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A B S T R A C T

Neuronal electroencephalography (EEG) signals arise from the cortical postsynaptic currents. Due to the
conductive properties of the head, these neuronal sources produce relatively smeared spatial patterns in EEG.
We can model these topographies to deduce which signals reflect genuine TMS-evoked cortical activity and
which data components are merely noise and artifacts.

This review will concentrate on two source-based artifact-rejection techniques developed for TMS–EEG data
analysis, signal-space-projection–source-informed reconstruction (SSP–SIR), and the source-estimate-utilizing
noise-discarding algorithm (SOUND). The former method was designed for rejecting TMS-evoked muscle
artifacts, while the latter was developed to suppress noise signals from EEG and magnetoencephalography
(MEG) in general.

We shall cover the theoretical background for both methods, but most importantly, we will describe
some essential practical perspectives for using these techniques effectively. We demonstrate and explain what
approaches produce the most reliable inverse estimates after cleaning the data or how to perform non-biased
comparisons between cleaned datasets. All noise-cleaning algorithms compromise the signals of interest to a
degree. We elaborate on how the source-based methods allow objective quantification of the overcorrection.
Finally, we consider possible future directions. While this article concentrates on TMS–EEG data analysis, many
theoretical and practical aspects, presented here, can be readily applied in other EEG/MEG applications.

Overall, the source-based cleaning methods provide a valuable set of TMS–EEG preprocessing tools. We can
objectively evaluate their performance regarding possible overcorrection. Furthermore, the overcorrection can
always be taken into account to compare cleaned datasets reliably. The described methods are based on current
electrophysiological and anatomical understanding of the head and the EEG generators; strong assumptions of
the statistical properties of the noise and artifact signals, such as independence, are not needed.
they provide a valuable set of TMS–EEG preprocessing tools when, e.g.,
artifacts cannot be assumed independent of neuronal deflections.

A spatial-filtering method, the signal-space projection (SSP), was
1. Introduction

In the harsh electromagnetic environment during transcranial mag-
netic stimulation (TMS), electroencephalography (EEG) signals often
suffer from artifact and noise contamination. Recently, there has been
an exciting development in signal-analysis techniques that utilize phys-
iological modeling of the cortical EEG generators to distinguish in-
tracranial current sources of interest from various extracranial distur-
bances (Mutanen et al., 2016, 2018; Vosskuhl et al., 2020). Unlike
some other popular cleaning methods, such as independent component
analysis (ICA) (Korhonen et al., 2011; Rogasch et al., 2014), source-
based methods are not based on as strict statistical assumptions. Hence,
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originally suggested by Mäki and Ilmoniemi (2011) for rejecting TMS-
evoked muscle artifacts. A related, but less-refined, purely principal-
component-analysis-based technique was later proposed by ter Braack
et al. (2013). However, spatial filtering also modified the voltage
patterns of the neuronal EEG signals across the sensors, hindering
the visual interpretation of the cleaned data. Source-informed recon-
struction (SIR) was developed to recover the original spatial patterns
of the neuronal signals, uncovered from muscular artifacts (Mutanen
et al., 2016). Following closely the logic of SIR, the source-estimate-
utilizing noise-discarding algorithm (SOUND) was developed to detect
and suppress noise in EEG and magnetoencephalography (MEG) au-
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tomatically (Mutanen et al., 2018). Since then, both SSP–SIR and
SOUND have gradually gained more and more popularity among the
TMS–EEG community (see e.g., Bagattini et al., 2019; Ramakrishnan
et al., 2019; Bortoletto et al., 2021; Grasso et al., 2021; Pievani et al.,
2021; Mancuso et al., 2021). However, so far, the different aspects
of source-based methods have not been covered in a comprehensive
review.

This review is meant as a short handbook that facilitates the ef-
fective use of source-based methods in processing TMS–EEG data. We
attempt to answer many of the practical questions that have been
raised since the original publications, such as the best order of ap-
plying SOUND and SSP–SIR in preprocessing TMS–EEG data or how
to combine inverse estimation with these methods optimally. We also
communicate some significant technical innovations, which have been
made over the years but have not been formally documented. Oc-
casionally, we include simple simulations to effectively communicate
certain aspects and ideas. The paper mainly concentrates on SSP–SIR
and SOUND, but other closely related techniques are briefly covered as
well. First, we will explain the fundamental physical background theory
of source-based methods and derive SSP–SIR and SOUND from the basic
principles. We shall next raise some critical practical perspectives when
applying these methods. Finally, we will review the recent technical
advances and shed light on the potential future directions.

2. Physiological and physical background

The prime generators in the brain for the EEG signals are neu-
ronal populations that drive synchronous postsynaptic currents (PSCs)
(Nunez et al., 2006). PSCs are the flow of ions within dendritic shafts
towards the cell soma. For excitatory or inhibitory PSCs, the current
consists of positive or negative ions, respectively. This transmission of
ions causes local imbalances of net charge, giving rise to an electric
field 𝐄(𝐫) that drives so-called volume currents 𝐉V in the head. Thus,
the total current density 𝐉(𝐫) at location 𝐫 can be written as:

𝐉(𝐫) = 𝐉P(𝐫) + 𝐉V(𝐫) = 𝐉P(𝐫) + 𝜎(𝐫)𝐄(𝐫) , (1)

where 𝐉P(𝐫) is the primary current density, i.e., the net PSC at 𝐫, and
𝜎(𝐫) is the conductivity. It is noteworthy that in the presence of some
𝐉P in the brain, 𝐄 is distributed across the whole head, not only in the
locations of 𝐉P.

EEG signal of channel 𝑖, 𝑦𝑖(𝑡) is the potential difference between an
active electrode 𝑖 and the reference electrode ref, which can be written
as a path integral across the volume-current-related electric field along
the scalp:

𝑦𝑖(𝑡) = 𝑉𝑖,ref(𝑡) = ∫

(𝑖)

ref
𝐄(𝐫,𝑡) ⋅ 𝑑𝐥 . (2)

Because the electric field 𝐄, related to the volume currents, is driven
by the total primary current distribution 𝐉P in the whole head, the
signal of channel 𝑖 can be written as:

𝑦𝑖(𝑡) = ∫𝑉 ′
𝐥𝑖(𝐫′) ⋅ 𝐉P(𝐫′, 𝑡)d𝑉 ′ , (3)

where 𝐥𝑖(𝐫) is the so-called lead-field that describes the sensitivity of
channel 𝑖 to primary currents at 𝐫. Fundamentally, 𝐥𝑖 is determined by
the locations of the 𝑖 and ref channels on the scalp, the conductivity
structure of the head, and the locations and orientations of the primary
currents.

By describing the cortical 𝐉p distribution in terms of discretized
equivalent sources, we can write the whole EEG recordings with matrix
notation as:

𝐘(𝑡) = 𝐋𝐉(𝑡) , (4)

where the element 𝐿𝑖𝑗 describes the sensitivity of channel 𝑖 to the
cortical equivalent source 𝑗. The rows of 𝐋 describe the sensitivity
profiles of different EEG sensors to all the possible cortical sources. The
2

Fig. 1. The conductive properties of the head affect the spread of the ohmic volume
currents, and thus, the resulting EEG topographies. A: The red arrow indicates the
location and orientation of the simulated focal postsynaptic current source located on
the precentral gyrus. B: The spread of the voltage pattern, resulting from the focal
current source, when assuming that the whole head is a homogeneous, conductive body,
surrounded by a vacuum (effectively the same as air). C: The corresponding voltage
patterns when assuming a three-layer model (brain, skull, and scalp) and a 1:25 ratio in
the conductivities between brain/scalp and skull D: The corresponding voltage patterns
when assuming the same three-layer model and a 1:50 ratio in the conductivities
between brain/scalp and skull. E: Including CSF in the model spreads the conductivity
patterns even further. The simulations here were performed in MATLAB. The magnetic
resonance images were segmented into tissue boundaries using SIMNIBS (Thielscher
et al., 2015) whereas the lead fields were computed with the linear collocation BEM
solver formulated using isolated source approach (Stenroos and Nummenmaa, 2016).

columns of 𝐋, on the other hand, describe the scalp voltage patterns,
or topographies, generated by individual, focal cortical current sources.
In practice, the neuronal lead-field matrix 𝐋 can be constructed by
placing the equivalent current dipoles, portraying focal primary cur-
rent sources, to plausible brain locations and by computing the EEG
topographies resulting from each dipole. The geometrical information
of the head is segmented from magnetic-resonance images, and the final
calculations can be based on boundary-element methods (Stenroos and
Nummenmaa, 2016) or finite-element methods (Ziegler et al., 2014).

However, Eq. (4) only holds for ideal measurements. In practice, we
always measure also artifact and noise signals. We can include them in
our linear model:

𝐘(𝑡) = 𝐋𝐉(𝑡) +𝐌A𝐒A(𝑡) +𝐌N𝐒N(𝑡) , (5)

where 𝐌A and 𝐌N are the artifact- and noise-mixing matrices, and
𝐒A and 𝐒N are the artifact- and noise-signal matrices, respectively.
The columns of mixing matrices hold the topographies of different
contaminating signal components, whereas the rows of signal matrices
contain the time courses of the corresponding components.

Due to the conductive properties of the head, neuronal EEG signals
are dominated by topographical patterns with low spatial specificity.
Because the skull has low conductance, only a small portion of the
volume currents travel across it and reach the scalp. The majority
of the current travels through the brain tissue or the cerebrospinal
fluid (CSF). Furthermore, most of the volume currents that reach the
skin tend to travel extended distances through the well-conducting
scalp before passing again through the skull. Together, these effects
extensively smear the neuronally-generated electric fields on the scalp
and, thus, the topographies (see Fig. 1 for illustrations). On the other
hand, artifact and noise sources are generally created extracranially
and can have topographies at higher spatial frequencies. This means
that the column vectors of 𝐋 can differ significantly from the column
vectors of the artifact- and noise-mixing matrices. Broadly, the goal of
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source-based methods is to utilize the discrepancy between the neuronal
nd noise and artifact topographies to design such spatial filters 𝐖filter

that approximately satisfy

𝐖filter𝐘(𝑡) = 𝐖filter𝐋𝐉(𝑡)+𝐖filter𝐌A𝐒A(𝑡)+𝐖filter𝐌N𝐒N(𝑡) ≈ 𝐖filter𝐋𝐉(𝑡) .

(6)

Fig. 1 shows how considerably the conductive properties of the
head affect the spread of the volume currents and thus the resulting
voltage patterns. Although the exact conductivities are not perfectly
known (Vorwerk et al., 2019), we can model the qualitative effects
of the poorly conducting skull and well-conducting CSF. Even focal
cortical current sources produce voltage patterns that are considerably
spread. Hence, neuronal EEG signals are, on average, highly correlated
across the EEG sensors. While this low spatial specificity can hamper
the unmixing of EEG signals into the original neuronal components,
we can exploit the high correlation of neuronal EEG signals when
separating them from extracranial sources.

3. SSP–SIR method

The most trivial way to clean data from artifacts and noise is to
reject the contaminated sensor signals from further analysis. Indeed,
this is a powerful and intuitive approach when the disturbances are
confined to only a few so-called bad channels. Rejecting a channel
decreases the dimensionality of the data by one. For instance, after
discarding two channels from a 60-channel EEG dataset, we can the-
oretically estimate maximally 58 degrees of freedom of the cortical
activity (57 in average reference). That said, this approach is not
feasible if the artifact is simultaneously present in several channels.
However, even if artifact signals are present in multiple channels,
they could be described with a few spatial topographies that vary in
amplitude over time but not in their spatial shape.1 If this is the case,
one can still reduce the dimensionality of the data only moderately to
remove the unwanted signals.

