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Abstract
In real-world applications, audio surveillance is often performed by large models that can
detect many types of anomalies. However, typical approaches are based on centralized solu-
tions characterized by significant issues related to privacy and data transport costs. In addition,
the large size of thesemodels prevented a shift to contextswith limited resources, such as edge
devices computing. In this work we propose conv-SPAD, a method for convolutional SPectral
audio-based Anomaly Detection that takes advantage of common tools for spectral analysis
and a simple autoencoder to learn the underlying condition of normality of real scenarios.
Using audio data collected from real scenarios and artificially corrupted with anomalous
sound events, we test the ability of the proposed model to learn normal conditions and detect
anomalous events. It shows performances in line with larger models, often outperforming
them. Moreover, the model’s small size makes it usable in contexts with limited resources,
such as edge devices hardware.
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1 Introduction

In the field of automatic surveillance, the initial focus on detecting anomalous events was
mainly on video signals Haritaoglu et al. 2000. Although this type of signal is undoubtedly
rich in information, its acquisition and processing may not satisfy some constraints, such as
the availability of limited computational resources or the presence of privacy regulations that
limit its use. In the attempt to overcome these limitations, Audio-based surveillance Clavel
et al. 2019; Valenzise et al 2007; Ntalampiras et al. 2009, 2011; Foggia et al. 2016; Crocco
et al. 2016 has emerged as alternative approach. The first advantage offered by the audio-
based approach over the video-based one is that it requires less computational resources.
Moreover, since ambient microphones can be easily deployed in the target environment,
it also avoids the typical occlusion-related issues cameras suffer. Audio-based systems are
unaffected by changes in lighting conditions that heavily affect the performance of video
surveillance systems. Moreover, audio surveillance is perceived as less intrusive than camera
systems, as it happens for the acoustic interface in smart environments Goetze et al. 2010
or in all situations in which privacy concerns are stressed Chen et al. 2005. Although audio
surveillance systems usually do not include automatic speech detection and recognition, it
does not mean that their use meets all privacy constraints. A complete discussion about the
privacy issues of audio surveillance systems is out of the scope of this work, since it would
involve an in-depth analysis of different legislation frameworks, such as the European one
that includes theGeneral Data Protection Regulation (GDPR)Kuner 2020, national programs
for mass surveillance Bigo et al. 2020, and surveillance by intelligence services EU-Agency
2017.

In this work we assume that an audio surveillance system should have the following
properties in order to avoid privacy issues:

• it does not require any human intervention;
• it does not involve any form of speech detection and recognition;
• it does not store any data since it processes and deletes the data;
• it is designed to accomplish the task locally with no communication to external resources.

Similar to Clavel et al. 2019, the audio surveillance system presented in this work aims to
detect anomalous events occurring in a natural environment by exploiting acoustic informa-
tion detected by a network ofmicrophones. Recently, this line of research hasmade significant
use of deep learning approaches Marchi et al. 2015a, b, 2017; Duman et al. 2019; Bayram
et al. 2021; Suefusa et al. 2020; Kawaguchi et al. 2019.

As reported in Nunes (2021), complex neural network architectures, such as DenseNet-
121 Papadimitriou et al. 2020, ResNet-50 Papadimitriou et al. 2020, WaveNet Rushe et al.
2019 or recurrent approaches Becker et al. 2020 are often adopted to deal with this task.
Unfortunately, in contexts where only limited computational resources are available, their
applicability is limited. A popular strategy to address this problem is based on the massive
exploitation of cloud computing services Mayer et al. 2020, where the data collected by sen-
sors are directly uploaded to external infrastructures with abundant computing and storage
capacity. However, adopting such an approach has three main issues. First, it requires a stable
connection to move the buffered sensor streams to data centers with appropriate strategies
to handle high transmission delays. Second, the collected data may contain sensitive and
private information about workplaces or individuals; thus, the data transfer to external infras-
tructures could raise significant concerns for data safety and privacy leakages Sánchez et al.
2016; Caire et al. 2016; Zhou et al. 2019. Finally, as the number of employed devices may
proliferate, the Internet connection’s bandwidth quickly becomes the system’s bottleneck.
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Thus, at scale, cloud-based computing could no longer be feasible or cost-effective: The
high number of supervised environments would require transmitting an excessive amount
of data. To alleviate the computational complexity of current deep learning approaches, we
investigate the effectiveness of different strategies aimed at reducing the size of the models
in order to move the computation from a centralized or cloud infrastructure to the deployed
edge devices. Even though the computational power of edge devices has constantly been
increasing, it is still not enough to support a wide range of deep learning architectures.

For this reason, we study and propose specific approaches to analyze the environmental
sounds directly on the devices, trying to balance the detection capability of unexpected events
and the computational cost in different application scenarios.

In practice,we exploit the synergy between theEdgeComputing, the Internet of Things and
theArtificial IntelligenceGreengard 2010; Lee et al. 2018. In our framework, the edge devices
are physical devices equippedwith sensing, computing, and communication capabilities, able
to buffer sensor observations, discover underlying patterns and unexpected anomalies using
no external resource and share the detected data with other systems.

In order to match the requirements imposed by the limited computational resources, in
this work, we investigate state-of-the-art solutions and perform an iterative analysis to define
a lightweight neural network for unsupervised audio-based anomaly detection. Since we
aim for audio-based anomaly detection suitable to applications in various real-life scenarios,
we can only perform a partial feature domain search in the context of time and frequency
domains.We then limit our analysis to only the input audio signal’s temporal dimensionwhile
focusing on a deeper evaluation of audio features in future work. We also do not search for
the best-performing neural architecture. Instead, we decide to use common building blocks
and standard training strategies. Further improvements to the proposed architecture will be
provided in future works. Thus, the aspects we will analyze are:

• Input manipulation. We will show how good sizing of the incoming audio signals can
significantly contribute to the detection capability of the model and the reduction of its
computational cost.

• Transfer learning. We will discuss how using pre-trained networks to embed in
audio-based anomaly detection solutions does not provide consistent performance
improvements in the face of more computational requirements.

We prove our claims by conducting an in-depth analysis on several real benchmark datasets.
The rest of the paper is structured as follows. Section 2 describes the state of the art in the

literature about the audio-based anomaly detection problem. In Section 3 we introduce our
research questions, and in Section 4we propose a lightweightmodel for audio-based anomaly
detection. In Section 5 we present our experimental results. Finally, Section 6 summarizes
our findings and describes future work.

2 Related work

Anomaly detection Hodge and Austin 2004; Patcha et al. 2007; Chandola et al. 2009 is the
ability to detect unexpected events that significantly deviate from those assumed to describe
normal conditions. In unsupervised settings, anomaly detectors have to operate where no
semantic label about the system’s status is available. Therefore, they aim at recognizing
patterns of normality to isolate anomalies.
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Recently, approaches basedondeep learning techniques have rapidly becomepopular,with
the encoder-decoder architecture as the dominant one. For instance, Marchi et al. 2015a, b,
2017 focus on acoustic novelty detectionwithin various environments through a sequence-to-
sequence approach to reconstruct auditory spectral features. In contrast, Duman et al. 2019;
Bayramet al. 2021 prefer to focus deeply on the specific task of identifying acoustic anomalies
in industrial plants by exploiting both sequential or convolutional Autoencoders. In Koizumi
et al. (2019a) authors, exploiting another Autoencoder architecture, recast the unsupervised
anomaly detection problem as a statistical test. Finding an anomaly corresponds to rejecting
the null hypothesis “a sequence belongs to a normality pattern”. The hypothesis is rejected
according to an objective function based on the Neyman-Pearson lemma Neyman et al. 2018
that aims at increasing the anomaly prediction’s actual positive rate while keeping the false
positive low rate. As a follow-up, in Koizumi et al. (2019b), the same authors investigate
the issue of dealing with overlooking anomalies without retraining the whole system. They
propose a training method for a cascaded specific anomaly detector using few-shot samples.

