
Citation: Aydin, N.; Turkez, H.;

Tozlu, O.O.; Arslan, M.E.; Yavuz, M.;

Sonmez, E.; Ozpolat, O.F.; Cacciatore,

I.; Di Stefano, A.; Mardinoglu, A.

Ameliorative Effects by Hexagonal

Boron Nitride Nanoparticles against

Beta Amyloid Induced Neurotoxicity.

Nanomaterials 2022, 12, 2690.

https://doi.org/10.3390/

nano12152690

Academic Editor: Robyn L.

Tanguay

Received: 29 June 2022

Accepted: 2 August 2022

Published: 5 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles
against Beta Amyloid Induced Neurotoxicity
Nursah Aydin 1, Hasan Turkez 2,3 , Ozlem Ozdemir Tozlu 1, Mehmet Enes Arslan 1 , Mehmet Yavuz 4,
Erdal Sonmez 5,6, Ozgur Fırat Ozpolat 7 , Ivana Cacciatore 8 , Antonio Di Stefano 8

and Adil Mardinoglu 9,10,*

1 Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
2 Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
3 East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University,

Erzurum 25240, Turkey
4 REEM Neuropsychiatry Clinics, İstanbul 34245, Turkey
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Abstract: Alzheimer’s disease (AD) is considered as the most common neurodegenerative disease.
Extracellular amyloid beta (Aβ) deposition is a hallmark of AD. The options based on degradation
and clearance of Aβ are preferred as promising therapeutic strategies for AD. Interestingly, recent
findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating
biological effects. In the present study, the aim was to investigate the effects of different concentrations
(0–500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta
amyloid (Aβ1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The
synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). Aβ1-42-induced neurotoxicity and
therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH
release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression
levels of genes associated with AD and cellular morphologies were examined. The exposure to Aβ1-42

significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aβ1-42

induced both apoptotic and necrotic cell death. Aβ exposure led to significant increases in expression
levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression
levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aβ1-42-induced
neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the
remarkable elevation in the signal for Aβ following exposure to Aβ1-42 for 48 h. Our results indicated
that hBN-NPs could significantly prevent the neurotoxic damages by Aβ. Thus, hBN-NPs could be
a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug
delivery strategies.

Keywords: Alzheimer’s disease; beta amyloid; hexagonal boron nitride nanoparticles; neurotoxicity;
neuroprotection; SHSY5Y cells; in vitro
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1. Introduction

Alzheimer’s disease (AD), which is considered the most common age-related neurode-
generative disorder, was first described in 1901 by the German psychiatrist Alois Alzheimer
in his study of changes in brain tissue after the death of a patient with multiple neurological
symptoms that followed for many years [1,2]. Although this disease was identified over a
century ago, no descriptive etiology and no viable treatment have been found [3–5]. It is
thought that the number of people affected by the disease will increase significantly due to
better living conditions, longer lifetimes, and the absence of a definitive cure for AD [6,7].
Because of this, AD is a concern today and has become an urgent research priority [6].

AD is responsible for the majority of dementia cases, and it is characterized by sig-
nificant memory loss, restrictions in daily life activities and various neuropsychiatric and
behavioral disorders [8,9]. AD shows characteristic histopathological features such as
intracellular neurofibrillary lump formation and extracellular amyloid accumulation in
the brain [1]. Amyloid beta (Aβ) is the main factor in the formation of amyloid plaques
is formed by proteolytic cleavage with β and γ secretases of amyloid precursor protein
(APP), which is a type 1 transmembrane protein in the brain membrane. As a result of this
division, several types of Aβ such as Aβ1-40 and Aβ1-42 are obtained [10,11]. Aβ1-42 tends
to bind to the intracellular and extracellular layers of Aβ aggregates, which play a key
role in the pathology of AD [12]. Great efforts are being directed towards designing and
developing novel agents that act as Aβ fibril inhibitors for the prevention and treatment of
AD [13–16].