When inspecting the linear model for our recordings (Eq. (5)), we
can see that the spatial patterns of the different signal components, i.e.,
the columns of the lead field and mixing matrices, are time-invariant.
However, specific signal components might be more pronounced at
certain times or certain frequencies, manifested in the time courses 𝐉(𝑡),
𝐒A(𝑡), and 𝐒N(𝑡). The idea of signal-space projection (SSP) is to utilize
these temporal variations to identify the artifact topographies that can
be projected out (Uusitalo and Ilmoniemi, 1997; Mäki and Ilmoniemi,
2011). For instance, if we know that a certain time interval or frequency
range includes almost only artifacts, we can use this portion of data to
estimate the artifact-topographies to be rejected out.

Here, we concentrate on rejecting TMS-evoked muscle artifacts,
which overlap in time with the early cortical reactions to TMS (Mu-
tanen et al., 2013). However, brain activity mainly manifests in EEG
in frequencies below 100 Hz (Buzsáki and Draguhn, 2004), while
muscle activity shows a broadband response (Mäki and Ilmoniemi,
2011; Mutanen et al., 2016). Thus, by high-pass filtering the TMS–EEG
data, we can highlight muscle activity:

𝐻
(

𝐘(𝑡)
)

= 𝐋𝐻
(

𝐉(𝑡)
)

+𝐌A𝐻
(

𝐒A(𝑡)
)

+𝐌N𝐻
(

𝐒N(𝑡)
)

𝐻
(

𝐘(𝑡)
)

≈ 𝐌A𝐻
(

𝐒A(𝑡)
)

+𝐌N𝐻
(

𝐒N(𝑡)
)

𝐻
(

𝐘(𝑡)
)

= 𝐔𝐒𝐕T
, (7)

where 𝐻(⋅) stands for a high-pass filter and 𝐔𝐒𝐕T is the singular value
decomposition of the high-pass filtered data. If we can assume that the
noise is relatively uncorrelated, the topographies (column vectors of 𝐔)
corresponding to the 𝑘 most significant singular values should explain

1 A good example is an ocular artifact, which contaminates several channels
ut is typically described by two dominating spatial patterns corresponding the
orizontal and vertical movement of the eyes.
3

most of the muscle artifacts. Note that non of the individual vectors
𝐔𝑘 𝑘 = 1, 2,… , 𝑘 need to correspond to an underlying muscle-artifact
component exactly. It suffices that a linear combination of the singular
vectors explains the actual artifact topographies. I.e., we say that the
singular vectors span the muscle-artifact subspace.

If the 𝑘-most significant singular vectors 𝐔𝑘 span the artifact-signal
subspace, we can write the spatial filter 𝐖SSP for muscle-artifact re-
moval as:
𝐔𝑘𝐒𝑘𝐕T

𝑘 ≈ 𝐌A𝐻
(

𝐒A(𝑡)
)

𝐖SSP = 𝐈 − 𝐔𝑘𝐔T
𝑘 ,

(8)

leading to 𝐖SSP𝐌A ≈ 0. Hence, we can write the muscle-artifact-
uppressed EEG signal as:

SSP𝐘(𝑡) ≈ 𝐖SSP𝐋𝐉(𝑡) +𝐖SSP𝐌N𝐒N(𝑡) . (9)

The downside of SSP is that it also distorts the neuronal topogra-
hies (Mäki and Ilmoniemi, 2011). Again, this is analogous to rejecting
ad channels; as we discard specific signal directions to suppress ar-
ifact signals, the image of the data changes. However, this change is
omewhat intuitive for channel removal, and we can easily interpolate
he missing channels for data visualization. On the contrary, when
ejecting muscle-artifact topographies from EEG, the changes in the
EG projection of brain activity are more abstract. Furthermore, we
ften visualize EEG with topographical plots, which directly connect to
he physical world; the colors at the electrode locations correspond to
he measured voltages. After SSP, we lose such intuition since the rows
f EEG no more represent any specific EEG channels. Instead, each row
f the data matrix corresponds to a linear combination of the original
hannel signals. Thus, to recover the physical intuition of EEG after
SP, we need to interpolate the rejected abstract signal directions of
he data.

Source-informed reconstruction (SIR) is a technique that utilizes the
orward model of the head to interpolate the signal directions removed
y SSP (Mutanen et al., 2016). Although the out-projected signal di-
ensions might seem abstract, they are precisely defined in the 𝐖SSP

perator. This information can be taken into account when estimating
he cortical brain activity �̂�(𝑡) that produced the artifact-suppressed
ersions of EEG:

̂(𝑡) = (𝐖SSP𝐋)+𝐖SSP𝐘(𝑡) , (10)

here (⋅)+ denotes pseudoinverse. A common way to construct the
seudoinverse in EEG analysis is to use minimum-norm estimation
Hämäläinen and Ilmoniemi, 1994), elaborated in the next section.
ith the help of the forward model, we can reconstruct the sensor sig-

als in the original EEG channels from the artifact-suppressed current
stimates; by simply multiplying the cortical current with the lead-field
atrix, we obtain:

̂ (𝑡) = 𝐋�̂�(𝑡) . (11)

hus, the SSP–SIR procedure can be summarized with one equation:

̂ (𝑡) = 𝐋(𝐖SSP𝐋)+𝐖SSP𝐘(𝑡) = 𝐖SSP–SIR𝐘(𝑡) . (12)

he principle of the combined SSP–SIR method is illustrated in Fig. 2.
Since its publication, SSP–SIR has been used in numerous TMS–EEG

tudies for suppressing the TMS-evoked muscle artifacts (Salo et al.,
018, 2019; Bagattini et al., 2019; Salo et al., 2020; Mancuso et al.,
021; Grasso et al., 2021; Pievani et al., 2021). In their study, (Mancuso
t al., 2021) compared the performance of SSP–SIR to independent
omponent analysis (ICA) (Korhonen et al., 2011; Rogasch et al., 2014)
nd observed a similar overall performance. The principal component
nalysis (PCA) method by ter Braack et al. (2013) is essentially a form
f SSP and it would be possible to add the SIR step to reconstruct the
ost-PCA EEG signals in the original sensors.

The use of SSP–SIR is not limited to TMS-evoked muscle artifacts
nd researchers have additionally applied it to other disturbances. De-
ending on the problem, an appropriate strategy to isolate the artifact
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Fig. 2. The principle of SSP–SIR. Muscle artifacts are first projected out with the spatial filter 𝐖SSP. By taking into account the suppressed lead-field (𝐖SSP)𝐋, the muscle-artifact-
suppressed data are inverted into the source space. Using the original lead-field matrix, we can project the artifact-free cortical-current estimates back to the original sensors. The
figure is adapted with permission from the original work by Mutanen et al. (2016).
signals from EEG is needed. For TMS-evoked muscle artifacts, the high-
pass-filtering approach has shown to work (Eqs. (7)–(8)). Vosskuhl
et al. (2020) suppressed the transcranial alternating current-induced
(tACS) artifact from EEG signal with SSP–SIR. Biabani et al. (2019)
and Fernandez et al. (2021) have also applied the SSP–SIR approach
for attenuating the TMS-related sensory artifacts (Gordon et al., 2018;
Conde et al., 2019; Belardinelli et al., 2019). The SIR step has also been
used to simply interpolate excluded noisy channels (Nieminen et al.,
2016). The SIR-based channel interpolation is an essential step of the
SOUND algorithm, and thus, will be elaborated in the next section.

4. SOUND algorithm

Although EEG has an excellent temporal resolution, its spatial speci-
ficity is relatively poor (Hedrich et al., 2017); the voltage patterns
on the scalp have rather smeared, wide-spread shapes, and close-by
EEG channels often pick up very similar voltage values from a cortical
current source. Thus, cortical EEG signals are highly correlated across
the sensors. Typically, this is considered a problem as it hampers, for
instance, the EEG connectivity analysis; it is difficult to assess whether
a high correlation between EEG sensors reflects genuine functionally
relevant cortico-cortical connection or merely spread of the volume
currents on the scalp. We can, however, exploit this property of EEG
4

to recognize which parts of the signals are likely to originate from
intracranial sources. By cross-validating the EEG sensor signals, we
can deduce those signal components that are more likely to reflect
extracranial sources, i.e., noise. By utilizing an EEG forward model, we
can improve the cross-validation accuracy as we have a model for the
correlation structure between the EEG channels. We call this approach
the SOurce-estimate-Utilizing Noise-Discarding algorithm (the SOUND
algorithm, from now on referred to as simply SOUND) (Mutanen et al.,
2018).

Let us assume that the noise covariance matrix Cov[𝐌N𝐒N(𝑡)] = 𝛴N
is known and stationary, i.e., it does not change as a function of time.
Furthermore, we have no prior knowledge for the source covariance,
i.e., Cov[𝐉(𝑡)] = 𝜆′𝐈. We can then estimate the source waveforms by the
standard minimum-norm estimate (Hämäläinen and Ilmoniemi, 1994)
with the noise covariance as the regularization term:

�̂�(𝑡) = 𝐋T(𝐋𝐋T + 𝜆𝛴N)−1𝐘 = 𝐏MNE𝐘(𝑡) , (13)

where 𝐏MNE is the spatial filter operator retrieving source waveform
estimates and 𝜆 is the free regularization parameter.

If we knew the noise covariance matrix, we could insert it into
(13) and use the source estimate as an intermediate result for the data
cleaning by:

�̂�(𝑡) = 𝐋�̂�(𝑡) (14)
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Fig. 3. The principle of the SOUND algorithm. The reliability of each channel is evaluated by cross-validating the channel against the other EEG channels. Here, we quantify the
noise level of the channel of interest (CHOI; the circled channel). By computing MNE based on the other channels, we obtain an estimate for the cortical primary current. We
estimate the noiseless signal in CHOI based on the obtained primary-current estimate. The difference between measured and estimated signals in CHOI is interpreted as noise. The
noise covariance matrix is updated to take into account the noise level of CHOI. When evaluating the noise levels of the remaining channels, the algorithm already knows that
CHOI is relatively noisy and weighs its signal less in MNE. Adapted with permission from Mutanen et al. (2018).
We aim to use the above-described cleaning to eliminate noise that
is uncorrelated over channels and with the brain signals, which arises,
e.g., due to poor electrode contacts or artifact phenomena arising in the
electrode–skin interface. We can model such noise by setting its mixing
matrix to the identity matrix, 𝐌N = 𝐈, meaning that each channel has a
local ‘noise source’. The noise covariance matrix becomes a diagonal
matrix, 𝛴N = diag(𝜎1,… , 𝜎𝐶 ). For the noise covariance matrix, we
only need to estimate the diagonal elements as sample variances of the
estimated noise:

�̂�𝑖 =
1
𝑇

𝑇
∑

𝑡=1
�̂�N,𝑖(𝑡)2

�̂�N,𝑖(𝑡) = 𝑌𝑖(𝑡) − 𝑌𝑖(𝑡) .

(15)

To estimate the clean signal in channel 𝑖, we proceed in the same
manner as with SSP–SIR, by setting the outprojected signal dimension
as the single-channel measurement at a time. The projection matrix
becomes 𝐖(𝑖) = [𝐞1,… 𝐞𝑖−1, 𝐞𝑖+1,… , 𝐞𝐶 ]T, where 𝐞𝑗 is the 𝐶 × 1 standard
basis vector having zeros at all entries except for the 𝑗th one. In
practice, multiplying a target matrix from the left with 𝐖(𝑖) corresponds
to eliminating the 𝑖th row of the target matrix.

