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Abstract. The task of understanding and modeling the dynamics of
financial data has a significant practical value. In particular, it can help
intercept trend inversion signals, providing an accurate future forecast
that is important for asset allocation, investment planning, portfolio risk
hedging and so on. Yet, the irregular fluctuations, chaotic dynamics and
constantly changing patterns of financial data make time series modeling
a challenging task in this domain. In this paper, we propose a classifier
ensemble operator based on stacking generalization, which is applied to
a pool of individual signals generated by a Poisson process-based model.
The forecasting ability of the methodology is tested on a set of price time
series. The results of the ensemble model application demonstrate the
increased accuracy of prediction and a mitigated sensitivity of the model
to parameters, outperforming the output of individual model components.

Keywords: Poisson process; Classifier ensemble; Stacking generalization;
Neural networks; Trend detection

1 Introduction

Time series forecasting and its application across various domains are among
the main topics of interest for the machine learning community. Financial time
series refer to a range of economic and business data, such as exchange rate,
stock market, price index, national income and so on. The financial market itself
is a non-stationery and regime-switching environment, where high volatility and
noise are intrinsic features. Besides, financial time series are often affected by
several complex economic variables that include growth, interest rate, inflation,
deflation, political and psychological factors, etc. [1, 2]. Due to the irregular
fluctuations, chaotic dynamics and constantly changing patterns of financial time
series it is quite challenging for traditional statistical models to produce an
accurate prediction in this domain [3]. It is, however, important to overcome
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the challenge and adopt a method for intercepting changes in relevant trend
dynamics, as this can significantly contribute to the decision process support,
resulting into a more efficient asset allocation, investment planning, portfolio
risk hedging etc.

When looking specifically at the stock market dynamics, we infer that the
persistently high price volatility implies high risks for shareholders [4]. By diversi-
fying the investment portfolio, it is possible to overcome the issue of company
specific risk, yet the returns will continue to be exposed to the systematic
market risk [4]. With effective ways of intercepting changes in stock market trend
dynamics, asset managers and investors are able to exercise more informed and
accurate decision-making.

The increase in computing power and availability of data have caused the
shift from applying linear statistical models (exponential smoothing, ARIMA) to
extensively using artificial Neural networks (NNs) for financial data forecasting
purposes [5, 6]. Empirical results [7] have shown that the latter outperform linear
regression models in the complex and chaotic market environment and are more
efficient in producing accurate market signals. In order to deal with sampling
and modeling uncertainties that can affect forecasting accuracy and robustness,
NNs are typically used as ensembles of several network models [8, 9, 10, 11].
Ensembles are a single classification architecture with a defined set of features,
employed in order to combine forecasts from the multiple and diverse classifiers
that comprise them. This approach is based on the studies, which confirm that
a variety of classifiers make uncorrelated errors, and by using a set of classifiers
that operate on diverse features it is possible to improve the overall classification
accuracy, as opposed to using the results of a single best one [11, 12, 13, 14].

The ensemble methods used are meta-algorithms built on various machine
learning techniques that in combination construct a single predictive model that
can decrease variance (bagging), bias (boosting) and predictions (stacking) [15,
16, 17]. However, more recent research suggests that instead of creating a set of
classifiers and then combining it, one should rather build a pool with the available
set of classifiers and adopt the ones that perform better than others, reducing
the initial size of the pool. Zhou et al. [18] explicitly describe the conditions
where it would be appropriate to create an ensemble of many but not all the
available classifiers.

Our motivation behind applying the stacking generalization approach is that
different learning models have different areas of expertise across the input space
[12]. Aiolfi and Timmermann [19] suggest there is evidence that forecasting
models have a varying relative performance over time. In addition, the process
behind time series generation often has recurrent structures due to factors such
as seasonality [20]. Therefore, we assume that the metalearning strategy allows
the ensemble to better intercept changes in relative performance of models
and adapt to the dynamic environment. Besides, an important reason for the
chosen approach is the features of the base learner, employed to produce the
signals that compose the ensemble. We assume that the price trend inversion
follows an inhomogenous Poisson process. This is useful for detecting changes
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in price movement but exhibits a high sensitivity to parameters, depending on
observation time (e.g. probability threshold) or the method used for estimating
the intensity of the Poisson process observed. Such parameter sensitivity of the
model is effectively mitigated during further ensemble construction.

The main contribution of this paper is the presentation and experimental
analysis of the ability of a stacking generalization metamodel, that employs
the Poisson process for initial signals’ pool generation, to improve the diversity
and the predictive accuracy of ensembles in financial time series forecasting. In
Section 2 we describe the model behind the signal generation and subsequent
classifier ensemble construction. The experimental evaluation of the output of
our model in comparison with its individual components is given in Section 3,
which is followed by the main conclusions of this paper and an outline of possible
future research directions in Section 4.

2 Classifier ensemble construction

In finance we adopt the term ”trend” to describe the direction of asset prices.
In other words, the term ”trend” captures the ascending or descending price
fluctuations over a period of time, with the latter not being subject to any
limitations. Our goal is to estimate the changes of trend direction, predicting
its future behavior through inferences from historical analysis of financial time
series data.