Boron (B) exerts metal and non-metal properties as a semiconductor element.
B is never found on Earth in the elementary form. B is present in nature in the form
of borates like boric acid, borax, colemanite or ulexite [17]. Recent studies indicated posi-
tive health impacts due to B intake on humans and animals. These key biological effects
include antioxidant [18], anti-mutagenic [19], anti-microbial [20], anti-inflammatory [21],
anticancer [22], neuroprotective [23] action potential and metal chelating features [24].

BN is a synthetic compound consisting equal numbers of B and nitrogen (N) atoms in [25].
The layered lattice structure of BN forms the basis of many properties such as good
lubricating properties, good insulating properties, high resistance to chemical attacks,
high dielectric distortion, high volume resistance, high neutron capture capacity, excellent
thermoelectric properties and good resistance to oxidation. BN is very similar to carbon
structures, and it has attracted much attention due to its unique chemical, physical, thermal,
mechanical, and biocompatibility properties. Hence, BN is widely used in a wide range of
industrial fields due to its physico-chemical features and lack of toxicity [26–28]. Depending
on the pressure and temperature, the BN molecule has different crystal structures such as
hexagonal (h-BN), wurstitic (w-BN), rhombus (r-BN) and cubic (c-BN). However, the most
stable form at room temperature is the hexagonal form [29,30]. Since h-BN has the same
number of electrons as two carbon atoms, it is similar to the graphite structure. Due to this
similarity, hBN is called “white graphite” or “white carbon” [31]. This material, which is
structurally similar to graphene, has attracted much attention in recent years as it has been
used to create different nanostructures such as BN nanotubes (BNNT) and BN nanosheets
(BNNS) [30,32].

Boron nanoparticles (BNPs) drew considerable interest in a multitude of applications
including high energy density fuels, hydrogen generation from water as well as neutron
capture therapy of cancer cells [33]. Recent toxicogenomics studies of different BNPs in-
cluding titanium diboride, zinc borate [34], tungsten boride [35], nickel boride [36] and
boron carbide [37] showed that BNPs could be used as safe nanomaterials in several phar-
macological and biomedical applications. Considering the applications of BN in the field of
nanotechnology, studies on the production of BN in nanostructure and determination of
its properties have gained importance. Nano BN products exert superior properties such
as being lighter, more elastic and harder than existing BN products in powder form [38].
Similar to other BNPs, BNNTs do not have toxic effects on kidney cells, and thus, they are
considered as biocompatible materials [28]. Interestingly, BN nanoparticles are enabled
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to positively alter cell cycle, signal transduction, cell–cell interactions and cancer affect-
ing genes in human lung epithelial cells [39]. In addition, BN nanoparticles exert low
cytotoxicity potential, high chemical stability, high drug loading efficiency and rapid cell
uptake [40].

In this investigation, we have attempted to establish Aβ neurotoxicity by exposing dif-
ferentiated human SHSY5Y cells to Aβ1-42. We synthesized hBN-NPs and morphologically
verified them using XRD, SEM and TEM analysis methods. Then, we investigated their
role in ameliorating the neurotoxicity induced by Aβ1-42 using an AD-like in vitro model.
Our results propound the role of hBN-NPs in modulating neurotoxic damage by Aβ1-42.
Our proposed insight could be fruitful and crucial in developing novel and multitargeted
treatment options or drug delivery strategies towards AD.

2. Materials and Methods
2.1. Synthesis of hBN-NPs

In the synthesis of hBN-NPs, boric acid (H3BO3), sodium azide (NaN3) and hydrazine
hydrate (N2H4·H2O) chemicals were used as B and N sources. First, 2.5 g of H3BO3 and 8 g
of NaN3 chemicals were dissolved in 300 mL of deionized water, and mixing was carried
out for 30 min with a magnetic stirrer. Then, after adding 2.3 mL of N2H4·H2O to the
solution, the solution was stirred for a further 30 min. After mixing, the solution was placed
in an autoclave in nitrogenous gas medium and kept in the autoclave ash oven at 300 ◦C
for 16 h. After 16 h, the product removed from the autoclave was washed with plenty of
water. The product was then subjected to deionized water drying at 100 ◦C for 2–3 h in a
vacuum environment and hBN-NPs were synthesized [41,42].