We iterate over all the channels several times. At each channel 𝑖,
the projection matrix 𝐖(𝑖) is applied to the linear model Eq. (5). Then,
using the modified linear model for the inverse computation Eq. (13),
we get:

𝐏(𝑖)
MNE = (𝐖(𝑖)𝐋)T(𝐖(𝑖)𝐋(𝐖(𝑖)𝐋)T +𝐖(𝑖)𝛴N𝐖(𝑖)T)

−1
𝐖(𝑖) . (16)

After estimating the clean signal by (14), the noise level estimate is
updated according to Eq. (15).

To summarize, the SOUND algorithm proceeds through an iterative
process as follows (see also Fig. 3 for illustration):

1. Initialization: Set the noise covariance using initial guesses for
the channel noise levels {�̂�1,… , �̂�𝐶}. Set the maximum number
iterations to 𝑅, and the current iteration count to zero.

2. Increase the current iteration count by one. Update the noise
variance values over all channels by repeating the following once
over each of the channels:

• For channel 𝑖, compute the estimated source signal �̂� by
applying Eq. (16) to the data.

• Estimate the cleaned signal with Eq. (14).
5

• Compute �̂�𝑖 with Eq. (15).

See Section 7.1 for computational innovations to efficiently per-
form a SOUND iteration step.

3. If the estimates �̂�𝑖 have not converged or the current iteration
count does not exceed 𝑅, repeat step 2. Otherwise, proceed to
step 4.

4. Final data cleaning is performed by Eqs. (13) and (14) using all
of the channels and their corresponding noise estimates in the
diagonal noise covariance matrix, reducing to:

�̂�(𝑡) = 𝐋𝐏MNE𝐘(𝑡) = 𝐖SOUND𝐘(𝑡) . (17)

The SOUND-based single-channel iteration step corresponds to the
optimal Wiener estimation result. Moreover, assuming the diagonal
noise covariance, this Wiener estimate can also be obtained using only
the data and the second-order statistics (covariance) of the data. The
data-driven version, DDWiener (see details in Section 8.1), efficiently
cleans perfectly uncorrelated EEG. In contrast, SOUND is also capable
of cleaning noise that has modest cross-correlation values across the
channels as long as the spatial distribution does not resemble the cross-
correlation patterns predicted by the lead-field, i.e., 𝐋𝐋T (Mutanen
et al., 2018). DDWiener is a straightforward way to estimate initial
guesses of the noise levels to start the SOUND iterations. It can also
be used to automatically evaluate the quality of the signals and decide
which channels and trials should be rejected. See further information
in Section 8.1.

In practice, Eq. (13) is implemented in the open-source MATLAB
implementations (Mutanen et al., 2020) and in the original article (Mu-
tanen et al., 2018) through a different strategy where the data and lead
field were whitened with respect to the noise covariance:

�̂�(𝑡) = �̃�T(�̃��̃�T + 𝜆𝐈)−1�̃� , (18)

where �̃� = 𝛴−1∕2
N 𝐋 and �̃� = 𝛴−1∕2

N 𝐘. This formulation allows a more
straightforward setting of the regularization parameter 𝜆 = 𝜆0�̃��̃�⊤∕𝐶,
where 𝜆0 is a heuristic tuning scalar. Setting the regularization level
will be further discussed in Section 6.3.

SOUND has gradually gained more and more TMS–EEG applica-
tions (Ramakrishnan et al., 2019; Bagattini et al., 2019; Cline et al.,
2021; Grasso et al., 2021; Zazio et al., 2021; Bortoletto et al., 2021; Fer-
nandez et al., 2021; Mancuso et al., 2021). Because SOUND is not exclu-
sively designed for TMS–EEG analysis but can be applied to EEG/MEG

data in general, it has been used also in MEG (Rodríguez-González



Journal of Neuroscience Methods 382 (2022) 109693T.P. Mutanen et al.

w
a
h
v

𝐘

I
i
w
e
d
T

t

𝐒

f
a

𝐘

o
s
o
a
r
a
e
f
r
l
a
t

6

w
a
u
a
m

6

T
t
c
m
r

w
o
c
a
d

d
m
t
a
d
a

c
a
b
o
d
t
e
l
n
t
E
d

B
t
𝐘
𝐘

et al., 2019, 2020, 2021) and (non-TMS) EEG studies (Bai et al., 2021)
as a preprocessing tool. Interestingly, SOUND has been recently tested
as a noise-reduction tool in the real-time studies, which can suffer from
inherently low signal-to-noise ratio compared to event-related study
designs (Rodríguez-González et al., 2019; Makkonen et al., 2021; Bai
et al., 2021).

5. Multiple-source approach

A closely related approach to SSP, the multiple-source approach
(MSA), (Berg and Scherg, 1994) was adapted by Litvak et al. (2007)
to isolate the early TMS-related artifacts from the neuronal signals
of interest. Instead of entirely projecting out contaminated artifact
topographies 𝐌A by SSP, one can alternatively aim at modeling the

aveform 𝐒A(𝑡) that describes the temporal behavior of the underlying
rtifact. To this aim, all mixing matrices in Eq. (5) are concatenated
orizontally into mixing matrix 𝐌 and all the waveform matrices
ertically into 𝐒 the respective order yielding

(𝑡) = [𝐋, 𝐌A]
[

𝐉(𝑡)T, 𝐒A(𝑡)T
]T = 𝐌𝐒(𝑡) . (19)

n practice, the neuronal lead-field matrix 𝐋 is constructed as described
n Section 2 for a fixed number of equivalent dipoles. The original
ork used nine brain sources distributed around the brain (Litvak
t al., 2007). The artifact-mixing matrix 𝐌A can be formed, e.g., by
ecomposing a data segment consisting of mostly artifacts with SVD.
he first column vectors of the SVD-provided 𝐔 form 𝐌A as in SSP.

Now, we may use, e.g., the pseudoinverse of 𝐌 to estimate the
ime-courses:

̂ (𝑡) = 𝐌+𝐘(𝑡) , (20)

rom which we specifically wish to pick the estimate �̂�A(𝑡). Finally, the
rtifact removal is simply evaluated as the subtraction

̂ = 𝐘 −𝐌A�̂�A(𝑡) . (21)

The benefit of this approach is that the mixing matrix (topographies)
f the neural data of interest is not modified; no interpolation of the lost
ignal dimensions is required post-cleaning. However, MSA may turn
ut impractical since the topographies (both neural and artifactual)
re not known accurately enough to model the respective time courses
eliably. Within TMS–EEG data, muscle artifact amplitudes can be
round 100–1000 times larger than neural EEG amplitudes (Korhonen
t al., 2011; Mutanen et al., 2013). For this reason, even small leakage
rom the remaining artifact after cleaning will lead to unsatisfactory
esults. In summary, MSA is expected to work well when the under-
ying topographies are known accurately (preferably both neural and
rtifactual), and the relative amplitude of the artifact with respect to
he neural EEG is of moderate size.

. Practical considerations

Getting started with SSP–SIR and SOUND is nowadays straightfor-
ard because open-source code and corresponding documentation are
vailable (Mutanen et al., 2020). However, the effective and reliable
se of these methods requires careful consideration of several practical
spects. In this section, we cover some source-based-methods-related
ethodological issues and their solutions.

.1. Unbiased comparison across datasets

Oftentimes, we are not interested in the absolute amplitudes of
MS–EEG responses in one condition. Instead, we wish to compare
he TMS–EEG responses in a repeated-measures design between two
onditions. For instance, we might measure the same subjects in the
orning and in the evening to evaluate the circadian effects on the

esponsiveness to TMS. In general, it is hard to assess with certainty
6

hether the artifacts and noise have been removed perfectly. On the
ther hand, the neuronal signals of interest might suffer from filtering-
aused overcorrection. Thus, we must be careful to not introduce
ny spurious differences between the conditions by applying slightly
ifferent cleaning to the compared conditions.

It is straightforward to apply SSP–SIR such that both compared
atasets are cleaned identically. With SOUND, the situation is a bit
ore subtle. Here, we describe three typical comparison cases and how

he source-based methods should be theoretically used to ensure reli-
ble inferences; comparison within-subject between different TMS con-
itions, comparison within-subject between identical TMS conditions,
nd comparison between groups.

Let us compare two datasets where the stimulation parameters have
hanged. If possible, the most natural approach is to estimate the
rtifact and noise distributions from both datasets separately and clean
oth datasets with the combinations of the filters. A natural example
f this type of analysis is comparing the TMS–EEG responses between
ifferent stimulation sites. Moving the stimulation target is known
o modulate the TMS-evoked muscle artifacts considerably (Mutanen
t al., 2013). Suppose one of the stimulation sites evokes significantly
arger muscle artifacts. In that case, there is a risk that more compo-
ents need to be removed in the high-amplitude-artifact condition in
he SSP, resulting in a greater degree of overcorrection of the neuronal
EG signals. Let us imagine two datasets with identical noise, but
ifferent underlying neuronal responses 𝐉 and muscle artifacts 𝐀:

𝐘1(𝑡) = 𝐋𝐉1(𝑡) + 𝐍 + 𝐀1

𝐘2(𝑡) = 𝐋𝐉2(𝑡) + 𝐍 + 𝐀2 . (22)

y applying SSP–SIR separately to both datasets as presented in Sec-
ion 3 we obtain:
̂ 1(𝑡) = 𝐋(𝐖1

SSP𝐋)
+𝐖1

SSP𝐘
1(𝑡) ≈ 𝐋(𝐖1

SSP𝐋)
+𝐖1

SSP(𝐋𝐉
1(𝑡) + 𝐍)

̂ 2(𝑡) = 𝐋(𝐖2
SSP𝐋)

+𝐖2
SSP𝐘

2(𝑡) ≈ 𝐋(𝐖2
SSP𝐋)

+𝐖2
SSP(𝐋𝐉

2(𝑡) + 𝐍)
(23)

Even if we find significant differences by contrasting �̂�1 to �̂�2 we
cannot know whether these differences are introduced due to genuine
difference between 𝐉1 and 𝐉2 or due to the different spatial filters 𝐖1

SSP,
𝐖2

SSP. Luckily, this is straightforward to fix; we simply apply both SSP
filters to both of the datasets and obtain:
�̂�1(𝑡) ≈ 𝐋(𝐖1

SSP𝐖
2
SSP𝐋)

+𝐖1
SSP𝐖

2
SSP(𝐋𝐉

1(𝑡) + 𝐍)
�̂�2(𝑡) ≈ 𝐋(𝐖1

SSP𝐖
2
SSP𝐋)

+𝐖1
SSP𝐖

2
SSP(𝐋𝐉

2(𝑡) + 𝐍)
(24)

Now, provided that the muscle artifacts have been suppressed suffi-
ciently, any possible difference between the cleaned datasets �̂�1 and �̂�2

is due to a genuine difference in the cortical currents (when identical
noise between the conditions is assumed). Note that if the muscle
artifacts actually turned out to be the same in the compared condi-
tions, we can still safely use Eq. (24), since in such a case, 𝐖1

SSP𝐘 =
𝐖2

SSP𝐘 = 𝐖1
SSP𝐖

2
SSP𝐘. This approach was used successfully in Vosskuhl

et al. (2020) where event-related potentials were compared during and
without applying tACS, which is notorious for inducing large artifact
signals to EEG (Helfrich et al., 2014).