Different approaches to anomaly detection are presented in Suefusa et al. (2020);
Kawaguchi et al. (2019). The former feeds a completion (Variational) Autoencoder with
multiple frames of the input spectrogram whose centre frame is removed. The technique’s
objective is to reconstruct the missing frame and compare the reconstruction with the actual
frame: if the difference is above a threshold, an anomaly is identified. The latter inves-
tigates how detection performance degrades due to reverberation and factory background
noise affecting machine signals. They propose a method based on a front-end ensemble of
algorithms for de-reverberation and de-noising to improve detection performance.

Most of the state-of-the-art approaches are based on the extraction of the spectrogramof the
original signal. However, in some recentwork, the literature is experimentingwith a new trend
by operating directly on the raw audio waveform. Following this idea, Hayashi et al. 2018;
Rushe et al. 2019 define encoder-decoder architectures exploiting causal dilated convolutions
and, given a sequence of audio samples, they try to predict the following sample. In Rushe
et al. (2019), authors investigate the use of auto-regressive deep learning architectures for
anomaly detection: they use a WaveNet architecture Oord et al. 2016, which was previously
proposed as an auto-regressive approach to speech synthesis to predict the following typical
sample in a sequence. They thus try to learn a conditional distribution for standard sequences
under the assumption that anomalous sequences should not follow the same distribution.
Being an auto-regressive approach, the proposed solution is intrinsically slower than other
solutions, although, as reported in the paper, there exist some techniques to speed up the
process van den Oord 2018; Paine et al. 2016.

The approaches discussed so far were proved effective to detect anomalies in specific
environments. However, this paper aims to address the more general problem of ambient
surveillance, which is characterized by quite varied audio signatures compared to detecting
anomalies in controlled scenarios. As a strict constraint, we notice that surveillance requires
a limited consumption of time, memory, energy and resources: this leads to the need to focus
on very light techniques that can run fast on limited hardware. The solution currently closest
to our problem is Rushe et al. (2019), which is incapable of working under limited hardware
constraints due to the underlying network size. Although designed to cope with a different
goal (speech synthesis), the WaveNet approach proposed there is the only one, to the best of
our knowledge, is comparable with our proposal. We thus compare our design choices with
WaveNet in the following. In order tomake a fair comparison, we do not employ sophisticated
layers to process the spectrogram and limit ourselves to only standard fully-connected and
convolutional layers. Moreover, in Section 5.2, we reverse the claim made in Rushe et al.
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(2019) and show that thanks to the spectral analysis, even a simple convolutionalAutoencoder
can obtain a performance gain over the auto-regressive approach.

3 Design choices

The analysis we are going to make takes advantage of many state-of-the-art results. The
goal is to navigate the literature about the acoustic anomaly detection problem to build a
lightweight architecture that can be equipped on edge devices with limited resources. In the
following, we address one issue at a time, providing our qualitative (in this section) and
quantitative (in Section 5) answers and motivations.

3.1 Q1.Which transformation of the input audio better fits the anomaly detection
problem?

Asmentioned in Section 2, many research proposals used to work with small audio segments.
We speculate that such a choice is mainly driven by the application domain (most of those
works are focused on industrial machine failures) or by architectural choices (recurrent or
auto-regressive models). Moreover, using short audio segments involves complex detection
models that cannot be exploited in real scenarios. On the other hand, we hypothesize that,
for ambient surveillance settings, longer input audio samples are necessary. In many cases,
anomalous sounds last for seconds, so larger window frames could provide richer information
for detecting unexpected patterns: short samples risk splitting a target pattern into little pieces
unable to trigger any relevant alert.

Moreover, we assume that standard audio signal manipulation procedures, such as fre-
quency domain transformations and windowing operations, are feasible on edge devices.
Therefore, throughout the spectral analysis, we will shift the form of the input from the time
domain to a time-frequency representation in which valuable information about frequency
patterns is easier to detect. This kind of representation is widely used in different audio
tasks ranging from audio classification to automatic speech recognition (Hinton et al., 2012;
Oruh et al., 2021). Its success is mainly tied to the fact that it simplifies the training process
thanks to the presence of evident patterns related to frequency components. Thus we assume
a spectrogram as input for our models.

3.2 Q2.Which network topology should we use?

Aswe said, the most popular solutions addressing our problem are based on encoder-decoder
neural architectures (mainly Autoencoders Baldi 2012 and Sequence to Sequence models
Sutskever et al. 2020). Those can mainly exploit three network topologies: recurrent, feed-
forward, and convolutional Li et al. 2022.

Recurrent networks are the most natural choice to learn patterns from timed signals since
they build up a history of the data by ingesting the sampled values according to chronological
order. However, they are extremely time-consuming, since, in the most effective implemen-
tation (e.g. LSTM Hochreiter et al. 1997, GRU Cho et al. 2014), each node unit is a complex
sub-network.

On the other hand, feed-forward networks are typically fast since they are based on the
bag-of-word assumption. They do not consider the time relationship between the samples of
the signals; in other words, these networks can have only a partial view of the information
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a signal contains. Moreover, feed-forward networks are fully connected graphs implying a
big number of parameters to learn and store, making this technology not feasible in limited
hardware settings.

Convolutional networks, instead, represent a good compromise between the former topolo-
gies. Moreover, in their causal variant Brazil 2013, these networks can model temporal
sequences limiting the number of parameters (w.r.t. feed-forward networks) and the number
of iterations (w.r.t. recurrent networks). For these reasons, we decided to adopt the encoder-
decoder technology based on convolutional networks to develop a lean and effective anomaly
detection model.

3.3 Q3. Is transferred knowledge useful?

A typical approach to improve the detection quality, or in general the data fitting, is to
exploit transferred knowledge from systems dealing with data belonging to a similar domain.
Lately, this knowledge is often stored in pre-trained neural networks that are typically used as
embedding modules to map data into suitable latent spaces. The usefulness of this approach
arises when the latent space is built for highlighting specific patterns related to the target
task. However we make three considerations:

1. Pre-trained networks are often heavy data structures composed by many complex layers
with several connections and parameters;

2. Sometime, they need to be involved in the learning phase of the global network: in
these cases, their parameters are considered as an initialization strategy for an optimal
selection of the solution space, but they may represent another issue for the efficiency of
the detection system;

3. They may store much more information than needed: in many surveillance scenarios,
anomalies are disruptive events that strongly deviate from normality. Hence, exploiting
a heavy pre-trained neural network could be an overpowered answer to the detection
problem.

For these reasons, we decided to verify the impact of using a pre-trained network and
design a simple model that is fed with the output of a pretrained network. We thus compare
a transfer-learning approach with a simpler convolutional autoencoder trained from scratch.
As we will show in Section 5, introducing a feature extractor does not consistently improve
the performance when requiring a consistent amount of computational resources.