2.2. Characterization of hBN-NPs

The crystal structure of the synthesized hBN-NPs was characterized by XRD mea-
surements, while the particle shape, size distribution and elemental composition were
evaluated using scanning electron microscopy (SEM) and transmission electron microscopy
(TEM). In this study, Rigaku SmartLAb X ray diffractometer was used in hBN XRD analysis.
SEM images of the samples were obtained with Jeo Jsm-6610 brand SEM device, TEM
images were obtained with Philips CM30T brand TEM device.

2.3. Cell Cultures

The human neuroblastoma SH-SY5Y cells from ATCC (CRL-2266) were cultured in
Dulbecco’s modified Eagle medium (DMEM): F12 (Gibco, New York, NY, USA) supple-
mented with 10% fetal bovine serum (FBS) (Gibco), 1% penicillin and streptomycin at
37 ◦C in a 5% CO2. Cells were seeded onto plates and were passaged when they reached
70–80% confluence. For the differentiation of SH-SY5Y cells, the medium was replaced
with DMEM: F12 medium containing 1% FBS and 10 µM retinoic acid (RA) (Sigma-Aldrich,
Milan, Italy). The media of the cells were renewed every three days with 1% FBS and 10 µM
RA containing medium. The differentiation process of the cells was observed for 11 days
with light microscopy [43].

2.4. Cell Viability Testing
2.4.1. MTT Assay

Cell viability was measured by using MTT Cell Proliferation Assay Kit (Cayman Chemical,
Ann Arbor, MI, USA) according to the manufacturer’s manual. Briefly, 1 × 104–1 × 105

cells were seeded in 96-well plates and kept under appropriate culture conditions (37 ◦C,
5% CO2) for 24 h for cell attachment. Stock Aβ peptides were incubated in DMEM: F12
medium for 24 h at 37 ◦C to activate the fibrilization to get toxic form of peptides. Then,
cells were incubated with both Aβ (10 mM, Human, Sigma-Aldrich, Milan, Italy) and
different concentrations (0–500 mg/L) of hBN-NPs for 48 h. Then, MTT solution was added
to the cell cultures and incubated for 3 h in 37 ◦C, 5% CO2. Formazan crystals were then
dissolved in dimethyl sulfoxide (DMSO). The absorbance of each sample was measured
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at 570 nm in a microplate reader (Synergy-HT; BioTek, Winooski, VT, USA). As a positive
control group, cells were treated with 1% (v/v) Triton X-100 [44].

2.4.2. LDH Assay

LDH level was measured by using LDH Cytotoxicity Assay Kit (Cell Biolabs, Ann
Arbor, MI, USA) according to the manufacturer’s manual. Briefly, 1 × 104–1 × 105 cells
were seeded in 96-well plates and kept under appropriate culture conditions (37 ◦C, 5%
CO2) for 24 h for cell attachment. Then, cells were incubated with both Ab (10 µM) and
different concentrations (0–500 mg/L) of hBN-NPs for 48 h. After incubation, 90 µL was
taken from the wells and transferred to the new 96-well plate. Then, LDH reagent was
transferred to each of the 96 wells and incubated for 30 min in the dark at room temperature.
Finally, the absorbance of the samples was read at 450 nm using a microplate reader [44].

2.4.3. Assays for Oxidative Stress and Antioxidant Status

TAC and TOS analyzes, known as automated and colorimetric methods, were mea-
sured using commercially available kits (Rel Assay Diagnostics, Gaziantep, Turkey) accord-
ing to the provider’s instructions. Ascorbic acid (10 µM) and hydrogen peroxide (25 µM)
from Sigma-Aldrich Company were preferred as positive control treatments in determining
TAC and TOS levels, respectively [45].