If we are interested in within-subject comparisons between identical
TMS conditions, the muscle artifacts can often be assumed equal, and
we should take a different SSP strategy. By merging and averaging
the compared datasets together and using that combined dataset to
find the muscle artifact dimensions, we maximize signal-to-noise ratio
(SNR) in the muscle artifacts and potentially improve the accuracy of
the artifact estimation process. Once the common muscle artifacts have
been estimated, the two datasets will be cleaned separately with the
same SSP–SIR filter.

When the stimulation parameters vary between the compared con-
ditions or the compared datasets are measured in different sessions, also
the noise distribution across the channels likely differs between the
conditions. This should be acknowledged when cleaning the datasets
with SOUND before the qualitative or statistical comparison. Compared

to SSP, the situation here is a more subtle because SOUND does not
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project out the artifactual dimensions completely. Instead, it estimates
the noise variances across the EEG channels to smoothly weigh them
in calculating the noise-free cortical-current estimates, and thus, the
final noise-free channel time courses. While SOUND detects extracra-
nial signals effectively, it tends to smear the cortical topographies
slightly. Thus, even if the noise distribution would remain the same,
two consecutive SOUND operations could result in a greater degree
of overcorrection, and we cannot write a similar identity for SOUND
as for SSP; i.e., in general, 𝐋𝐏1

MNE𝐘 ≠ 𝐋𝐏1
MNE𝐋𝐏

2
MNE𝐘. On the other

hand, one of the strengths of SOUND is that, at least in principle, it
allows for comparison between two conditions in channels that have
been contaminated in only some conditions. For instance, a similar
technique has been used to extrapolate single-channel magnetocardio-
graphy (MCG) data to the sensors signals measured by a multichannel
MCG device. This approach allowed to compare single and multichan-
nel MCG devices directly with each other (Numminen et al., 1995). The
same SOUND parameters, including the regularization parameter and
the number of iterations, should be used. Furthermore, the reference
channel for the SOUND-iteration phase should be selected consistently
across the compared datasets.

If the noise distribution can be assumed similar across the compared
datasets, the most beneficial way might be to estimate the channel
noise levels using the merged dataset. An example of such an exper-
iment might be comparing two conditions, both measured in the same
recording session, across the same subject. For instance, TEPs could be
recorded at rest or during the task (see, e.g., Nikulin et al. (2003)). If the
noise distribution across the channels truly remains the same, applying
SOUND to the merged dataset should allow the most reliable noise-
level estimates as both the TMS-evoked neuronal signals and noise are
measured with maximal SNR or deterministic-noise-to-random-noise-
fluctuations ratio. This approach also ensures that regarding SOUND,
the compared datasets will be cleaned identically.

For the last case, where two independent groups are compared,
addressing the discrepancies between SSP–SIR and SOUND cleaning
is the most challenging. If the subjects of different groups can be
assumed to come from the same underlying population, a sufficient
number of subjects will wash out possible variability in the subject-
specific data-cleaning outcomes in the final test statistics. However,
suppose the subjects or patients come from different populations, e.g., a
atient group vs. age-matched controls. In that case, one must carefully
onsider whether there is a risk that noise or muscle artifacts are
ifferent across the compared datasets.

In many cases, the source-based artifact-cleaning methods allow a
traightforward way to ensure an identical correction of the compared
atasets, and thus, non-biased contrasting. However, it is worth noting
hat sometimes this is achieved with the price in the overall signal
mplitude; the more consecutive spatial filters are stacked, the more the
nderlying neuronal signals are compromised. If the artifacts and noise
iffer between the compared conditions, it might be advisable to rather
ver- than undercorrect the datasets. As we have shown, overcorrection
an often be controlled for. However, it is impossible to control for
ifferences in the residual artifact because this is generally not known.

.2. Quantitative evaluation of potential overcorrection

We often lack the hard ground truth to evaluate how successfully
he data cleaning removed the unwanted signal disturbances. This often
orces us to visually and heuristically evaluate the cleaned data to
etermine whether the remaining data seem to have mainly neuronal
rigin. However, we can objectively evaluate the possible overcor-
ection for linear spatial filters such as SSP–SIR and SOUND. With
vercorrection, we refer to unwanted suppression or distortion of the
ignals of interest. With the help of forward modeling, we can answer
he question: Provided these cortical regions were active, how much
id SOUND and/or SSP–SIR attenuate the EEG signals generated by the
ortical sources of interest?
7

Forward modeling means the numerical estimation of the spatial
EG patterns (often referred to as topographies) generated by all the
ossible neuronal signal sources. While, in reality, the cortical post-
ynaptic currents, generating EEG, are most likely distributed, we
ften model them as several focal current sources; we assume that
ny distributed brain activity can be described in terms of a linear
ombination of individual current sources. The computed topographies
f individual sources can be organized into matrix columns to form
he lead field matrix 𝐋, describing the sensitivity of EEG sensors to all
ossible cortical sources. After applying a spatial filter 𝐖, the lead-field
atrix becomes:

After filter = 𝐖filter𝐋 , (25)

where ‘‘filter’’ can stand for SOUND, SSP–SIR, or any other linear
spatial filter that maps the 𝑁-sensor EEG signal onto a set of 𝑁 cleaned
sensors.

The level of undesirable attenuation and distortion in the neuronal
topography of a focal source 𝑖 can be quantified by comparing the
olumn vector 𝑖 of the lead-field matrix before

(

𝐋(𝑖)) and after cleaning
(

𝐋(𝑖)
After filter

)

. We can apply any meaningful measure(s) to evaluate the
level of distortion, but here we focus on four classic tools. Obviously,
the selected measures should quantify the type of distortion that is
relevant to the research question at hand.

The amplitude difference measure 𝛥𝐴𝑖 quantifies the change in the
overall amplitudes of the EEG signals of a focal unit current source 𝑖

𝛥𝐴𝑖 =
‖𝐋(𝑖)

After filter‖ − ‖𝐋(𝑖)
‖

‖𝐋(𝑖)
‖

, (26)

where ‖ ⋅ ‖ denotes the Euclidean vector norm. Ideally, we wish 𝛥𝐴𝑖 to
be as close to 0 as possible, whereas −1 would mean that the source
𝑖 has lost all of its amplitude. Typically, Eq. (26) gets only negative
values as the spatial filtering methods tend to attenuate cortical signals.

To measure the similarity of the shape of the EEG topographies of a
source 𝑖 before and after filtering, we can use the correlation coefficient
(CC𝑖).

CC𝑖 =
𝐋(𝑖)

After filter ⋅ 𝐋
(𝑖)

‖𝐋(𝑖)
After filter‖ ‖𝐋

(𝑖)
‖

. (27)

Naturally, the CC values vary between −1 to 1, a value close to
1 indicating that the topographical shape of source 𝑖 has remained
practically unaltered.

An index 𝜖𝑖, used to measure the relative difference between filtered
and non-filtered topographies, can be computed:

𝜖𝑖 =
‖𝐋(𝑖)

After filter − 𝐋(𝑖)
‖

‖𝐋(𝑖)
‖

. (28)

We wish the discrepancy to be as small as possible, meaning that our
goal is 0 for this metric. In contrast to CC and 𝛥𝐴, 𝜖 is sensitive to
changes in both the amplitude and the topographical shape.

Closely related to 𝜖𝑖, the so-called goodness-of-fit (GOF) measure has
been a common way to measure topographical similarity in MEG and
EEG literature (Kaukoranta et al., 1986). GOF has been mainly used
to verify the reliability of inverse techniques, such as dipole fitting or
beamforming, but can also be used here to compare the filtered and
unfiltered topographies:

GOF𝑖 = 1 − 𝜖2𝑖 (29)

Clearly, GOF of 1 means perfect performance, while a value close to
0 means complete deletion of a neuronal signal. Whereas 𝛥𝐴𝑖 and
CC𝑖 measure only the changes in amplitude or shape of topography 𝑖,
respectively, both 𝜖𝑖 and GOF𝑖 quantify the overall difference between
the filtered and unfiltered topographies. Thus, choosing between 𝜖𝑖 and
GOF𝑖 is largely a matter of taste. However, it should be emphasized
here that these measures are not comparable between different sensor
geometries, including different choices of the reference in EEG.
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The forward modeling of the unwanted filtering artifacts can be
summarized in four steps.

1. Form the linear spatial filters 𝐖filter (e.g., 𝐖SSP–SIR and 𝐖SOUND)
using the real recorded TMS–EEG data.

2. Apply the formed spatial filters to the original lead-field matrix
𝐋 to obtain 𝐋After filter, Eq. (25).

3. Compare all the cortical topographies before and after filtering,
i.e., the columns of 𝐋 and 𝐋After filter, respectively, using the
metric of your choice.

4. Visualize the results to answer the question: Supposing these cor-
tical regions, relevant for my research question, were activated
by TMS, how much would the spatial filtering methods have
compromised their EEG projection?

We wish to provide an insight into the distortions and attenuations
in the cortical topographies due to spatial filtering. To this end, the
overcorrection measures are visualized as a function of the cortical
location. Both SOUND and SSP–SIR have their characteristic ways to
warp the cortical EEG signals. Because SOUND interprets those parts
of each EEG-channel signal that the other channels cannot see as
noise, SOUND tends to systematically overcorrect the lateral chan-
nels (Mutanen et al., 2018), which on average have fewer neighboring
channels than in the center regions of the EEG cap. The forward
model simulations can help identify how detrimental this effect is
on the EEG signals that would originate from the ROIs. Similarly,
regardless of the introduced SIR step (Mutanen et al., 2016) correcting
some of the undesired impacts of SSP, SSP–SIR still tends to distort
EEG signals. Especially those components that originate from cortical
locations that lie underneath the TMS-activated scalp muscles are com-
promised. These effects are amplified along with the muscle-artifact
amplitude (Salo et al., 2020); suppression of large muscle artifacts
requires the removal of several muscle-artifact components, leading to
greater neuronal-signal attenuation. This region-specific suppression is
not, however, necessarily critical for the research question. The SSP–
SIR-cleaned data could still turn out valuable if we are particularly
interested in long-distance effective-connectivity patterns.

Fig. 4 shows an example of how different cortical sources are
attenuated and distorted by the SSP–SIR filter when the TMS-evoked
muscle artifacts have been removed. By inspecting the cortical maps,
we can, for instance, deduce that if we are interested in the inter-
hemispheric M1–M1 effective connectivity, we can safely use and ana-
lyze the cleaned data. However, if we wished to, for instance, measure
the possible spreading of right M1-originated activity to the right
parietal or prefrontal cortices, we would have to be more cautious in
our interpretations of the results. The example dataset of this article
comes from a 24-year-old female who received single-pulse TMS to the
right primary motor cortex. The subject gave a written consent and the
experiment was accepted by the Coordinating Ethics Committee of the
Hospital District of Helsinki and Uusimaa.

Simulations with the EEG forward model can highlight possible
methodological issues and help resolve them by applying the most
appropriate filter parameters. In addition to quantifying the effects of
SOUND or SSP–SIR on the lead field, we can also quantify how well
different inverse estimation techniques work after applying the spatial
filters by analyzing the point-spread and cross-talk functions of the res-
olution matrix corresponding to the inverse method of choice (Stenroos
and Hauk, 2013; Todaro et al., 2019). This analysis is elaborated in
Section 6.4.