4 A lightweight model for audio-based anomaly detection

In this section, we describe three different models for audio-based anomaly detection that we
want to compare in search of a suitable solution for edge device computing. We define the
three models, namely fully-SPAD+CNN14, fully-SPAD and conv-SPAD (where the acronym
SPADmeans SPectral audio-based Anomaly Detection), showing that the latter ensures good
performance while being much lighter than the others. However, first, we discuss how we
transform the input audio signal for our analysis.

Figure 1 shows how the input audio signal is pre-processed before becoming the input for
our models. The first step is to apply a sliding window procedure to segment the raw audio
signal into suitable time frames offixed size. Then, fromeach time frame, aShortTimeFourier
Transform (STFT) module (Oruh et al., 2021) extracts a spectrogram that is represented by
a matrix in RF×T , where F is the number of frequency bins and T the number of time ticks.
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Fig. 1 The pre-processing phase segments the raw audio signal and extracts the log-Mel spectrogram. The
spectrogram will be either i) feed into the feature extractor in order to obtain the actual input for fully-
SPAD+CNN14 or ii) flatted to obtain the actual input for fully-SPAD, or iii) used unchanged by conv-SPAD

Each cell contains the amount of energy related to a specific frequency at a certain tick within
the spectrogram. After, a further transformation of the spectrograms is performed (without
changes to the size of the matrix). It consists in exploiting a bank of triangular filters to
produce log-Mel Spectrograms (Imai, 1983; Hinton et al., 2012). These filters aggregate the
energy of consecutive frequencies mimicking the human sound perception and making it
easier for models to solve the typical audio-based tasks a human can be interested in. Log-
Mel spectrograms are the processed input to feed and train our audio anomaly detectors. We
can now introduce the details of our models.

The threemodelswepresent are all based on theAutoencoder architecture.An autoencoder
is a neural network trained to attempt to replicate its input as output. This architecture aims to
learn some low-dimensional feature representations fromwhich the input data instance can be
reconstructed. Although this approach is often used for data compression or dimensionality
reduction (Hinton et al., 2006; Theis et al., 2017), it can be employed for anomaly detection by
learning latent representations enforced to capture important regularities across the training
data.

In our case, a trained autoencoder mainly learns to replicate spectrograms representing
frequency patterns in the monitored environment under typical conditions. We thus train our
modelswith input audio signalswithout anomalous events.As a result of this training strategy,
anomalies, assumed as rare events, will be challenging to replicate and, as a consequence,
will produce a high reconstruction error.

Formally, an autoencoder uses two networksE andD as encoder and decoder respectively.
The feature input x is converted into the latent code z ∈ R

m by E. This code is later used by
D to reconstruct the original input:

z = E (x; θE)

x̂ = D (z; θD) (1)

where θE and θD are, respectively, the encoder an decoder parameters learnt during the
training. The autoencoder’s loss function aims at minimizing the average reconstruction
error upon the normal input which is expressed in term of mean squared error (MSE):

L = 1

N

N
∑

n=1

‖xn − x̂n‖22 (2)

where N is the number of the input log-Mel spectrograms.
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Fig. 2 In fully-SPAD+CNN14 the autoencoder has four fully-connected layers for encoding and four for
decoding. The objective is to reconstruct the feature vector produced by the feature extractor

4.1 Fully-SPAD+CNN14

The first model we propose, Fully-SPAD+CNN14 (Fig. 2), is composed of two sub-networks:
a frozen pre-trained feature extractor network and a shallow autoencoder. As feature extractor
we choose a recent architecture presented in Kong et al. (2020). In this work, the authors
try to provide a general model for audio pattern recognition by training different CNNs for
the audio classification task over the large audio dataset AudioSet Gemmeke et al. 2017.
Among the architectures proposed in that work, we selected the model called CNN-14 as
our feature extractor. This model has five convolutional blocks based on 3× 3 filters, batch-
normalization and Relu. From this architecture, however, we removed the last layer, specific
for the classification task overAudioSet, and used the network’s body output as audio features,
which are expressed as vectors. The encoder is a sequence of simple fully connected layers
with a ReLu function. The decoder mirrors the encoding part, and the parameters of both
networks are learnt by minimizing (2) loss function over the output of the feature extractor.

4.2 Fully-SPAD

Fully-SPAD (Fig. 3) is a variant of the previous model. We removed the feature extractor
and introduced a flatten module that transforms the log-Mel spectrograms into vectors by
concatenating the rows. Then the model presents additional fully connected layers to the
encoder and the decoder. In doing so, we pay an extra cost in terms of an increased number
of parameters of the model, but we tried to simulate the contribution of the extractor through
the added layers. In this case, the encoder and decoder are trained by minimizing (2) loss
function over the flattened log-Mel spectrograms.

4.3 Conv-SPAD

The last model is Conv-SPAD (Fig. 4) which replaces the dense connections of Fully-SPAD
with a combination of convolutional layers. All the convolution operators are bi-dimensional
and have 3× 3 kernels with stride (1, 2) and padding 1. In the figure as example, we report,
for each convolution layer, the dimension of the resultant blocks of feature maps for the input
size 16834 whose size is 〈1, 52, 64〉with a frequency representation divided into 52 different
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Fig. 3 In fully-SPAD the autoencoder has a total of ten fully-connected layers to accommodate the larger
input. The objective is to reconstruct the flattened log-Mel spectrogram

time step and 64 frequency bins. In Fig. 4, we use the notation ch@h×w where ch represents
the number of channels, h the temporal dimension and w the frequency dimension of the
feature map matrix. At the core of the Autoencoder there are two symmetric fully-connected
layers: the first encodes the output of the convolutional part into a latent code z, whose size
is 64, and the second decodes that code into the input for the transposed convolutions. The
objective is to reconstruct the original log-Mel spectrogrammatrix. In this model, the number
of parameters grows much slower than the fully-SPAD, but, as we will discuss in Section
5, this model capacity reduction slightly affects the model’s overall performance. The loss
function of Conv-SPAD aims at minimizing (2) directly over the log-Mel spectrograms.

5 Experiments

5.1 Training and testing settings

In the context of Research Question Q1, we conduct experiments with a variable input
duration to highlight the effect of the temporal horizon on the anomaly detection system’s
performance. In the subsequent experiments, we evaluate four different time scales: 0.1
seconds, 0.4 seconds1, 1 second and 2 seconds. For an audio signal sampled at 44100 Hz
these choices correspond to 4096, 16384, 44100 and 88200 audio samples, respectively.
There is no overlapping between samples.

We perform experiments on two datasets: TUT Rare Sound Events 20172 and TAU Urban
Acoustic Scenes 2020 datasets 3. In each experiment, the data used for training do not contain
any anomalous events. Thus everything which is fed into the models is assumed to be part
of the normality condition. As a hyper-parameter setting, we use the Adam optimizer with
a learning rate of 10−4, a batch size of 128 and a number of epochs equals to 100 for the
fully-SPAD+CNN14 and conv-SPAD while 250 for the fully-SPAD. For the testing phase,
we consider an anomaly to be any instance belonging to the rare event sounds available
in the TUT dataset. Whereas with this dataset, we can count on the provided mixtures of

1 The minimum length the original CNN-14 model accepts at inference time is 16384 audio samples. We
empirically found this value.
2 https://zenodo.org/record/401395 and https://zenodo.org/record/1160455
3 https://zenodo.org/record/3670167
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Fig. 4 In conv-SPAD the autoencoder is asymmetric with three layers of bi-dimensional convolutions for the
encoding and five transposed bi-dimensional convolutions for the decoding phase. Here, we use the notation
ch@h × w where ch represents the number of channels, h the temporal dimension and w the frequency
dimension of the feature map matrix

background sounds and rare events, for the TAU dataset, we had to manually inject anoma-
lous events from TUT into these new background sounds. We randomly perform the mix
with the subsequent procedure inspired by the mixing procedure used for the TUT Dataset.
We inject a randomly chosen event with a prefixed probability for each background sound.
We also randomly select the offsets within the event and for the inject point. This way,
we try to introduce a high degree of randomness during the mixing procedure. The perfor-
mance of each model is then evaluated using the area under either the ROC curve and the
precision-recall curve, while themodel sizes (in terms of number of parameters) is reported in
Table 1. The code for the experiments will be released at the link: https://github.com/fablos/
spad.