2.4.4. RNA Isolation

PureLink RNA Mini Kit (Invitrogen, Waltham, MA, USA) was used for RNA isolation
and was performed according to the manufacturer’s instructions. Then, cDNA synthesis
was conducted using 10 µL RNA with High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Waltham, MA, USA) following to the provider’s manual. q-PCR
was carried out using Sybr Green Master Mix (Applied Biosystems) on a Real-Time PCR
Detection System (Qiagen Rotor-Gene Q). The qPCR program was: 50 ◦C for 2 min, 95 ◦C
for 10 min × 40 cycles, 95 ◦C for 15 s, and 60 ◦C for 1 min. The primers used for RT-qPCR
are listed in Supplementary Table S1. β-actin was used as a reference gene [46].

2.4.5. Hoechst 33258 Fluorescent Staining

Hoechst 33258 staining was used to assess characteristic apoptotic morphological
changes in the cells treated with borax. As previously described [47], treated cells were
fixed with 4% paraformaldehyde for 30 min at 37 ◦C and stained with Hoechst 33258
(Sigma-Aldrich, Schnelldorf, Germany) for 15 min. Stained nuclei were then observed
with a fluorescence microscope (Leica, DM IL LED) to determine nuclei fragmentation and
chromatin condensation.

3. Statistical Analysis

The results obtained from the studies were analyzed using SPSS 20.0 program. Statisti-
cal evaluations were made using one-way analysis of variance (ANOVA) and Duncan’s test.
Results are presented as mean ± standard error of six independent repetitions. A p-value
of less than 0.05 was considered as statistically significant.

4. Results

The crystal structure of the synthesized hBN-NPs was characterized by XRD mea-
surements. The XRD results of hBN nanoparticles were shown in Figure 1. Five dominant
peaks were observed on the XRD plot of hBN nanoparticles. The main peak obtained by
XRD analysis of hBN-NPs corresponded to 2θ = 26.76◦ at the Bragg angle, while other
peaks corresponded to 2θ = 41.70◦, 43.91◦, 55.12◦ and 75.97◦ [48]. The planar values of
these peaks in the Müller index were found to correspond to 002, 100, 101, 004 and 110. All
of the sharp and well-defined peaks observed in the XRD graph corresponded to hBN-NPs
(JCPDS File 89-7102) and proved the hexagonal structure of BN.
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Figure 1. XRD pattern of hBN-NPs.

Particle shape, size distribution and elemental composition of the synthesized hBN-
NPs were evaluated using imaging techniques including SEM and TEM microscopes. When
looking at the morphology of hBN-NPs with SEM and TEM image analysis, it was seen
that the nanoparticles had a platelet-like hemispherical or long shape. In addition, it was
observed that the surfaces of hBN-NPs showed homogeneous properties. The synthesized
hBN-NPs were determined to have sizes ranging from 100 to 300 nm. Images of hBN-NPs
in different scales using SEM and TEM microscopy were presented in Figures 2 and 3.
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Aβ-induced neurotoxicity potential and damage to membrane integrity were eval-
uated on differentiated SH-SY5Y cells (Figure 4) by MTT and LDH assays. Treatments
with 1, 5, 10 and 25 mg/L of hBN-NPs did not alter the cell viability rates as compared to
untreated cells in MTT assay (p > 0.05) (Figure 5). Likewise, 1, 5, 10, 25 and 50 mg/L of
hBN-NPs did not lead to statistically significant elevations of LDH release when compared
to untreated cells in LDH assay (p > 0.05) (Figure 6). Moreover, the highest concentra-
tion of hBN-NPs (10 mg/L) caused around 12% reduction of cell viability rates. In fact,
500 mg/L of hBN-NPs led to decreases of cell viability rates in the rates of 25.0% and 41.4%,
in MTT and LDH release assays, respectively (Figures 5 and 6). On the contrary, treatment
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of 50 µM of Aβ1-42 for 48 h nearly killed 50% of the total cell populations. In addition,
we determined the ameliorative effect of hBN-NPs against Aβ1-42 induced neurotoxicity
in differentiated SHSY5Y cells using MTT and LDH assays. According to the MTT cell
viability assay, hBN-NPs were found to be more effective at the concentrations of 5 and
10 mg/L against Aβ1-42 (Figures 7 and 8).
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TAC and TOS levels were carried out to understand the associated mechanism be-
hind the neuroprotective action by hBN-NPs. The results showed that Aβ1-42 caused a
statistically significant decrease in TAC level and a significant increase in TOS level when
compared to control (p < 0.05). Moreover, when the cells treated with different concen-
trations of hBN-NPs against Aβ1-42, the measured TAC level increased from 10.21 ± 0.14
to 17.09 ± 0.18 mmol Trolox Equiv./L, and TOS levels decreased from 12.35 ± 1.64 to
9.25 ± 0.67 mmol H2O2 Equiv./l (Figures 9 and 10).
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Hoechst 33258 staining was used to analyze the chromosomal integrity of SH-SY5Y
cells exposed to Aβ1-42 and hBN-NPs (Figure 11). Microscopic analysis showed that the
Aβ1-42 application disrupted the nucleus of the cells and decreased the number of healthy
cells. On the other hand, the applications with 10 mg/L of hBN-NPs ameliorated the toxic
effect by Aβ1-42 and decreased the necrotic nuclei formations for 48 h.
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plus Aβ in 40× magnification.