To conclude, one benefit of the linear spatial filters is that after
forming them based on the recorded data, the filters are explicitly
defined. Their effects on hypothetical cortical signals can be modeled
using source-based forward computations. While we still, in general,
lack the ground truth that would help to identify objectively whether
the artifacts have been successfully removed, we have methods to
quantify the possible overcorrection of the neuronal EEG signals of
interest.
8

Fig. 4. An example dataset showing how the overcorrection of SSP–SIR can be
quantified using forward modeling. The dataset comes from 24-year-old female who
received single-pulse TMS to the right primary motor cortex. The red arrow depicts the
approximate stimulation location and orientation. To suppress the initial TMS-evoked
muscle artifacts, we projected out four muscle-artifact dimensions. As a result, we can
observe that the signal amplitudes (𝛥𝐴) are attenuated, which is also reflected in the
more general distortion measures, 𝜖, and GOF. However, SSP–SIR preserves the shapes
of neuronal signals well reflected in the CC map.

6.3. Optimal parameters for SOUND

While SOUND identifies noise signals with hardly any intervention
by the user, there are a couple of parameters that can affect the cleaning
outcome dramatically: the regularization coefficient 𝜆 in Eq. (18) and
the choice of EEG reference. A larger regularization parameter in
SOUND means more aggressive suppression of noise, whereas a smaller
𝜆 is a more conservative choice, meaning that the data of interest are
overcorrected less, but some noise may remain after cleaning. To set
the regularization to a correct ballpark, the heuristic tuning scalar 𝜆0
in 𝜆 = 𝜆0�̃��̃�⊤∕𝐶 can be chosen such that 𝜆0 = 1∕SNR. This approach
suppresses the noise more aggressively when the original SNR of the
data is low.

In the original SOUND paper, we also showed a strategy for op-
timizing the regularization level for a given dataset to minimize the
overcorrection while maximizing the SNR of the cleaned data (Mutanen
et al., 2018). SNR should be estimated with some SOUND-independent
metric, such as by comparing signal power at low and high frequen-
cies. As a measure of overcorrection, we have used the correlation
between the SOUND-estimated noise and neuronal time courses; the
more SOUND removes signals of interest, the more the cleaned signal
will correlate with the estimated noise.

A potential approach that needs validation in the future could be to
assume that an EEG dataset contains at least some non-contaminated
channels. After the channel-specific noise estimates have been obtained
through the SOUND iterations, the user could set a tolerance level for
unnecessary suppression of the best-quality channel signals. A stricter
tolerance would mean less overcorrection in the good-quality channels
and less aggressive cleaning of the overall noise, and vice versa.

The open-source implementation of SOUND (Mutanen et al., 2020)
also allows the straightforward interpolation of visually identified
‘‘bad’’ channels based on the minimum-norm estimates derived from
the ‘‘good’’ channels (Nieminen et al., 2016). If this is the primary use
of SOUND, then the regularization level should be kept relatively low
to minimize the unnecessary suppression of the good-quality channel
signals.

Also the choice of the reference channel can affect cleaning out-
come. It is noteworthy that the noise captured by the reference elec-
trode is spread to all EEG channels, measuring the voltage with respect
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to the reference. This makes the reference noise correlated over the
channels, contradicting with the assumption of uncorrelated noise.
Therefore, the reference channel cannot be cleaned efficiently with
SOUND, and the noise spread among the channels by the referencing
cannot be eliminated. In practice, a low-noise electrode should be
chosen as the reference. The same reference should be then used in the
lead-field matrix. Furthermore, suppose one is interested in analyzing
the data in a particular reference system. In that case, it is favorable to
transform the data and lead fields to the reference of interest already
before SOUND (as long as that reference channel initially had high-
quality signal). Re-referencing the data before SOUND minimizes the
distortions in the neuronal signals in the reference of interest.

6.4. Artifact rejection and inverse estimation

The analysis of TMS-evoked EEG has been largely based on ana-
lyzing and visualizing the sensor-space signals (see, e.g., Nikulin et al.,
2003; Daskalakis et al., 2008; Veniero et al., 2013; Premoli et al., 2014).
For such applications, SSP–SIR and SOUND are useful methods that
are rather straightforward to use when distilling the genuine cortical
signals from the noisy measurements. However, from the beginning
of TMS–EEG, one of its main applications has been the estimation of
cortical effective connectivity (Ilmoniemi et al., 1997; Massimini et al.,
2005; Ferrarelli et al., 2010; Bagattini et al., 2019), which in practice
requires source estimation. Thus, it is essential to understand how
the source-based noise-cancellation methods should be applied when
source-estimation is of primary interest. On the other hand, even with
the best practices, noise and artifact cancellations always compromise
the signals of interest. Therefore, it is necessary to understand how
the source estimates are affected by the applied methods. This section
demonstrates, through simple simulations, how to use best spatial
filtering with inverse estimation to ensure reliable current estimates.

Here, we concentrate on the inverse-estimation technique, stan-
dardized low-resolution brain electromagnetic tomography (sLORETA)
(Pascual-Marqui et al., 2002), which has also been used with TMS–EEG
data (Ragazzoni et al., 2013; Bagattini et al., 2019). sLORETA serves as
an excellent example because it has a specific theoretical characteristic;
in ideal conditions, the location of the maximum amplitude of a source
estimate corresponds to the actual location of the underlying focal
source (Pascual-Marqui et al., 2002). As we will demonstrate, this
property is broken if the spatial filtering is inadequately taken into ac-
count. The straightforward principles presented here can be, however,
easily applied to minimum-norm estimation (MNE) (Hämäläinen and
Ilmoniemi, 1994) or beamforming (Van Veen et al., 1997).

The characteristics of different inverse techniques can be analyzed
by quantifying the properties of the so-called resolution matrix (Hauk
et al., 2019; Todaro et al., 2019; Hauk et al., 2022). The resolution
matrix describes the linear relationship between the true and estimated
cortical sources. In practice, the resolution matrix is formed by first
applying the inverse-estimator 𝐆 of interest to the measured data
(Eq. (5)) to find the estimate �̂� for the cortical currents. The inverse
operator 𝐆 ≡ 𝐆𝐋 is a function of the lead-field matrix 𝐋. Even in the
absence of noise and artifacts, Eq. (5) does not have a unique solution
for 𝐉. Thus, the exact formulation of 𝐆𝐋 depends on the underlying
assumptions and the chosen optimization problem (Hauk and Stenroos,
2014) that produces a unique solution. The estimated currents �̂� can be
written:

�̂�(𝑡) = 𝐆𝐋𝐋𝐉(𝑡) +𝐆𝐋𝐌A𝐒A(𝑡) +𝐆𝐋𝐌N𝐒N(𝑡) , (30)

where 𝐑 = 𝐆𝐋𝐋 is the resolution matrix. The 𝑖th row of 𝐑 is a so-called
cross-talk function (CTF), which describes how much the other cortical
sources ‘‘leak’’ to the estimate of a focal source 𝑖. On the other hand,
the 𝑖th column of 𝐑 corresponds to the point-spread function (PSF) of
source 𝑖, i.e., how the source estimate of a focal source 𝑖 spreads to the
locations of other sources. By inspecting how the CTFs and PSFs behave
with the TMS–EEG data cleaning, we get precious insight on how the
9
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inverse-estimation is affected by the spatial filtering. For sLORETA, 𝐆𝐋
can be written (Hauk et al., 2019; Todaro et al., 2019; Hauk et al.,
2022):

𝐆𝐋 = diag(𝐏MNE𝐋)−1∕2𝐏MNE , (31)

where diag(𝐗) is a diagonal matrix having the diagonal values of matrix
𝐗.

The most straightforward way to perform source analysis is to
apply SSP–SIR and SOUND to produce noise-attenuated versions of the
TMS-evoked neuronal EEG signals and use these as a starting point
when inverse-estimating the cortical activity. However, as we already
pointed out in Sections 6.1 and 6.2, after applying a spatial filter to the
data, the relationship between the cortical current sources and sensor
signals changes. In practice, this means that instead of the original lead
field 𝐋, the new post-filtering lead-field 𝐖filter𝐋 is a more accurate
epresentation of the mapping of the cortical activity onto EEG signals
Eq. (25)). If the use of the spatial filters is not taken into account in the
nverse estimation, the resulting resolution matrix is 𝐑 = 𝐆𝐋𝐖filter𝐋.
owever, because the spatial filter is known, we can use the updated

ead field to find the inverse estimator, and the resulting resolution
atrix is 𝐑 = 𝐆𝐖filter𝐋𝐖filter𝐋.

We analyzed the properties of the resolution matrices using two
ifferent metrics, the peak localization error (PLE) and spatial disper-
ion (SD). PLE of PSF is intuitive and quantifies the error between the
ocation of the maximum estimated current and the true location of
he focal current source if only that source would have been active. In
he ideal case of no noise and perfectly known lead fields, this error is
ero for sLORETA by definition (Pascual-Marqui et al., 2002). However,
n the real world, the brain is likely to have multiple sources active
imultaneously. PLE of CTF quantifies the distance between the source
f interest 𝑖 and the source that leaks the most to the estimate of 𝑖 if
he whole cortex would be equally active. Ideally, both PLE of PSF and
TF would be 0. SD of PSF quantifies the spread of the current estimate
hen only the focal source in question has been active. On the other
and, SD of CTF quantifies the extent of the cortical area from which
he other sources leak to the activity estimate of the source of interest.

Fig. 5 shows the properties of (the resolution matrix of) sLORETA in
hree different conditions. The Standard condition refers to a situation
here no spatial filtering has been applied to the data. In the Post SSP–
IR condition, SSP–SIR has been used to suppress TMS-evoked muscle
rtifacts when the right primary motor cortex has been stimulated
ith 90% of the motor-threshold intensity. In total, seven artifact
imensions have been removed by SSP. However, this operation has
ot been taken into account when forming the sLORETA estimator 𝐆.
inally, in the SSP-optimized condition, the original lead-field matrix
as been replaced with the filtered version of the lead-field matrix when
orming 𝐆. Note that the SIR correction is not needed when computing
he inverse estimates and is sufficient only to perform the SSP step.
orrespondingly, the lead-field matrix 𝐋 is replaced with 𝐖SSP𝐋.

Overall, different conditions produce subtle differences in the PSFs
nd CTFs. As expected, sLORETA shows overall small PLE values
n PSFs, whereas CTFs reflect significant leakage between different
ources, which is typical for EEG. SD is high in general, related to the
ow spatial specificity of EEG. However, when the different conditions
re compared to each other (Fig. 6), it is clear that using the SSP–SIR-
leaned data directly with sLORETA does not produce optimal results.
owever, taking SSP into account in the SSP-optimized condition

eturns the 0-PLE for PSFs. Furthermore, while also SSP-optimized
LORETA increases SD of PSFs, the situation is substantially better
han in the Post-SSP–SIR condition. The changes in CTFs were small
ompared to their overall PLE and SD values. Not surprisingly, SSP–
IR introduced problems mainly to the stimulated (right) side. This is
ince the removed muscle artifact topographies overlap more with the

euronal topographies from this side.
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Fig. 5. The performance of sLORETA with different filtering approaches. Different columns show the PLE and SD values of PSFs and CTFs. The Standard condition row demonstrates
a situation where no spatial filtering has been needed. The Post SSP–SIR row shows what happens when the SSP–SIR-cleaned data has been fed directly to standard sLORETA.
The SSP-optimized row shows the correct way to combine SSP with sLORETA. See Fig. 6 for contrast between the conditions.
Fig. 6. Contrasting the sLORETA performances in different filtering conditions. Top row: Compared to standard condition, when no SSP is needed, the direct use of post-SSP–SIR
data in sLORETA clearly increases PLE of PSF and SD of both PSF and CTF in the stimulated hemisphere. Mid row: Taking SSP correctly into account in the sLORETA inverse
operator (SSP-optimized condition) decreases both PLE and SD compared to post-SSP–SIR condition. Bottom row: Even after SSP artifact rejection, the zero-localization error of
sLORETA can be recovered with the SSP-optimized approach (PLE of PSF). However, SSP still compromises SD of both PSF and CTF.
6.5. Requirements for the forward model

An essential part of applying the source-based methods is to con-
struct the forward model (or lead-field matrix) that is used as prior
to either detect noise signals, as in SOUND (Mutanen et al., 2018), or
to reconstruct the artifact-free signals in the original sensor space, as
10
in the SIR step (Mutanen et al., 2016). The original logic that led to
SSP–SIR and SOUND was based on estimating the noise- and artifact-
free cortical currents, which could be used to interpolate the missing
signal-space directions (e.g., see Figs. 2–3). However, it turns out that
both methods can be written in terms of lead-field covariance matrices
𝐂 = 𝐋𝐋T. This means that instead of mapping accurately topographies
𝐋
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of the actual cortical postsynaptic sources, it is sufficient that the used
forward model depicts accurately the typical cross-correlations between
EEG channels, in the presence of neuronal activity.