5.2 TUT rare sound events 2017 dataset

The TUT Rare Sound Events 2017 dataset Mesaros et al. 2017 provides recordings of 15
everyday acoustic scenes which serve as background and separately provides sounds about
isolated rare events belonging to three different classes: baby-cry, glass-break and gun-shot.
The overall dataset is split into a training set and an evaluation set. The former contains 9
hours of the background sounds and 100 events from each class, while the latter contains
12 hours of background and 500 events for each class. In the training phase, we ignore
the rare classes and feed the detection models with the background noise. The test set is
instead built by randomly mixing background and events, following an event occurrence
probability and different event-to-background ratios, defined as the ratio between the root
mean square energy of the rare event and the background audio. Upon this data, we apply the

Table 1 The number of parameters for the AEs evaluated in the analysis

Num. of parameters (Size in bytes)
Input length 4096 16384 44100 88200

fully-SPAD+CNN14 – 5.5M (21MB) 5.5M (21MB) 5.5M (21MB)

fully-SPAD 8.9M (34MB) 19.2M (73MB) 41.7M (159MB) 78M (297MB)

conv-SPAD 155k (607KB) 477k (1MB) 1.2M (4MB) 2.3M (8MB)

With fully-SPAD+CNN14 we have to consider to add the CNN14 cost which is 80.7M parameters (equivalent
to 312MB)
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Table 2 AUC and AUC PR results for Wavenet and SPAD on 4096 samples input

Model WaveNet fully-SPAD conv-SPAD
place AUC AUC PR AUC AUC PR AUC AUC PR

beach 0.72 0.29 0.81 0.46 0.81 0.46

bus 0.83 0.48 0.87 0.57 0.85 0.56

cafe restaurant 0.76 0.24 0.72 0.13 0.73 0.24

car 0.82 0.61 0.90 0.66 0.89 0.65

city center 0.82 0.32 0.85 0.50 0.75 0.21

forest path 0.72 0.09 0.77 0.19 0.74 0.18

grocery store 0.77 0.24 0.79 0.33 0.79 0.44

home 0.69 0.07 0.70 0.10 0.71 0.16

library 0.67 0.18 0.75 0.10 0.76 0.13

metro station 0.79 0.14 0.79 0.38 0.70 0.06

office 0.78 0.21 0.79 0.41 0.80 0.44

park 0.80 0.46 0.83 0.45 0.82 0.44

residential area 0.78 0.22 0.78 0.31 0.76 0.30

train 0.84 0.46 0.83 0.51 0.83 0.50

tram 0.87 0.56 0.87 0.64 0.86 0.62

Overall Score 0.78 0.3 0.8 0.38 0.79 0.36

The best results are marked in bold

pre-processing procedure described in Section 4 and compare fully-SPAD+CNN14, fully-
SPAD and conv-SPAD with the WaveNet model presented in Rushe et al. (2019).

The first experiment in our analysis is on an input length of 4096 audio samples, equivalent
to about 100ms. In this case, we cannot use fully-SPAD+CNN14 since its minimum admis-
sible input length is 16384. In Table 2 we report the results, in terms of Area Under ROC
Curve (AUC) and Area Under Precision-Recall Curve (AUC PR), obtained on the different
background environments in TUT dataset.

The results show that both the models fully-SPAD and conv-SPAD have comparable
results with WaveNet. This latter is able to reach better performance in only two cases: cafe
restaurant and train. In all the other cases its results are either matched (3 cases) or improved
(10) by the model fully-SPAD. At the same time, the model conv-SPAD obtains comparable
results with both the other two models across the different environments; moreover it is able
to improve the WaveNet’s overall score both on the AUC and the AUC PR. It is important to
note here that, while the WaveNet and fully-SPAD have comparable sizes4, the conv-SPAD
is much smaller than those models (see Table 1). Nevertheless, its performances are still
comparable with the other competitors, except for only two environments: city center and
metro station. These results support our claim about the advantage of the frequency analysis
as discussed in Research Question Q1.

We continue our analysis by increasing the input to 16384 audio samples, the minimum
input length accepted by CNN14. We thus keep unchanged the parameters of the feature
extractor and only trained the Autoencoder module of fully-SPAD+CNN14, presented in
Section 4. The results of these experiment are shown in Table 3.

4 The WaveNet has about 12M parameters, while the fully-SPAD has around 9M parameters.
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Table 3 AUC and AUC PR results for SPAD and Wavenet 16384 Samples Input

Model WaveNet fully-SPAD+CNN14 fully-SPAD conv-SPAD
place AUC AUC PR AUC AUC PR AUC AUC PR AUC AUC PR

beach 0.74 0.34 0.82 0.28 0.84 0.50 0.85 0.54

bus 0.85 0.55 0.87 0.46 0.89 0.67 0.87 0.63

cafe restaurant 0.76 0.30 0.73 0.21 0.76 0.34 0.74 0.15

car 0.84 0.68 0.88 0.49 0.91 0.70 .90 0.69

city center 0.83 0.34 0.87 0.56 0.86 0.46 0.87 0.55

forest path 0.73 0.11 0.79 0.20 0.76 0.14 0.75 0.19

grocery store 0.77 0.26 0.81 0.27 0.83 0.33 0.84 0.50

home 0.69 0.09 0.72 0.15 0.72 0.08 0.72 0.10

library 0.67 0.18 0.75 0.24 0.73 0.10 0.74 0.14

metro station 0.79 0.16 0.80 0.35 0.82 0.40 0.83 0.42

office 0.80 0.23 0.81 0.44 0.83 0.42 0.82 0.30

park 0.80 0.47 0.85 0.39 0.84 0.53 0.72 0.32

residential area 0.77 0.12 0.79 0.26 0.82 0.36 0.80 0.39

train 0.86 0.51 0.83 0.34 0.86 0.51 0.85 0.53

tram 0.89 0.65 0.83 0.47 0.87 0.62 0.87 0.66

Overall Score 0.79 0.33 0.81 0.34 0.82 0.41 0.81 0.41

The best results are marked in bold

With this new input size, WaveNet slightly improved its performance in a few envi-
ronmental scenes as well as SPAD models (namely fully-SPAD+CNN14, fully-SPAD and
conv-SPAD), supporting our claim about segment lengths concerning Research QuestionQ1.
WaveNet wins only on one scene, tram. At the same time, all its other results are matched
(cafe and train) or improved by SPADmodels (12 out of 15 scenes). The results from Table 3
also show similar performance between the two models fully-SPAD and conv-SPAD and the
model fully-SPAD+CNN14.We expected that a feature extractor, such asCNN14,would pro-
vide representations more beneficial for the task. However, the results show only few slight
improvements (except for library AUC PR) while in the majority of the scenarios fully-
SPAD+CNN14 is equaled by the competitors or outperformed. This suggests that exploiting
the transferred knowledge may be redundant (see Research Question Q3). The following
experiments further confirm this last point.