In order to determine the molecular basis of the mechanism of action of hBN-NPs,
the expression levels of 12 AD-related genes were investigated. Aβ1-42 exposure caused
significant increases in expression levels in APOE, BACE 1, EGFR, NCTSN and TNF-α
genes and significant reductions in the expression of ADAM 10, APH1A, BDNF, PSEN1
and PSENEN genes in the cells. BDNF expression was remarkably elevated after alone
treatment with 10 mg/L of hBN-NPs. Importantly, the altered gene expression levels by
Aβ1-42 were ameliorated after cotreatment with hBN-NPs and Aβ1-42. However, APP and
MAPT expressions were not changed after treatment with hBN-NPs, Aβ1-42 or hBN-NPs
plus Aβ1-42 as compared to untreated cultures (Figure 12).
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5. Discussion

Nanotechnology is moving at a dizzying speed and promises great hopes, especially
in the field of medicine [49,50]. Nanotechnology is thought to have the potential to revo-
lutionize the treatment, diagnosis, monitoring and control of neurodegenerative diseases
such as AD [51]. It has been concluded that the use of nanostructures will facilitate the
development of tools necessary for the diagnosis and treatment of AD [10]. For these
purposes, nanoparticles with unique physical, chemical, electronic, optical, magnetic and
mechanical properties are widely used [51]. There have been few studies investigating the
toxic effects of boron nanomaterials, which are of interest and have a large potential due
to their superior properties [52,53]. In this study, the neuroprotective effect of hBN-NPs
was investigated. Firstly, MTT and LDH analyzes were used to evaluate the cytotoxicity
by hBN-NPs nanoparticles in differentiated SH-SY5Y cell cultures. According to results of
cytotoxicity endpoints, the concentrations below than 50 mg/L of hBN-NPs were found
non-cytotoxic for differentiated SH-SY5Y cell cultures. The hBN-NPs concentrations be-
tween 10 and 50 mg/L led to slight cytotoxic potential. Our findings are in line with the
limited previous data recorded in the literature. It was observed that BN-NPs could affect
the cells in time and concentration dependent manners [54]. In addition, it was found that
there was no significant change in cellular morphology at low doses of BN nanostructures,
but cellular stress could occur due to increasing concentrations. These results indicate that
low dose BN-NPs can be used in biomedical applications safely [55]. The results of several
studies also show that BNNTs exhibit good biocompatibility in sufficient concentrations for
potential pharmacological applications, are a potential biomaterial for advanced biomedical
uses, cyto-compatible and much safer than conventional nanomaterials [52,56,57].