Because it is only required that the chosen forward model ac-
curately depicts the lead-field-covariance, we can achieve successful
data cleaning with simplified head models. Both SOUND and SSP–
SIR have been successfully applied using only a three-layer spherical
model (Mutanen et al., 2016, 2018). Hence by default, the open-source
SSP–SIR and SOUND functions construct and apply the three-layer
spherical models, based on the theoretical 10–20 EEG-channel loca-
tions, unless the user provides a more detailed lead field among the
input parameters (Mutanen et al., 2020).

Nonetheless, an anatomically more accurate forward model has
been shown to perform better, particularly in SOUND (Mutanen et al.,
2018). For instance, inaccuracies in the head geometry lead to over-
correction, especially on the lateral sides of the head. Due to the real
curvature of the head, a simple spherical head model does not capture
perfectly the cross-correlation between the lateral and other channels.
However, moderate errors in the applied conductivity values did not
dramatically affect the performance of SOUND (Mutanen et al., 2018).
This is reassuring as the exact conductivity values of the different head
tissues are still not perfectly known (Vorwerk et al., 2019). If possible
during experiments, the scalp location of the reference channel should
also be measured for the construction of the lead field. This allows
calculating the forward model in the original reference and operating
SOUND to the data in its original reference. Otherwise, an intermediate
step is needed to transform the data and lead-field to the same reference
before SOUND. Such an intermediate step increases the risk that the
noise in the used reference signal is spread over all the channels,
making the noise irremovable by SOUND.

6.6. Cleaning TEPs with SSP–SIR and SOUND

When preprocessing TMS–EEG data, a common question is raised:
What other preprocessing steps should be combined with SOUND and
SSP–SIR and what is the optimal order for the data-cleaning steps?
In general terms, one should apply as little cleaning and filtering
to the data as possible to avoid overcorrecting the data, hindering
the final interpretations. If the artifacts within the time window of
interest are suppressed simply by the application of SOUND or SSP–
SIR (with just a few removable components), one should refrain from
further correction. In practice, this is often not enough: When TEPs
are highly artifactual, several consecutive cleaning steps are taken to
get a satisfactory result (Bertazzoli et al., 2021). Here, we discuss how
to perform the multi-step cleaning and the beneficial preprocessing
actions before SOUND or SSP–SIR.

SOUND assumes uncorrelated noise, so the preprocessing prior to
SOUND should enhance the noise uncorrelatedness and not create
additional correlations. Slow-frequency drifts are general phenomena,
which arise at the single-channel level (not from the brain or environ-
mental disturbances). Still, they can appear spatially spread because the
dataset recording times are not long enough to compute representative
covariance matrices of such slow disturbances. High-pass filtering or
detrending is therefore beneficial. We also recommend setting the
signal offset at each channel to zero to prevent biased EEG activity
maps affecting the noise-level estimates.

As discussed, the used reference signal is spread over all the chan-
nels, making the noise in this reference spatially correlated and not
removable by SOUND. We further note that any spatial filtering mixes
the EEG noise somehow, creating correlations, and hampering SOUND
performance. The mixing into each channel 𝑖 from the original data can
be checked from the 𝑖th row of the filter matrix. This fact would be in
avor of performing SOUND before other spatial filtering steps.

SOUND has two opposing effects on the consecutive SSP–SIR as
11

xplained in the following. On the other hand, after SOUND, the
spatial maps underlying EEG have been smoothened by applying the
correction matrix 𝐖SOUND. If any artifacts remain, they have also been
smoothened as 𝐖SOUND𝐌A according to Eq. (5), which means that they
have become increasingly overlapping with the SOUND-smoothened
neural topographies, i.e., the columns of 𝐖SOUND𝐋. This can bring along
challenges since SSP preserves neural data best when there is minimal
overlap (correlation coefficient) between the neural and the artifactual
topographies. This problem is alleviated by the fact that, commonly,
SOUND alone can eliminate artifacts to such extent that the number of
needed SSP out-projection components decreases. As a result, the EEG
dimensionality does not need to be dropped as much as when applied
to the EEG before SOUND.

After choosing and estimating the pipeline order and the correction
matrices, one can check how the correction affects the separability and
possible attenuation of the sources using the head model as discussed in
Section 6.2. Here, we show an example case of this type of analysis by
checking the source amplitude modification when SSP alone is used as
compared to SOUND followed by SSP–SIR. In this case, SSP is applied
with seven out-projected topographies, whereas after SOUND fewer
PCA-derived topographies were out-projected to yield a desired level of
artifact attenuation. SOUND was applied with three different levels of
regularization, the regularization coefficient set to 0.01 (termed as low
regularization), 0.1 (medium regularization), and 1 (high regulariza-
tion). The higher this coefficient is, the smoother the data appears after
SOUND, and the fewer out-projection components are needed for the
SSP–SIR step, the numbers here being 5, 3, and 2 for the low, medium,
and high regularization levels, respectively. The regularization values
here refer to the tuning scalar 𝜆0 in Eq. (18).

For the above-described four settings, we investigated the remaining
relative source power 𝑝source𝑖 , which for source 𝑖 was defined as:

𝑝source𝑖 =

√

‖𝐖𝐋𝑖‖
2

‖𝐋𝑖‖
2

, (32)

where 𝐋𝑖 is the 𝑖th lead-field matrix topography, and 𝐖 is the used total
spatial filter matrix, i.e., it combines both SOUND and/or SSP(–SIR)
depending on how they were used.

Results are summarized in Fig. 7. Overall, when the regularization
coefficient in SOUND is increased, the area on the cortex, where the
source power is remarkably diminished, gets enlarged: With small
regularization, focal cortical patches near the stimulation target and on
the contralateral area are damped down, while medium regularization
clearly makes these areas more diffuse. The focal attenuation of con-
tralateral activity is actually produced by SOUND alone (not depicted
here), which indicates that there are probably no source signals with
good SNR arising in this contralateral area. The difference between the
regularization levels is also seen in the histogram (bottom in Fig. 7),
where it also shows that large regularization provides clear overall
attenuation, and it should probably be avoided. In this example case,
SSP alone seems to silence only a relatively small area near to the
TMS target, as seen in Fig. 7 on top left, coinciding with the dark
patch with small regularization. In the histogram, we see that combined
SOUND+SSP–SIR with small regularization spreads the distribution of
the remaining source power, meaning that there are sources whose
power either increases or decreases, as compared to SSP alone.

The type of evaluations presented here can be easily performed
for individual datasets to make the final decisions of pipeline designs.
When performing group-level analysis after preprocessing, common
pipelines are oftentimes required. Again, we stress that one should
always compare the pipelines from the viewpoint of the study at
hand: Not all brain activity may be relevant, in which case the source
attenuation in uninteresting cortical regions should not be taken into
consideration.
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Fig. 7. The relative remaining source power was computed by Eq. (32) in three scenarios using SSP and SOUND followed by SSP–SIR. Different regularization coefficients were
used: 0.01 (assumed SNR = 100), 0.1 (assumed SNR = 10), and 1 (assumed SNR = 1) are referred to as ‘small reg.’, ‘medium reg.’ and ‘high reg.’, respectively. Top: Distributions
depicted on the cortical surface. Bottom: Histogram showing the overall distributions regardless of the anatomical cortical locations for comparison across the cleaning types.
6.7. Cleaning individual TMS–EEG trials

Not all TMS–EEG analysis relies on averaging the responses over tri-
als, although averaging is beneficial from the noise attenuation perspec-
tive. As trial-to-trial variability is attenuated by averaging, also noise is
diminished simultaneously. For instance, TMS-induced oscillations are
studied by analyzing the power (variance) of the random-phase EEG
signals within different frequency bands (Pellicciari et al., 2017). In
addition, single-trial-level cleaning is also valuable for drawing statis-
tical links between EEG responses and some other measure (Niessen
et al., 2021), or for example, as a preprocessing step prior to blind-
source-separations methods (Metsomaa et al., 2014), which require lots
of input data.

For the types of analyses making advantage of unaveraged data,
the usage of the SSP–SIR and SOUND may be different from the
averaged TEP analysis: When averaging as a noise-suppressing step
is not included, the regularization term in SOUND or the number
of eliminated components in SSP–SIR may need to be increased to
obtain a sufficiently clean outcome. Such heavier cleaning, on the other
hand, may result in attenuation of the neural signal of interest, so a
compromise may be needed. If any prior knowledge of the locations or
frequencies of the sources of interest is available, this information could
be used in the correction methods to preserve the sources of interest as
well as possible. At the same time, the artifacts would be suppressed
at the cost of eliminating less relevant source activity. In practice, the
prior knowledge could be incorporated in the source covariance matrix
in MNE. In SSP, the artifact topographies should be estimated from
a frequency band that overlaps minimally with the studied frequency
band.

7. Recent advancements

7.1. Enhancing the computation of SOUND

Two simple innovations have significantly enhanced the computa-
tion of SOUND and made some applications more feasible in practice,
including the time-adaptive SOUND (Section 7.2), the real-time SOUND
(Section 7.3), and the cleaning individual trials separately.

First, regardless of how the lead field has been computed, we recom-
mend to replace the actual lead field, which may consist of thousands
of columns, with a singular-value-decomposition-based square matrix
as follows:
𝐋 = 𝐔𝐒𝐕T

̂ (33)
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𝐋 = 𝐔𝐒 .
This is because the equations of SOUND (Eqs. (13)–(17)) actually rely
on the lead-field covariance matrix, rather than the full lead-field
matrix. On the other hand, 𝐔 and 𝐒 matrices are sufficient for writing
the covariance matrix:
𝐂𝐋 = 𝐋𝐋T

𝐂𝐋 = 𝐔𝐒𝐕T𝐕𝐒𝐔T

𝐂𝐋 = 𝐔𝐒𝐒𝐔T = �̂��̂�T .