We now proceed to test the SPAD models using an even longer input in order to discover
how such a richer input may help to reach even better results, providing an empirical answer
to Research Question Q1. We argue that long inputs do carrier more informative content that
should allow the models to be more exposed to the effect of anomalies. Since we are injecting
anomalous events in our tests, whose average duration is about two seconds, we hypothesize
that a lower variability characterizes small inputs than long ones. Thus the models would
still be able to reconstruct the input even in the presence of anomalies. On the other hand,
long inputs, having a signature built over a longer temporal horizon, should be characterized
by a structure more conditioned by anomalous patterns, making the reconstruction process
harder. We thus continue our analysis with input whose duration is 1s (44,100 samples) and
2s (88,200 samples).
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In Table 4 we report the results for only the SPAD models (fully-SPAD+CNN14, fully-
SPAD and conv-SPAD) since we experienced memory-related issues5 with the WaveNet
model which prevent us to properly train this model.

The results of these experiments show how the larger models perform better in solving
the task. That is probably related to their greater capacity to model the data distribution,
which is now more complex than in the previous experiments. This aspect is confirmed by a
consistent drop in performances of the conv-SPADwith the 2s input over some scenarios.We
can see the same behaviour also with the 1s-long segments but with slighter effects. Overall,
however, all the remaining models seem to benefit from the long inputs showing smooth
performance improvements.

Unfortunately, improvements in quality come at the cost of heavier models. By looking at
the size of the models in Table 1, we can see how all the models but conv-SPAD may exceed
the limits imposed by extreme edge computing. We thus consider the conv-SPAD with 1s
input as a good compromise between performance and model complexity, answering both
Research Questions Q2 and Q3.

5.3 TAU Urban Acoustic Scenes 2020 dataset

The TAU Urban Acoustic Scenes 2020 dataset is an updated version of the TAU Urban
Acoustic Scenes 2019 dataset (Mesaros et al., 2018) which was used for the task of acoustic
scene classification in the DCASE 2019 6.

In this dataset, ten acoustic scene classes are recorded in twelve large cities. In our exper-
iments, however, we found some issues with the files related to two cities, Amsterdam and
Madrid, so we decided to remove them.

Each acoustic scene has 1440 10-second segments, equivalent to 240 minutes of audio,
with each city providing 144 segments. The dataset provides no anomalous event. The TAU
dataset was intended for the scene classification task and only provides the usual audio
signals describing the scenes. We thus need to inject anomaly events within the regular
audio. Therefore, we inject all three rare events from the TUT dataset, namely babycry, gun-
shot, and glass-break. We create three separate test sets to investigate the role of the audio
signature of the anomalous events in its detection.

The employed injection procedure is similar to that proposed in Mesaros et al. (2017) for
the TUT dataset. However, we drastically increased the event occurrence probability bringing
it to the 60% of the chance of having an injection7. That contrasts with the previous dataset in
which the number of anomaly events is relatively small. Here, the high number of corrupted
samples should enable us to cover awider variety ofmixtures between background sounds and
anomalous events, making the analysis more accurate. Finally, we mix the background audio
signal and the anomalous event at three different levels of event-to-background ratios8(EBR)
of {−6dB,+0dB,+6dB}.

5 Even with a large amount of GPU RAM(32GB) we were not able to train the model so as it was provided
from the authors of (Rushe et al., 2019).
6 http://dcase.community/challenge2019/task-acoustic-scene-classification.
7 In the previous experiments the ratio ranges between around the 2% and 5% depending on the segment
length. More details about this data distribution at AudioAnomalyDetectionWaveNet
8 The event-to-background ratio is defined as the ratio between the root mean square energy of the rare event
and the background audio.
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Table 5 TAU Dataset: comparative experiment between Conv-SPAD and WaveNet with input length 4096
sample

Place Metric Model -6 dB 0 dB 6 dB

Babycry

airport AUC Conv-SPAD 0.889 0.859 0.833

WaveNet 0.402 0.563 0.703

AUC PR Conv-SPAD 0.913 0.894 0.879

WaveNet 0.444 0.583 0.724

bus AUC Conv-SPAD 0.686 0.748 0.853

WaveNet 0.835 0.924 0.965

AUC PR Conv-SPAD 0.783 0.834 0.914

WaveNet 0.839 0.929 0.968

metro AUC Conv-SPAD 0.721 0.711 0.764

WaveNet 0.735 0.854 0.919

AUC PR Conv-SPAD 0.800 0.792 0.842

WaveNet 0.732 0.858 0.925

metro station AUC Conv-SPAD 0.864 0.869 0.872

WaveNet 0.577 0.706 0.798

AUC PR Conv-SPAD 0.906 0.912 0.917

WaveNet 0.541 0.658 0.762

park AUC Conv-SPAD 0.845 0.841 0.850

WaveNet 0.647 0.783 0.875

public square AUC Conv-SPAD 0.664 0.667 0.723

WaveNet 0.550 0.687 0.790

AUC PR Conv-SPAD 0.745 0.742 0.786

WaveNet 0.531 0.655 0.769

shopping mall AUC Conv-SPAD 0.855 0.869 0.867

WaveNet 0.379 0.569 0.724

AUC PR Conv-SPAD 0.913 0.905 0.908

WaveNet 0.465 0.630 0.773

street pedestrian AUC Conv-SPAD 0.799 0.789 0.802

WaveNet 0.452 0.610 0.741

AUC PR Conv-SPAD 0.861 0.852 0.862

WaveNet 0.484 0.636 0.768

street traffic AUC Conv-SPAD 0.880 0.885 0.895

WaveNet 0.562 0.703 0.809

AUC PR Conv-SPAD 0.917 0.920 0.928

WaveNet 0.554 0.701 0.815

tram AUC Conv-SPAD 0.734 0.729 0.785

WaveNet 0.738 0.849 0.914

AUC PR Conv-SPAD 0.813 0.809 0.855

WaveNet 0.717 0.843 0.915

Overall Score AUC Conv-SPAD 0.797 0.797 0.824

WaveNet 0.588 0.725 0.824
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Table 5 continued

AUC PR Conv-SPAD 0.854 0.855 0.879

WaveNet 0. 594 0.727 0.829

Glassbreak

airport AUC Conv-SPAD 0.925 0.925 0.873

WaveNet 0.739 0.857 0.919

AUC PR Conv-SPAD 0.946 0.939 0.922

WaveNet 0.766 0.881 0.936

bus AUC Conv-SPAD 0.734 0.719 0.769

WaveNet 0.956 0.980 0.990

AUC PR Conv-SPAD 0.841 0.838 0.876

WaveNet 0.962 0.983 0.992

metro AUC Conv-SPAD 0.744 0.745 0.747

WaveNet 0.921 0.961 0.979

AUC PR Conv-SPAD 0.859 0.847 0.858

WaveNet 0.931 0.968 0.983

metro station AUC Conv-SPAD 0.876 0.866 0.847

WaveNet 0.819 0.893 0.933

AUC PR Conv-SPAD 0.923 0.920 0.911

WaveNet 0.800 0.886 0.933

park AUC Conv-SPAD 0.868 0.845 0.824

WaveNet 0.866 0.932 0.964

AUC PR Conv-SPAD 0.922 0.910 0.902

WaveNet 0.877 0.941 0.970

public square AUC Conv-SPAD 0.738 0.733 0.734

WaveNet 0.813 0.893 0.936

AUC PR Conv-SPAD 0.823 0.824 0.834

WaveNet 0.798 0.890 0.940

shopping mall AUC Conv-SPAD 0.919 0.907 0.882

WaveNet 0.786 0.893 0.941

AUC PR Conv-SPAD 0.944 0.941 0.931

WaveNet 0.831 0.920 0.958

street pedestrain AUC Conv-SPAD 0.841 0.828 0.808

WaveNet 0.763 0.871 0.928

AUC PR Conv-SPAD 0.900 0.894 0.888

WaveNet 0.794 0.896 0.945

street traffic AUC Conv-SPAD 0.909 0.904 0.889

WaveNet 0.844 0.918 0.953

AUC PR Conv-SPAD 0.943 0.943 0.936

WaveNet 0.856 0.929 0.961

tram AUC Conv-SPAD 0.810 0.774 0.764

WaveNet 0.913 0.956 0.976

Overall Score AUC Conv-SPAD 0.893 0.823 0.814

WaveNet 0.842 0.915 0.952
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Table 5 continued