Relatively low concentrations (<50 mg/L) of hBN-NPS provided significant cyto-
protection against Aβ1-42 induced neurotoxicity in AD-like in vitro model. To determine
whether the neuroprotective action by hBN-NPs was related to oxidative alterations, TAC
and TOS levels were investigated. The treatments with hBN-NPs significantly ameliorated
the alterations in TAC and TOS level induced by Aβ exposure. In fact, TAC level was
significantly increased after hBN-NPs exposure, and there was also significant differences in
TOS levels as compared to Aβ1-42 treated cell cultures. Numerous studies have shown that
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oxidative stress plays an important role in the pathogenesis of a number of diseases such as
ischemia, cancer, diabetes, head trauma, Parkinson’s disease, amyotrophic lateral sclerosis,
malaria, Down syndrome, Huntington’s disease and AD [56,57]. It was determined that
neurons in the brain significantly oxidized ROS compared to other organs and as a result
contributed to neuronal damage in aging and neurological diseases [57,58]. A number
of studies have revealed that patients with AD showed high levels of oxidative stress,
characterized by free radical formation, protein, DNA and RNA oxidation, elevated lipid
peroxidation, mitochondrial dysfunction, and inactivation of antioxidant enzymes [58,59].
Oxidative stress, one of the earliest events in the pathogenesis of AD, was found to be
effective in the progression of AD, causing overproduction of Aβ peptides, tau hyper-
phosphorylation, degeneration and death of neurons by β-secretase activation [59–61].
Oxidative damages and Aβ were linked to each other because Aβ generated oxidative
stress in both in vivo and in vitro conditions. In parallel to our findings, Aβ was found to
be responsible for increased free radical production in neurons, then leading to oxidative
stress and cell death [62]. Considerable efforts were made on several antioxidants that were
able to scavenge free radicals, thus providing protection against oxidative damages [63]. In
this context, the neuroprotection by hBN-NPs against Aβ toxicity could be associated with
their antioxidant features. As a matter of fact, hBN-NPs exerted antioxidative action against
1-methyl-4-phenylpyridinium (MPP+)-induced experimental Parkinson Disease model
using differentiated pluripotent human embryonal Ntera-2 carcinoma cell cultures [64]. In
similar to this in vitro study, hBN-NPs (100 µg/kg) supported in vivo antioxidant capacity
without leading oxidative stress in serum samples of experimental rats [65].

Apoptosis/necrosis assays showed that hBN-NPs led to significant reductions in
necrosis levels resulting from Aβ exposure and significantly reduced the Aβ-induced
neurotoxicity. According to these results, hBN-NPs were found to have protective potential
against toxicity by Aβ. In addition, IL-1β and TNF-α played key roles in astrocyte iNOS
Aβ stimulation and necrosis contained TRAF6-, TRAF2- and NIK from the signaling
mechanisms [66,67]. Deregulation of apoptosis was shown to play a role in the pathogenesis
of various diseases involving neurodegenerative diseases, ischemic damage, autoimmune
diseases and cancer. It was also thought that Aβ-induced apoptosis by causing oxidative
stress or by triggering increased Fas ligand expressions in neurons and glia [68]. hBN-NPs
exerted neuroprotection against Aβ-induced apoptotic and necrotic cell deaths could be
attributed to anti-inflammatory action by boron content [21].

Due to the results of cytotoxicity evaluations (MTT and LDH release assays) as well
as morphological analysis, we determined that cotreatment with hBN-NPs provided sig-
nificant neuroprotection against Aβ. Therefore, expression levels of several genes directly
or indirectly associated with Aβ metabolism were also investigated via quantitative real-
time PCR. After treatment with Aβ1-42, the expressions of the necrosis and apoptosis
pathway-related genes including BACE1, APOE, NCSTN and TNF-α genes were signifi-
cantly increased while the expressions of ADAM10, BDNF, PSENEN and APH1A genes
were significantly decreased. The treatment with hBN-NPs provided significant neuro-
protective effects via altering expressions of these crucial AD-related genes against Aβ1-42
toxicity in the cellular AD model. It was found that hBN-NPs increased α-secretase activity
(ADAM10) and decreased β-secretase (BACE1) which caused the formation of Aβ, the
primary cause of AD. In addition, it was reported that α-, β- and γ-secretase enzymes,
which play a role in the division of APP, had different effects on the formation of Aβ,
and the expression and activity of these enzymes affected the level of Aβ [69]. In many
studies, it was proven to be effective in the treatment of neurodegenerative diseases since
the increase of ADAM10 activity, which was the main α-secretase, which broke the APP,
protected the brain from the accumulation of Aβ in AD [70,71]. BACE1 was also shown to
work as a β-secretase and showed all the functional features of β-secretase [72]. BACE1
inhibition by hBN-NPs might be associated with prevention of Aβ accumulation in AD.