(34)

Second, with large datasets, estimating noise levels from Eq. (15) is
time-consuming since SOUND iterations proceed through all channels
multiple times. Let us insert the definitions from Eqs. (14) and (16) into
Eq. (15) to compute the noise signal as:

�̂�N,𝑖(𝑡) = 𝐞T
𝑖 𝐘(𝑡) − 𝐞T

𝑖 𝐋𝐏
(𝑖)
MNE𝐘(𝑡) = (𝐞T

𝑖 − 𝐞T
𝑖 𝐋𝐏

(𝑖)
MNE)𝐘(𝑡) = (𝐰(𝑖)

N )T𝐘(𝑡) , (35)

where we used the unit basis vector 𝐞𝑖 to pick the 𝑖th column from a
matrix, e.g., 𝑌𝑖(𝑡) = 𝐞T

𝑖 𝐘(𝑡). We note that applying a spatial filter vector
𝐰(𝑖)

N to the data sample vector gives the respective estimate for noise
sample at channel 𝑖. Finally, using this identity to compute the noise
level by Eq. (15) yields:

�̂�𝑖 = (𝐰(𝑖)
N )TCov(𝐘)𝐰(𝑖)

N . (36)

Using Eq. (36) allows us to efficiently update the noise levels since the
data covariance matrix needs to be computed only once, after which the
original data samples are not used within the SOUND iterations. One
simply updates 𝐏(𝑖)

MNE to update the spatial filter vector and recomputes
Eq. (36). This update rule may speed up the computational time
by several orders of magnitude compared to sample-wise updates,
depending on the dataset size.

7.2. Time-adaptive SOUND

One statistical characteristic of TMS–EEG data is that noise is gen-
erally non-stationary; i.e., the noise covariance matrix changes over
time. For instance, the TMS pulse can polarize the skin–electrode
interfaces of poorly connected channels, resulting in high-amplitude
artifacts that easily dominate the noise covariance matrix right after
the TMS pulse (Ilmoniemi and Kičić, 2010). These polarization artifacts
decay exponentially, lasting from tens to a few hundred milliseconds.
TEPs often contain also sustained noise signals, such as line noise or
persistent muscle activity. After the possible sporadic artifacts have
passed, the noise covariance matrix mainly describes the spatial pat-
terns of such noise signals. If the noise covariance matrix is known

to be highly non-stationary, the original time-invariant SOUND might
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overcorrect artifactual channels also during those time points when
they are relatively clean. Theoretically, the optimal solution is to clean
the data in a time-adaptive way as follows.

The noise level estimate �̂�𝑖,𝑡 for channel 𝑖 and time point 𝑡 is
computed with a slight variation of Eq. (15):

�̂�𝑖,𝑡 =
1
𝐸

𝐸
∑

𝑒=1
�̂�N,𝑖,𝑡(𝑒)2

�̂�N,𝑖,𝑡(𝑒) = 𝑌𝑖,𝑡(𝑒) − 𝑌𝑖,𝑡(𝑒) ,

(37)

where 𝑒 stands for epoch (or trial), and 𝐸 is the total number of epochs.
The time-dependent noise estimates can be substituted to Eq. (16)
for running a separate SOUND iteration to each time point. In the
time-adaptive SOUND, a very practical initial guess before time-point-
specific iteration can be found from the previous time point. As a
result, we form a time-dependent SOUND filter, which can be applied
to individual time points in the normal way:

�̂�(𝑡) = 𝐖SOUND(𝑡)𝐘(𝑡) . (38)

To minimize the possibility for abrupt changes in the filtering
outcome between subsequent time points, the cleaned signals �̂�(𝑡) can
be median-filtered. Another elegant solution is to base each time-point-
specific noise-estimate to a set of values over an overlapping time
window. This can be written:

�̂�𝑖,𝑡 =
1
𝐸

1
𝑇window

𝐸
∑

𝑒=1

𝑇end
∑

𝑡𝑗=𝑇0

�̂�N,𝑖,𝑡𝑗 (𝑒)
2

𝑇0 = 𝑡 − 𝑇window∕2

𝑇end = 𝑡 + 𝑇window∕2 ,

(39)

where 𝑇window is the length of the applied time window.
The time-adaptive SOUND approach was successfully used for the

first time by Bagattini et al. (2019), when they studied whether pre-
frontal connectivity alterations may be linked to Alzheimer’s disease
severity. While the initial implementation worked well, it was tediously
slow. With the computational innovations, described in Section 7.1,
a dataset consisting of dozens of channels, hundreds of trials, and
thousands of time points is now cleaned in a matter of few minutes. The
computation time can be further shortened with parallel computing.

7.3. Real-time cleaning

The recent innovations in the SOUND algorithm (see Section 7.1)
have enhanced the computation so much that real-time SOUND has
become feasible (Makkonen et al., 2021). Real-time correction is crucial
in closed-loop TMS–EEG techniques (see Section 8), in which the brain
state is used to control TMS (Zrenner et al., 2018). In addition, real-
time cleaning is important in EEG-based brain-computer interface (BCI)
applications (Curran and Stokes, 2003) and could potentially enhance
traditional (TMS–)EEG measurements by providing information about
channel-wise noise levels and their changes during an experiment.

The spatial-filter implementation of SOUND correction allows fast
and straightforward noise removal by applying the filter separately
to every incoming data sample in real-time. The filter can be con-
stantly updated by reading a short data segment, to estimate the
current noise covariance, and thus, to calculate the corresponding
noise-removing spatial filter (see Fig. 8). The SOUND calculation does
not slow down the real-time sample-by-sample process because it runs
in the background as a parallel process.

The spatial filter needs to be updated as frequently as possible
to reflect the changes in the noise covariance of the data. The noise
covariance matrices can be updated in tens to hundreds of milliseconds,
depending on the length of the data segment and the number of
recorded EEG channels (Makkonen et al., 2021). The iteration process
can be accelerated by using the noise estimate from the previous filter
13

update as an initial guess. Moreover, a sliding weight change can be 𝐗
implemented between consecutive filters to avoid abrupt changes in
the streaming data.

When using real-time SOUND in TMS–EEG, extracting only data
segments that do not include TMS pulse artifacts is important. In single-
pulse TMS–EEG experiments, separate filters and update processes can
be used for pre-and post-pulse data because the noise covariance in
post-pulse data (e.g., 0–500 ms after the pulse onset) might be different
due to the TMS-pulse-evoked disturbances. However, this approach
must be refined in the future for multi-locus TMS (mTMS) (Koponen
et al., 2018) and repetitive TMS applications (Klomjai et al., 2015), in
which pulses can be delivered at a much faster rate.

In tests with streamed pre-recorded TMS–EEG data, real-time
SOUND cleaning produced EEG signals similar to those cleaned with
traditional offline SOUND (Makkonen et al., 2021). Qualitative results
demonstrated that real-time SOUND restored signals in noisy EEG chan-
nels while leaving high-quality channels unaltered. When launching a
new update every 2 s, EEG data segments as short as 1000 samples
were found adequate for estimating the noise covariance of the data
nearly as precisely as offline SOUND. Additionally, frequency spectra
were consistent between real-time and offline SOUND-cleaned EEG
data. This indicates that the method could be suitable for closed-loop
use, in which determining the brain state from spontaneous EEG is
important (Bai et al., 2021).

Real-time SOUND cleaning offers many benefits in addition to fast
and robust noise removal. The spatial-filter-based correction pipeline
allows easy addition of other spatial-filter correction methods, such as
SSP–SIR. Furthermore, the quality of EEG data can be monitored in
real-time by comparing consecutive noise covariance values returned
by SOUND. Sudden large changes in the noise levels can be used as an
indicator of temporary low data quality. Such bad data segments can
be discarded until the signal quality recovers.

We have recently implemented real-time SOUND cleaning in
the real-time EEG-processing architecture presented by Zrenner et al.
(2018). This architecture is used for EEG-controlled TMS, in which
real-time cleaning is important. In the implementation, SOUND spatial
filtering was realized as a fast linear matrix operation as a part of a
linear sample-by-sample process. In contrast, the slower SOUND update
iteration was implemented as an asynchronous parallel process, as in
Fig. 8, on a separate computer. We have also conducted preliminary ex-
periments with real-time cleaning in the architecture to see any possible
improvement in the accuracy of phase-based EEG-controlled TMS. The
data from these experiments are currently being analyzed. Overall, the
tentative results of real-time SOUND are promising (Makkonen et al.,
2021), but further work is needed to validate the performance and
reliability in the real world.

8. Future directions

8.1. General data-driven noise estimation

Often in TMS–EEG studies, we measure more multidimensional data
than the number of electrodes might suggest. For instance, we repeat a
particular stimulus several times to measure the evoked responses. This
means that our raw data consists of at least three independent variables:
sensors, time, and trials. In SOUND, we test how well the other sensors
can explain and predict the signal in the studied sensor through MNE.
Using this information, we can deduce sensor-specific noise estimates.
The very same idea can be generalized to other measurement dimen-
sions. This could allow the introduction of new, more objective, and
efficient ways to find contaminated trials or entire datasets during
preprocessing.

Let us consider a general multidimensional measurement 𝐙(𝑡)

(𝑡) = 𝐗(𝑡) + 𝐍(𝑡) , (40)

hich consists of the underlying true noiseless measurement of interest

(𝑡) and noise 𝐍(𝑡). For simplicity, 𝑡 refers here to time but could stand
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𝑥

Fig. 8. The working principle of real-time EEG cleaning with the SOUND algorithm. Each raw data sample is multiplied with the SOUND spatial filter. The filter is regularly
updated in a parallel process, based on short data segments. Adapted with permission from Makkonen et al. (2021).
for trials or any other dimension at which the variables have been
sampled. The rows of 𝐙 could contain, for instance, data collected from
different participants or trials. We assume that 𝐍 is temporally uncorre-
lated over its elements (rows). Furthermore, 𝐍 is assumed uncorrelated
with 𝐗. In contrast to the noise, we assume that 𝐗 has some correlation
over its elements, but this correlation structure is not a priori known.
We aim to estimate the true signal for the element 𝑖 (e.g., the 𝑖th TMS–
EEG trial) linearly from the other measurements (other trials). To this
end, we seek to find the linear filter 𝐰𝑖 that minimizes the expected
difference between the true and the best estimate for the noiseless
measurement �̂�𝑖;

̂ 𝑖(𝑡) = 𝐰⊤
𝑖 𝐖

(𝑖)𝐙(𝑡) , (41)

where 𝐖(𝑖) corresponds to eliminating the 𝑖th row from the target ma-
trix when applying 𝐖(𝑖) from the left, and 𝐰𝑖 is obtained by minimizing
the optimization problem:

�̂�𝑖 = argmin
𝐰𝑖

‖�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)‖ , (42)

where ‖ ⋅ ‖ stands for the L2-norm.
Eq. (42) can be solved by taking the derivative of the minimization

expression w.r.t. 𝐰, yielding the well known Wiener estimator:

�̂�𝑖 = (𝐖(𝑖)𝐙𝐙⊤𝐖(𝑖)⊤)−1𝐖(𝑖)𝐙𝑥⊤𝑖 . (43)

In general, the true measurement 𝑥𝑖 is not known. However, as we
assumed that the noise 𝑛 is uncorrelated across the repetitions (e.g.,
trials), and with the true noiseless signal 𝑥, it turns out that 𝐖(𝑖)𝐙𝑥⊤𝑖 (𝑡) =
𝐖(𝑖)𝐙𝑧⊤𝑖 and the filter can be constructed using entirely the recorded
data:
𝐖DDWiener = [�̂�1, �̂�2,… , �̂�𝑁 ]⊤

�̂�𝑖 = (𝐖(𝑖)𝐙𝐙⊤𝐖(𝑖)⊤)−1𝐖(𝑖)𝐙𝑧⊤𝑖 .
(44)

We call this approach the Data-driven Wiener estimator
(DDWiener). DDWiener provides a useful initial guess for the SOUND
algorithm. However, DDWiener can also be used to evaluate the relia-
bility of, not only sensors, but also other dimensions, such as partici-
pants or trials. Using trials still as an example, the mean noise of the
𝑖th trial can be estimated as the difference between the original and
DDWiener-cleaned signals:

𝑛ave
𝑖 = 1

𝑇
‖𝑧𝑖(𝑡) − �̂�𝑖(𝑡)‖

�̂�(𝑡) = 𝐖DDWiener𝐙(𝑡) ,
(45)

where 𝑇 is the total number of time samples.
Fig. 9 illustrates how useful DDWiener can be when applied to trials.