AUC PR Conv-SPAD 0.898 0.892 0.892

WaveNet 0.851 0.926 0.960

Gunshot

airport AUC Conv-SPAD 0.884 0.828 0.736

WaveNet 0.332 0.423 0.516

AUC PR Conv-SPAD 0.913 0.874 0.812

WaveNet 0.462 0.534 0.612

bus AUC Conv-SPAD 0.686 0.748 0.853

WaveNet 0.835 0.924 0.965

AUC PR Conv-SPAD 0.783 0.834 0.914

WaveNet 0.839 0.929 0.968

bus AUC Conv-SPAD 0.590 0.586 0.708

WaveNet 0.686 0.796 0.871

AUC PR Conv-SPAD 0.722 0.722 0.822

WaveNet 0.722 0.823 0.891

metro AUC Conv-SPAD 0.658 0.584 0.585

WaveNet 0.581 0.693 0.778

AUC PR Conv-SPAD 0.765 0.771 0.713

WaveNet 0.638 0.737 0.813

metro station AUC Conv-SPAD 0.755 0.714 0.671

WaveNet 0.475 0.567 0.647

AUC PR Conv-SPAD 0.831 0.802 0.770

WaveNet 0.528 0.602 0.673

park AUC Conv-SPAD 0.777 0.731 0.715

WaveNet 0.520 0.631 0.730

AUC PR Conv-SPAD 0.851 0.812 0.805

WaveNet 0.585 0.681 0.766

public square AUC Conv-SPAD 0.631 0.571 0.555

WaveNet 0.452 0.544 0.631

AUC PR Conv-SPAD 0.736 0.690 0.680

WaveNet 0.523 0.597 0.671

shopping mall AUC Conv-SPAD 0.870 0.819 0.746

WaveNet 0.304 0.403 0.507

AUC PR Conv-SPAD 0.905 0.870 0.820

WaveNet 0.477 0.555 0.636

street pedestrian AUC Conv-SPAD 0.769 0.712 0.665

WaveNet 0.368 0.463 0.556

AUC PR Conv-SPAD 0.847 0.805 0.768

WaveNet 0.484 0.563 0.643

street traffic AUC Conv-SPAD 0.823 0.770 0.726

WaveNet 0.465 0.558 0.642

AUC PR Conv-SPAD 0.879 0.841 0.805

WaveNet 0.543 0.621 0.695
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Table 5 continued

tram AUC Conv-SPAD 0.687 0.605 0.604

WaveNet 0.589 0.698 0.782

AUC PR Conv-SPAD 0.787 0.729 0.730

WaveNet 0.611 0.730 0.808

Overall score AUC Conv-SPAD 0.744 0.692 0.671

WaveNet 0.477 0.578 0.666

AUC PR Conv-SPAD 0.823 0.786 0.773

WaveNet 0.557 0.644 0.721

The best results are marked in bold

As in the previous experiments, we use two different chuck sizes, 4096 and 16384 audio
samples, for the comparative analysis against WaveNet and 44100 and 88200 audio samples
only for the Conv-Spad model.

Analyzing the results in Table 5, we can confirm the competitive performance of the
simple and lightweight model conv-Spad. With the input size of 4096 audio samples, the
155k parameters of the conv-Spad are enough to reach comparable results with the larger
model WaveNet. Looking at the aggregate score conv-Spad can outperform WaveNet five
times over nine and match on one when considering AUC. At the same time, it has a score of
six to three over the AUC PR. The experiments also highlight how the deeper sounds of the
gunshot are more challenging to be detected than babycry and glass-break in the frequency
domain. That happens since the event gunshot has a lower frequency content that is more
prone to overlap with background sound frequencies, especially at higher EBR levels and in
short audio segments. On the other hand, the audio signatures of babycry and glass-break,
characterized by a sharp energy content mainly concentrating at higher frequencies, make
these anomalous events stand out even at low EBR. The same consideration does not apply
to the waveform analysis made by WaveNet, which on the other hand, takes advantage of
that.

The results for the input size of 16384 audio samples, Table 6 align with the previous and
show how the small model conv-Spad, with its 477k parameters, can outperform WaveNet
seven times out of nine both over the AUC and AUC PR. Furthermore, the improvements
in the results follow the trend already seen with the TUT dataset, in which broader inputs
enable the model to reach better results. To confirm this last point, we present the results for
the largest input size we tested, 44100 and 88200 audio samples.

We observe a substantial performance increment in the results reported in Table 7. Fur-
thermore, conv-Spad performs better with larger than smaller inputs over all the different
types of anomaly events. That is related to the spectral analysis made on the input signal.
When we perform such analysis over small inputs, we are forced to shrink the window
size for the spectrogram computation. For example, for input length 4096, we set the win-
dow size to 256 points, and the spectrum is equally split into images representing a 5ms
duration9. However, reducing the window size increases the lowest detectable frequency,
F0 = 5 ∗ (SR/WS) = 5 ∗ (44100/265) � 861Hz. In Table 7, we use a 1024 samples
analysis window that allows us to capture lower pitch signals, F0 � 215Hz. From the result,

9 When we compute the spectrogram, we use a window size of 256 points and hope size of 80 points for audio
segments shorter than 44100 samples, 1024 and 320 for equal to or longer segments.
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Table 6 TAU Dataset: comparative experiment between Conv-SPAD and WaveNet with input length 16384
samples

