. Numerical
static analysis with Soot. In: Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program Analysis. SOAP ’13, New
York, NY, USA: ACM; 2013, p. 25–30. http://dx.doi.org/10.1145/2487568.
2487571.

[10] Amato Gianluca, Scozzari Francesca. Random: R-based analyzer for nu-
merical domains. In: Bjørner Nikolaj, Voronkov Andrei, editors. Logic
for Programming, Artificial Intelligence, and Reasoning 18th International
Conference, LPAR-18, MÉRida, Venezuela, March 11-15, 2012. Proceedings.
Lecture Notes in Computer Science, 7180, Berlin Heidelberg: Springer;
2012, p. 375–82. http://dx.doi.org/10.1007/978-3-642-28717-6_29.

[11] Calcagno Cristiano, Distefano Dino. Infer: An automatic program verifier
for memory safety of C programs. In: Bobaru Mihaela, Havelund Klaus,
Holzmann Gerard J, Joshi Rajeev, editors. NASA Formal Methods. Third
International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011,
Proceedings. Lecture Notes in Computer Science, 6617, Berlin Heidelberg:
Springer; 2011, p. 459–65. http://dx.doi.org/10.1007/978-3-642-20398-5_
33.

[12] Bertot Yves, Magaud Nicolas, Zimmermann Paul. A proof of GMP square
root. J Automat Reason 2002;29(3–4):225–52. http://dx.doi.org/10.1023/A:
1021987403425.

[13] Bagnara Roberto, Hill Patricia M, Zaffanella Enea. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Sci Comput Program
2008;72(1–2):3–21. http://dx.doi.org/10.1016/j.scico.2007.08.001.

[14] Tsai Yu-Hsin, Wu I-Wei, Liu I-Chun, Shann Jean Jyh-Jiun. Improving perfor-
mance of JNA by using LLVM JIT compiler. In: Press IEEEComputer Society,
editor. 2013 IEEE/ACIS 12th International Conference on Computer and
Information Science. ICIS, 2013, p. 483–8. http://dx.doi.org/10.1109/ICIS.
2013.6607886.

[15] Zakusylo Alexander. java-native-benchmark, JMH performance benchmark
for Java’s native call APIs URL https://github.com/zakgof/java-native-
benchmark.

[16] Tommila Mikko. Apfloat, An arbitrary precision arithmetic library URL http:
//www.apfloat.org/apfloat_java/.

[17] JScience, Java Tools and Libraries for the Advancement of Sciences, URL
http://jscience.org.

[18] Foundation The Apache Software. Apache Commons Numbers, Number
types and utilities, URL https://commons.apache.org/proper/commons-
numbers/.

[19] mpfr-java, MPFR Java Bindings, URL https://github.com/
runtimeverification/mpfr-java.

[20] Gurinovich Andrew. GMP wrapper for Java URL https://github.com/
altmind/GMP4J.

[21] Luo Ximin. GMP-based implementation of BigInteger for Java URL https://
github.com/infinity0/gmp-java.

[22] Deshommes Didier. JNI wrapper to the GMP library URL https://github.
com/dfdeshom/GMP-java.

[23] Pacurar Adrian. A Java wrapper for some libgmp integer func-
tions commonly used in cryptography URL https://github.com/mathybit/
java-gmp.

[24] Blum Scott, Wharton Jake, Wilson Jesse, McCauley Nathan, Perito Daniele,
Quigley Sam, Humphries Josh, Meier Christian, Zupancic Elijah, He-
necka Wilko, Ruescas David, Wilder Jacob, Allansson Per. A Java JNA
wrapper around the GNU Multiple Precision Arithmetic Library, URL https:
//github.com/square/jna-gmp.

[25] Kaffe, The Kaffe Virtual Machine, URL https://github.com/kaffe/kaffe.
[26] GNU Classpath, Essential libraries for Java, URL https://www.gnu.org/

software/classpath/.
7

https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
https://gmplib.org
http://dx.doi.org/10.1109/MCSE.2005.52
http://dx.doi.org/10.1109/MCSE.2005.52
http://dx.doi.org/10.1109/MCSE.2005.52
http://dx.doi.org/10.1016/j.amc.2012.03.087
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
http://dx.doi.org/10.1007/978-3-030-41600-3_1
http://dx.doi.org/10.1007/978-3-030-41600-3_1
http://dx.doi.org/10.1007/978-3-030-41600-3_1
http://dx.doi.org/10.1145/2970276.2970337
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1145/2487568.2487571
http://dx.doi.org/10.1145/2487568.2487571
http://dx.doi.org/10.1145/2487568.2487571
http://dx.doi.org/10.1007/978-3-642-28717-6_29
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://dx.doi.org/10.1023/A:1021987403425
http://dx.doi.org/10.1023/A:1021987403425
http://dx.doi.org/10.1023/A:1021987403425
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1109/ICIS.2013.6607886
http://dx.doi.org/10.1109/ICIS.2013.6607886
http://dx.doi.org/10.1109/ICIS.2013.6607886
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
https://github.com/zakgof/java-native-benchmark
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://www.apfloat.org/apfloat_java/
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
http://jscience.org
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://commons.apache.org/proper/commons-numbers/
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/runtimeverification/mpfr-java
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/altmind/GMP4J
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/infinity0/gmp-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/dfdeshom/GMP-java
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/mathybit/java-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/square/jna-gmp
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/
https://www.gnu.org/software/classpath/

	JGMP: Java bindings and wrappers for the GMP library
	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities
	The Immutable API
	Thread Safety


	Illustrative Examples
	Impact
	Benchmarks
	Related works

	Conclusions
	Declaration of Competing Interest
	Data availability
	References