For instance, trials that contained a blink show a high noise amplitude
in frontal channels. On the other hand, corrupted channels show high
noise levels in all trials because of the lack of correlation across the
trials.

Eqs. (44) and (45) can be applied to multiple problems in the way
that is most convenient for the research question. Ultimately, different
applications of DDWiener simply require the appropriate organization
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of the data. For instance, in Fig. 9, the trial-specific noise levels were
evaluated separately for each channel. Suppose our primary interest is
to evaluate the general noise level of each trial without differentiation
between the channels. Then, we simply need to concatenate the multi-
channel data of each trial into a long vector and organize the trial
data into the row vectors of a matrix. The formed data matrix can
then be operated with the DDWiener filter (Eq. (44)) to find the best
estimate for the noiseless measurements for each trial. The trial-specific
noise level can be estimated as the root-mean-square amplitude of the
difference between the original and DDWiener-cleaned trial data as
in Eq. (45). On the other hand, we might wish to find, e.g., outlier
subjects who would fail to respond to the TMS pulse in a typical way
(i.e., nonresponders). Then, the subject-specific responses, such as TEPs,
should be organized first into the row vectors of the operated matrix,
after which we could proceed in the same way as with trials.

Even though DDWiener is a data-driven method, when applying
DDWiener, one should first carefully consider what the reasoning for
the prediction between the used variables would be. This is important
also because overfitting of the model to the data may occur even though
no true predictive phenomenon exists. In the case of cross-channel
EEG modeling, we know a priori that the neural sources are seen by
several EEG channels. For this reason, it is reasonable to ‘interpolate’
one missing channel based on the other ones. This interpolation is
represented by the linear model using the other channels as an input
by which the missing channel signal is predicted. On the other hand,
if we leave one trial out and predict/interpolate the EEG within this
trial using the other ones, what phenomenon is the prediction based
on, and do we have some a priori knowledge on that? Traditionally
it is thought that a single evoked EEG response is a superposition of
a fixed (trial-independent) deterministic data and randomly varying
‘noise’ responses. Averaging is typically applied to cancel out the noise
and to uncover the deterministic response. If the single-trial responses
are generated in this manner, the underlying model in Eq. (40) changes
such that 𝐗(𝑡) = 𝐗 is the deterministic response independent on the trial
𝑡. It turns out that the estimate for the left-out trial given by Eq. (44)
simply becomes the average of the responses from the other trials. In
this case, we could not really predict the EEG based on the trial index
𝑡. On the other hand, if it is hypothesized that there are some trial-
index-dependent trends in the responses, this could indeed be modeled
and studied by DDWiener. Such trends would be, e.g., gradual and
systematic attenuation or increase in the signal amplitudes as a function
of trial index. Even cyclic phenomena could be analyzed if they were
to be induced by the used TMS protocol.

8.2. Artifact and noise-rejection in closed-loop EEG–TMS–EEG

While TMS has practical applications in clinical and basic research
settings, the reported effects are often variable, both within and be-
tween subjects (Tremblay et al., 2019). By optimizing the target and
onset of the TMS pulse based on the concurrent brain state, we could
enhance the efficacy and repeatability of TMS. TMS–EEG could pro-
vide real-time information about the cortical activity with excellent
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Fig. 9. DDWiener was used to estimate the noise level of each trial. A: The color map shows the estimated noise level at each sensor and in each trial. The arrows show the
representative examples of the trials identified as highly noisy by DDWiener (i–vii). B: Time courses of noisy channels in the specific trials (i–vii). The black curves show the
measured signals, whereas the gray curves show the corresponding DDWiener estimates. The red segments in the time courses highlight the likely reason for the high noise score
in that particular trial, showing the moments when the difference between the measured and estimated signals is greater than in 99% of all the collected samples. Reprinted with
the permission from Mutanen et al. (2018).
temporal resolution. However, we must manage the inherently low
SNR of raw EEG for EEG-informed closed-loop TMS to be effective and
adaptable for different applications. Real-time SOUND (see Section 7.3)
could turn out to be a vital tool providing means for objective real-time
cleaning of the data during real-time closed-loop EEG–TMS.

So far, we have tested the real-time SOUND mainly for processing
streaming EEG data before TMS-pulses. However, as the closed-loop
EEG–TMS–EEG techniques evolve, we might want to deliver subsequent
stimuli quickly after the initial TMS pulse to impact the brain optimally.
To this end, further preprocessing may be needed for, e.g., suppressing
the TMS-evoked muscle artifacts. Luckily, the real-time cleaning strat-
egy presented in Section 7.3 can easily include additional spatial filters,
such as SSP–SIR.

The real-time cleaning solutions serve, not only closed-loop EEG–
TMS–EEG, but also other BCI applications (Benda and Volosyak, 2019).
For MEG, real-time algorithms that can separate neuronal signals from
external noise already exist. The signal-space separation (SSS) can
detect noise signals that originate from outside the MEG sensor array
based on fundamental electromagnetics (Taulu and Simola, 2006; Guo
et al., 2010). SOUND provides an appealing option, especially for EEG–
BCI applications. With SOUND, we can detect extracranial noise signals
from EEG similarly to SSS, which can detect MEG noise signals that
arrive from the outside of the sensor array.

8.3. Suppression of TMS-elicited peripheral responses

So far in the TMS–EEG framework, SSP–SIR has been mainly applied
to TMS-evoked muscle artifacts. However, in principle, SSP–SIR could
be applied to other artifacts as well (see e.g., Vosskuhl et al., 2020),
as long as the topographies of the artifacts and signals of interest
differ sufficiently (Uusitalo and Ilmoniemi, 1997). Over the past few
years, it has been debated to which extent the peripheral evoked
potentials (PEPs) related to TMS-elicited scalp sensations and the coil-
click-related auditory reactions mask the direct cortical responses to the
TMS-induced electric field (Gordon et al., 2018; Conde et al., 2019; Be-
lardinelli et al., 2019). Recently, Biabani et al. (2019) applied SSP–SIR
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to attenuate the impact of sensory inputs on TEPs. The artifact subspace
was spanned by the few most significant principal components of PEPs
evoked with sham stimuli, i.e., TMS targeted to the left shoulder. While
the results were partially promising, it was clear that the overall signal
amplitude of TEPs was compromised during the cleaning process. This
is likely due to the overall similarity between the genuine transcranial
and non-transcranial responses. In contrast to the TMS-evoked muscle
artifacts, here also the rejected signal components originate from the
cortex. In effect, the transcranial and non-transcranial signal subspaces
might overlap heavily. An appealing and straightforward solution for
this problem should be tested in the future. SSP could be applied in a
time-adaptive manner; instead of estimating the global signal subspace
that explains the complete PEP over its whole temporal span (∼300 ms),
only one topography at a time could be projected out. The topography
rejected at each time point would be read directly from the correspond-
ing point in the PEP data. In practice, some sort of windowing might
be necessary to ensure a smooth finish. This approach would be very
close to the time-adaptive SOUND approach (Section 7.2).

8.4. Seeking the ground truth

A question that is often raised is how the source-based methods
compare to other artifact- and noise-rejection algorithms, such as in-
dependent component analysis (ICA) (Korhonen et al., 2011; Rogasch
et al., 2014). Indeed, a recent study by Bertazzoli et al. (2021) showed
that different preprocessing pipelines produce significantly different
outcomes. However, the direct comparison between, e.g., ICA and
SOUND or SSP–SIR is difficult because we, in general, lack the ground
truth of the underlying neuronal activity. The advances in neurophysio-
logical modeling might turn out useful in this aspect. Recently, Aberra
et al. (2020) and Shirinpour et al. (2021) modeled the activation of
morphologically realistic neurons under TMS. Once we can reliably
model and deduce which neuronal populations are activated by TMS,
we could use the novel EEG-modeling tools (Kohl et al., 2021) to
simulate ground truth signals to which we could compare the different
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cleaning outcomes. Until this, the source-based methods still have one
clear theoretical benefit over ICA; SSP–SIR and SOUND are largely
based on the electrophysiological models of the head, and they can
be applied when the statistical independence between the noise and
neuronal signal components cannot be assumed.

In practice, SSP–SIR, SOUND, and ICA are often used together in
preprocessing pipelines to reject different artifact types. In particular,
ICA has shown its utility in disentangling ocular artifacts from the
rest of the EEG (Mennes et al., 2010). This could be due to the fact
that ocular signals are typically more independent of the event-related
neuronal responses as they also occur at random moments, not time-
locked to the stimulus, such as a TMS pulse. On the other hand, for
instance, SOUND struggles to remove such signal components that are
correlated across the EEG channels similarly to the EEG originating
from neural sources.

In typical signal-preprocessing pipelines, the different algorithms
are performed independently, in a step-by-step fashion. The challenge
with this approach is that the complicated processing cascades can
have surprising effects on the cleaned data outcome. However, due to
the lack of ground truth, it is hard to verify possible filtering artifacts
that may arise from a suboptimal filtering order. Recently, Hernandez-
Pavon et al. (2022) showed that all spatial artifact filters could be
written in terms of a beamforming filter 𝐖BF

A , which estimates the
unknown artifact time courses 𝐒A = (𝐖BF

a )T𝐘:

𝐖BF
a = 𝛴−1𝐌A(𝐌T

A𝛴
−1𝐌A)−1 , (46)

where 𝛴 is the data covariance matrix and 𝐌A is the artifact mixing
matrix, containing the known artifact topographies as column vectors.
Once estimated, the artifacts can be subtracted from the original data.
The formulation in Eq. (46) suggests that, for instance, the ICA and SSP
steps could be performed simultaneously; the blink topographies could
be derived from ICA, whereas a similar high-pass filtering scheme, as
explained in Section 3, could be used to estimate the muscle-artifact
topographies. Future work will hopefully show us whether combining
ICA and source-based spatial filtering methods inside a unified spatial
filter will improve the cleaning outcome.

9. Conclusion

Source-based cleaning methods are efficient tools for cleaning TMS–
EEG data from muscle artifacts and other measurement noise. They
rely on the anatomical and electrophysiological models of the head and
neuronal EEG generators in reconstructing noise-suppressed versions of
the TMS–EEG data, rather than on purely statistical assumptions. In
the future, objective and analytical comparisons between source-based
methods and other preprocessing algorithms are needed to define the
advantages of different methods in different situations.

One major strength of the described source-based methods is that
due to the linearity of the applied spatial filters, their effects on the
signals of interest are straightforward to quantify. As we demonstrated,
this analysis can be done both in the source and the sensor space.
The presented overcorrection analysis can help in determining whether
these methods fit the research question at hand.

Few simple but vital innovations in the noise-estimation of SOUND
have enhanced the computation substantially, paving the way for new
applications, such as real-time TMS–EEG cleaning for closed-loop stim-
ulation and the time-adaptive SOUND that can clean TEPs without the
assumptions for stationary noise.

Although this article concentrated on specifically cleaning TMS–
EEG responses, SSP–SIR and SOUND can be readily applied to other
EEG/MEG applications as long as the spatial patterns of studied signals
disturbances differ sufficiently from the neuronal signals of interest.
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