Place Metric Model -6 dB 0 dB 6 dB

Babycry

airport AUC Conv-SPAD 0.903 0.884 0.873

WaveNet 0.349 0.509 0.664

AUC PR Conv-SPAD 0.930 0.916 0.908

WaveNet 0.512 0.631 0.762

bus AUC Conv-SPAD 0.921 0.935 0.943

WaveNet 0.883 0.947 0.977

AUC PR Conv-SPAD 0.934 0.951 0.961

WaveNet 0.906 0.961 0.984

metro AUC Conv-SPAD 0.854 0.813 0.793

WaveNet 0.760 0.871 0.932

AUC PR Conv-SPAD 0.898 0.870 0.855

WaveNet 0.812 0.908 0.955

metro station AUC Conv-SPAD 0.894 0.931 0.949

WaveNet 0.557 0.683 0.778

AUC PR Conv-SPAD 0.921 0.953 0.968

WaveNet 0.612 0.702 0.781

park AUC Conv-SPAD 0.957 0.972 0.977

WaveNet 0.663 0.800 0.888

AUC PR Conv-SPAD 0.972 0.984 0.987

WaveNet 0.726 0.843 0.917

park AUC Conv-SPAD 0.868 0.923 0.948

WaveNet 0.533 0.674 0.785

AUC PR Conv-SPAD 0.912 0.953 0.971

WaveNet 0.610 0.718 0.816

shopping mall AUC Conv-SPAD 0.926 0.921 0.927

WaveNet 0.334 0.530 0.704

AUC PR Conv-SPAD 0.945 0.942 0.947

WaveNet 0.527 0.679 0.813

street pedestrian AUC Conv-SPAD 0.860 0.872 0.893

WaveNet 0.428 0.591 0.734

AUC PR Conv-SPAD 0.911 0.915 0.928

WaveNet 0.563 0.701 0.820

street traffic AUC Conv-SPAD 0.940 0.968 0.978

WaveNet 0.550 0.694 0.807

AUC PR Conv-SPAD 0.959 0.981 0.988

WaveNet 0.529 0.677 0.803

Overall Score AUC Conv-SPAD 0.904 0.915 0.922

WaveNet 0.582 0.716 0.819

AUC PR Conv-SPAD 0.933 0.942 0.948

WaveNet 0.659 0.771 0.859
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Table 6 continued

Glassbreak

airport AUC Conv-SPAD 0.933 0.912 0.874

WaveNet 0.734 0.858 0.925

AUC PR Conv-SPAD 0.955 0.942 0.924

WaveNet 0.821 0.913 0.957

bus AUC Conv-SPAD 0.850 0.860 0.866

WaveNet 0.971 0.987 0.994

AUC PR Conv-SPAD 0.895 0.907 0.915

WaveNet 0.981 0.992 0.996

metro AUC Conv-SPAD 0.877 0.813 0.746

WaveNet 0.939 0.972 0.985

AUC PR Conv-SPAD 0.918 0.882 0.845

WaveNet 0.962 0.984 0.992

metro station AUC Conv-SPAD 0.860 0.876 0.885

WaveNet 0.817 0.885 0.924

AUC PR Conv-SPAD 0.913 0.927 0.936

WaveNet 0.810 0.870 0.906

park AUC Conv-SPAD 0.897 0.914 0.921

WaveNet 0.887 0.944 0.973

AUC PR Conv-SPAD 0.936 0.950 0.956

WaveNet 0.923 0.965 0.984

public square AUC Conv-SPAD 0.835 0.859 0.874

WaveNet 0.820 0.898 0.941

AUC PR Conv-SPAD 0.903 0.921 0.933

WaveNet 0.853 0.921 0.958

shopping mall AUC Conv-SPAD 0.950 0.937 0.917

WaveNet 0.788 0.898 0.949

AUC PR Conv-SPAD 0.965 0.959 0.950

WaveNet 0.875 0.943 0.973

street pedestrian AUC Conv-SPAD 0.888 0.877 0.863

WaveNet 0.781 0.886 0.941

AUC PR Conv-SPAD 0.934 0.928 0.922

WaveNet 0.859 0.933 0.967

street traffic AUC Conv-SPAD 0.895 0.917 0.932

WaveNet 0.861 0.930 0.962

AUC PR Conv-SPAD 0.938 0.953 0.963

WaveNet 0.840 0.910 0.940

tram AUC Conv-SPAD 0.835 0.842 0.844

WaveNet 0.929 0.965 0.982

AUC PR Conv-SPAD 0.903 0.912 0.917

WaveNet 0.951 0.978 0.989

Overall Score AUC Conv-SPAD 0.882 0.881 0.872

WaveNet 0.853 0.922 0.958
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Table 6 continued

AUC PR Conv-SPAD 0.926 0.928 0.926

WaveNet 0.888 0.941 0.966

Gunshot

airport AUC Conv-SPAD 0.897 0.848 0.777

WaveNet 0.292 0.378 0.469

AUC PR Conv-SPAD 0.930 0.897 0.851

WaveNet 0.529 0.594 0.665

bus AUC Conv-SPAD 0.603 0.629 0.657

WaveNet 0.743 0.839 0.898

AUC PR Conv-SPAD 0.693 0.717 0.745

WaveNet 0.819 0.891 0.935

metro AUC Conv-SPAD 0.836 0.753 0.669

WaveNet 0.597 0.709 0.791

AUC PR Conv-SPAD 0.884 0.829 0.772

WaveNet 0.725 0.808 0.868

metro station AUC Conv-SPAD 0.588 0.602 0.624

WaveNet 0.461 0.548 0.627

AUC PR Conv-SPAD 0.696 0.718 0.744

WaveNet 0.584 0.645 0.707

park AUC Conv-SPAD textbf0.755 0.797 0.821

WaveNet 0.513 0.635 0.738

AUC PR Conv-SPAD 0.815 0.858 0.882

WaveNet 0.668 0.755 0.828

public square AUC Conv-SPAD 0.547 0.564 0.587

WaveNet 0.439 0.530 0.617

AUC PR Conv-SPAD 0.672 0.695 0.724

WaveNet 0.599 0.666 0.732

shopping mall AUC Conv-SPAD 0.916 0.881 0.845

WaveNet 0.270 0.369 0.473

AUC PR Conv-SPAD 0.940 0.917 0.892

WaveNet 0.539 0.615 0.691

street pedestrian AUC Conv-SPAD 0.823 0.787 0.767

WaveNet 0.348 0.443 0.538

AUC PR Conv-SPAD 0.893 0.867 0.848

WaveNet 0.560 0.634 0.708

street traffic AUC Conv-SPAD 0.706 0.752 0.800

WaveNet 0.460 0.551 0.635

AUC PR Conv-SPAD 0.787 0.828 0.867

WaveNet 0.509 0.590 0.675

tram AUC Conv-SPAD 0.544 0.554 0.578

WaveNet 0.616 0.718 0.795

AUC PR Conv-SPAD 0.668 0.686 0.716

WaveNet 0.720 0.800 0.861
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Table 6 continued

Overall Score AUC Conv-SPAD 0.721 0.717 0.713

WaveNet 0.721 0.717 0.713

AUC PR Conv-SPAD 0.798 0.801 0.804

WaveNet 0.625 0.700 0.767

The best results are marked in bold

we can see how those lower frequencies enable the model to capture more details about the
place’s original signature, making the anomaly detection task more effective. Once again, we
recall that we were not able to test WaveNet with these input lengths since the model training
was excessively memory-demanding. Finally, the results show how conv-SPAD over 1s input
is a good trade-off solution for anomaly detection on edge devices. Only 1.2M parameters
make our proposed architecture, and its extremely simple layers can be replaced by more
sophisticated layers and further reduce its size. Also, we plan to investigate recent approaches
for quantization and distillation in future works.