γ-secretase regulated the amount of Aβ produced and the relative amount of 42 more
toxic amino acid forms of Aβ, and it consisted of four basic subunits: presenilin (PSEN1),
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preseniline artifact-2 (PSEN-2), nicastrin (NCTSN) and anterior pharynx defect-1 (APH-1).
Studies stated that changes in these units could increase the risk of AD [73–76]. Our find-
ings revealed that hBN-NPs alleviated Aβ1-42 induced expressional alterations in PSEN1,
NCTSN and APH1A genes. On the other hand, ApoE is considered to be the strongest
genetic risk factor for late-onset AD [77]. It was demonstrated that fragments of ApoE,
which were generated in brains of patients with AD and neuron cultures, induced NFT-like
inclusions in neurofibrillary tangles (NFTs) and amyloid plaques [78]. Concordantly, the
observed neuroprotective action of hBN-NPs might be also related to decreasing Aβ ag-
gregation or increasing Aβ clearance via affecting APOE expression. In that, the elevated
expression levels of APOE were suggested to contribute to the etiology of late onset AD.
Thus, expressional alterations in normal protein in the brain might cause degenerative
diseases [79]. On the contrary, the increased APOE expression promoted reverse transport
of Aβ and led to delay of Aβ deposition in experimental mouse AD model [80].

Previous reports indicated that a reduced expression level of the BDNF gene, which
played an important role in synaptic plasticity, neuronal survival, memory formation and
preservation of long-term memory, was associated with neuropsychiatric and neurodegen-
erative disorders and plays an important role in the progression of AD [81]. Our findings
indicated that hBN-NPs supported BDNF transcription that was suppressed by Aβ1-42 in
differentiated SH-SY5Y cell cultures. Consistent with our findings, it was revealed that
exposure to Aβ1-42 decreased the levels of BDNF transcripts IV and V in SH-SY5Y cell,
and thus, BDNF was downregulated in AD [82]. Our findings also notated that hBN-NPs
suppressed the expressional increases in both EGFR and TNF-α by Aβ1-42. Interestingly,
elevated EGFR levels were well correlated with Aβ-induced memory loss in rats. In addi-
tion, inhibition of EGFR activity was introduced as an efficient treatment option for Aβ1-42-
inclined deficits in transgenic mice [83]. Again, numerous studies have identified elevated
levels of TNF-α in biological fluids in patients with aging, mild cognitive impairment, AD
and epilepsy [84,85]. TNF-α induced inflammation has been reported to trigger microglia
activity and neuronal death. In addition, the role of TNF-α signaling in abnormal APP pro-
cessing, Aβ plaque deposition, tau-related pathology and cell death has been reported [86].
In addition, supra-physiological TNF-α was found to trigger dementia through both early
and late pathogenic mechanisms [87].

6. Conclusions

Consequently, our study revealed the neuroprotective role of hBN- NPs against Aβ-
induced neurotoxicity in SH-SY5Y cells for the first time. This investigation showed the
direct and indirect anti-Alzheimer action potential of hBN-NPs. In the light of our findings,
hBN-NPs were found to ameliorate neurotoxicity resulting from Aβ1-42 in differentiated
SH-SY5Y cell culture via (I) exhibiting non-cytotoxic (<50 mg/L)/slightly toxic nature
(10–50 mg/L), (II) increasing antioxidant capacity, (III) reducing Aβ-induced necrosis
and apoptosis, (IV) altering mRNA expressions of responsible secretases/proteases for
APP cleavage in neuron-like cells, (V) contributing to chromosome integrity, and (VI)
simultaneously targeting of EGFR and TNF-α suppression and BDNF activation. Overall,
hBN-NPs might be a promising and attractive core fact for brain targeted nanoformulations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano12152690/s1, Table S1: Primer sequences for qRT-PCR.
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