6 Conclusion

In this work, we conducted an analysis to design a suitable lightweight model to perform
audio-based anomaly detection on edge devices. In particular, we investigated the perfor-
mance of solutions built upon an autoencoder architecture and the spectral analysis of the
input audio signal. We evaluated the role played by general-purpose audio features extracted
via a transfer learning approach and shown that the same performance could be reached by
increasing the capacity of a fully connected autoencoder. We then introduced conv-SPAD,
a lightweight convolutional autoencoder that can heavily reduce the model’s memory foot-
print without excessively sacrificing the performance. With conv-SPAD we can show that
even a simple architecture can beat a larger model, such as WaveNet, in the task of anomaly
detection across different real scenarios. Moreover, its small computational cost allows this
model to be used on edge devices. From the experiments, we can thus conclude that, as a
model suitable for edge devices, the conv-SPAD model results in a competitive approach to
carry out audio-based anomaly detection with inputs whose duration is at most one second.
Of course, this latter point should guide the choice of this approach for compatible scenarios.
For instance, for natural scenes, the structure of the typical input signature may be well cap-
tured by the model, even with a small input duration. Moreover, the limited input duration
does not prevent the model from being sensible to anomalous events, even if a more pro-
longed duration better characterizes those events. That might not be true in scenarios such
as industrial machine failures where the anomalies could be defined as altered frequency
patterns that can only be detected by evaluating the temporal component, thus using some
auto-regressive or recurrent approach. Nevertheless, unfortunately, those models are difficult
to match the constraints of edge devices. In future work, we plan to extend our analysis
to different application domains (e.g. factory machine failures) and different architectures.
On this last point, we will consider to balance simplicity with regularized models ranging
from variational approaches to more recent adversarial-based learning, such as Adversarial
Autoencoders (Makhzani et al., 2016), that enable to use a broader set of distributions as
priors for the latent code.
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Table 7 TAU Dataset: comparative experiment on Conv-SPAD with input length 44100 and 88200 samples

Place Metric Segment Length -6 dB 0 dB 6 dB

Babycry

airport AUC 44100 0.923 0.963 0.979

88200 0.917 0.961 0.980

AUC PR 44100 0.922 0.966 0.984

88200 0.907 0.961 0.985

bus AUC 44100 0.961 0.972 0.977

88200 0.970 0.981 0.986

AUC PR 44100 0.966 0.978 0.984

88200 0.974 0.985 0.990

metro AUC 44100 0.950 0.971 0.979

88200 0.943 0.975 0.986

AUC PR 44100 0.966 0.982 0.988

88200 0.963 0.985 0.992

metro station AUC 44100 0.944 0.975 0.986

88200 0.932 0.975 0.990

AUC PR 44100 0.959 0.983 0.992

88200 0.951 0.983 0.994

park AUC 44100 0.983 0.992 0.994

88200 0.973 0.990 0.995

AUC PR 44100 0.987 0.994 0.996

88200 0.978 0.993 0.997

public square AUC 44100 0.925 0.968 0.983

88200 0.924 0.971 0.987

AUC PR 44100 0.947 0.979 0.990

88200 0.943 0.979 0.991

shopping mall AUC 44100 0.945 0.980 0.990

88200 0.952 0.985 0.994

AUC PR 44100 0.955 0.986 0.994

88200 0.960 0.989 0.996

street pedestrian AUC 44100 0.943 0.975 0.986

88200 0.938 0.978 0.990

AUC PR 44100 0.956 0.984 0.992

88200 0.951 0.984 0.994

street traffic AUC 44100 0.978 0.992 0.996

88200 0.982 0.995 0.997

AUC PR 44100 0.984 0.995 0.998

88200 0.987 0.996 0.998

tram AUC 44100 0.953 0.970 0.975

88200 0.957 0.976 0.983

AUC PR 44100 0.967 0.981 0.986

88200 0.970 0.985 0.990
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Table 7 continued

Overall Score AUC 44100 0.950 0.976 0.985

88200 0.949 0.979 0.989

AUC PR 44100 0.961 0.983 0.990

88200 0.958 0.984 0.993

Glassbreak

airport AUC 44100 0.887 0.917 0.935

88200 0.872 0.918 0.947

AUC PR 44100 0.911 0.939 0.957

88200 0.867 0.912 0.945

bus AUC 44100 0.897 0.911 0.920

88200 0.912 0.935 0.951

AUC PR 44100 0.918 0.934 0.947

88200 0.916 0.943 0.962

metro AUC 44100 0.887 0.904 0.914

88200 0.879 0.915 0.940

AUC PR 44100 0.927 0.943 0.953

88200 0.913 0.944 0.964

metro station AUC 44100 0.909 0.931 0.943

88200 0.912 0.943 0.962

AUC PR 44100 0.937 0.955 0.966

88200 0.934 0.960 0.976

park AUC 44100 0.951 0.964 0.968

88200 0.950 0.970 0.980

AUC PR 44100 0.968 0.978 0.982

88200 0.959 0.978 0.987

public square AUC 44100 0.880 0.914 0.933

88200 0.871 0.922 0.955

AUC PR 44100 0.920 0.947 0.963

88200 0.893 0.940 0.969

shopping mall AUC 44100 0.917 0.942 0.957

88200 0.934 0.962 0.977

AUC PR 44100 0.944 0.964 0.976

88200 0.943 0.969 0.984

street pedestrian AUC 44100 0.898 0.926 0.941

88200 0.892 0.934 0.960

AUC PR 44100 0.930 0.954 0.967

88200 0.906 0.947 0.971

street traffic AUC 44100 0.966 0.977 0.982

88200 0.983 0.989 0.991

AUC PR 44100 0.979 0.986 0.989

88200 0.988 0.993 0.995

tram AUC 44100 0.892 0.907 0.913

88200 0.883 0.918 0.941
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Table 7 continued

AUC PR 44100 0.927 0.944 0.953

88200 0.901 0.938 0.962

Overall Score AUC 44100 0.909 0.929 0.941

88200 0.909 0.941 0.960

AUC PR 44100 0.936 0.954 0.965

88200 0.922 0.952 0.972

Gunshot

airport AUC 44100 0.637 0.673 0.721

88200 0.654 0.712 0.777

AUC PR 44100 0.712 0.748 0.796

88200 0.702 0.751 0.809

bus AUC 44100 0.689 0.731 0.774

88200 0.739 0.784 0.825

AUC PR 44100 0.748 0.798 0.838

88200 0.781 0.826 0.869

metro AUC 44100 0.629 0.653 0.694

88200 0.627 0.677 0.732

AUC PR 44100 0.731 0.763 0.803

88200 0.733 0.781 0.828

metro station AUC 44100 0.716 0.757 0.799

88200 0.730 0.787 0.839

AUC PR 44100 0.785 0.826 0.865

88200 0.801 0.852 0.894

park AUC 44100 0.824 0.868 0.894

88200 0.835 0.886 0.917

AUC PR 44100 0.867 0.908 0.932

88200 0.866 0.915 0.944

public square AUC 44100 0.639 0.681 0.732

88200 0.674 0.739 0.802

AUC PR 44100 0.722 0.770 0.823

88200 0.729 0.792 0.857

shopping mall AUC 44100 0.678 0.715 0.772

88200 0.740 0.799 0.857

AUC PR 44100 0.752 0.793 0.845

88200 0.791 0.848 0.901

street pedestrian AUC 44100 0.656 0.694 0.748

88200 0.693 0.755 0.820

AUC PR 44100 0.732 0.774 0.825

88200 0.745 0.807 0.869

street traffic AUC 44100 0.888 0.925 0.951

88200 0.926 0.949 0.966

AUC PR 44100 0.923 0.953 0.971

88200 0.950 0.969 0.980
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Table 7 continued

tram AUC 44100 0.644 0.670 0.701

88200 0.676 0.717 0.761

AUC PR 44100 0.724 0.761 0.804

88200 0.737 0.781 0.829

Overall Score AUC 44100 0.700 0.737 0.779

88200 0.729 0.780 0.830

AUC PR 44100 0.770 0.809 0.850

88200 0.784 0.832 0.878

The best results are marked in bold
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