We begin by defining the strategy; given a discrete time series of prices5

{pt}t=1,..,n, and a rule <, which depends on the length of the investment horizon,
we define the direction of the trend ∀ t = 1, ..., n as a sequence:

dt
.
=

{
+1 if the trend is ascending under <
−1 if otherwise

(1)

We then use {dt}t=1,...n, which represents the target we want to predict, to

build three sequences Nt . Let6 L : t −→ L(t) ∈ N be such that L(t) <= t and

N+
t
.
=
∑t

1=t−L(t) I[di=1]

N−t
.
=
∑t

1=t−L(t) I[di=−1]

Nt
.
=
∑t
i=t−L(t) I[di 6=di−1]

(2)

For the sake of simplicity, we will keep L(t) constant for every t = 1, ..., n.
These three sequences represent the realization of the three counting processes7

at time t : for each t = 1, ..., n, N+
t (N−t ) counts the number of times the price

5 Temporal indexing t refers to an arbitrary observation frequency.
6 The L function is the time window on which the parameters will be estimated. This

function could also depend on <, or on the relevant state of the market [21].
7 i.e. The increments over a time frame of L steps.
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has increased (decreased) over the last L observations. Nt, instead, counts the
number of times the trend has switched between N+

t and N−t . Let τ+t , τ−t and τt
be the sequences that represent the inter-arrival time between successive events,
represented respectively by N+

t , N−t and Nt .

We interpret the sequence
{
N+
t

}
as a non-homogeneous Poisson process8

N+
t , whose intensity is λ+(t). Consequently, the sequence

{
τ+t
}

represents the
realization of an event at a particular arrival time, that is a trajectory of the
process T+

t of exponential random variables with parameter λ+(t). The same
approach is used for the successions

{
N−t

}
and {Nt}.

The above-stated is confirmed if empirical observations satisfy the standard
assumptions [22]. The choice of < and L and the techniques used to estimate
the parameter9 λ∗(t), the examples of which will be provided in the following
section, are determinant to the outcome.

We proceed with the notion that a random variable X ∼ exp(λ) has E[X] =

1
λ and Var[X] =

1

λ2
, while in the case of a variable Y ∼ Poisson(λ) we observe

the following: E[X] = Var[X] = λ. As shown in Figure 1, a multitude of techniques
may be applied in order to estimate the intensity of the process.

Fig. 1. The graph above represents a plot of three different intensity
λ(t) estimates of the process Nt, built on the historical data of the
examined price series, with weekly observation frequency, L = 20, < =
{trend is ascending if today′s return is greater than yesterday′s return}. Intensity
estimation was performed through the calculation of variance and mean of the
inter-arrival time observations (red and blue respectively), and the average of the
counting process observations (green) on L observations.

8 Homogeneity is avoided to pursue a general path.
9 Refers to one of the three processes we built in 2.
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There is no universality regarding the intensity estimation techniques. There-
fore, the intensity calculation varies depending on the specific application case.
The results presented in this study are obtained via counting process average.

Having obtained the intensities of the processes built in 2, and knowing the
parameters λ∗(t), we are able to calculate event probabilities for the trend at
step n+ 1.

For example,using inter-arrival times, we can estimate the probability that
at the next observation the price will exhibit an ascending <-trend

P(T+
n+1 < T−n+1) = P(dn+1 = 1) =

λ+(n+ 1)

(λ+(n+ 1) + λ−(n+1))
(3)

and can, consequently, open a long position if the output 3 exceeds aΘ threshold10.
Similarly, we can calculate

P(Tn+1 < T+
n+1) =

λ(n+ 1)

(λ(n+ 1) + λ+(n+1))
, (4)

which is the probability that the trend switch will occur prior to the arrival of
an event characterized by a positive trend below <. Therefore, in the ascending
trend phase, a short position can be opened if the relevant output exceeds a Θ
threshold.

Another example of applying the counting process is to calculate the probabili-
ty that the next price observed is going to be in a descending phase under <:

P(N+
(n+1) = 0) = e−λ

+(n+1); (5)

or in an ascending phase

P(N−(n+1) = 0) = e−λ
−(n+1), (6)

suggesting a long position if P(N−(n+1) = 0) > P(N+
(n+1) = 0).

By doing so, at each event Xi, i = 1, ...,K that describes the trend, we
associate a predictor Ri, i = 1, ...,K, whose output is a binary sequence (long,
short) Pi,t with t = 1, ..., T , which represents one of our basic classifiers.

Note that once fixed a rule <, it is possible to create multiple predictors by
changing the definition of events whose probability we want to estimate, the
Θ threshold and the defining function L(t). The accuracy of these predictors
depends on the distance between the lambda estimates, whereas the sensitivity
to parameters implies that the a posteriori choice of the parameters can lead
to overfitting. To overcome this limitation, we have created several hundred
classifiers based on a multitude of parameters and have left the ensemble creation
task to a Neural network algorithm.

Ensemble methods are based on the idea of combining a set of individual
predictors R1, R2, ... , Rm, in order to build a decision function f by means

10 For example, if this value is greater than its historical average plus c times its
historical standard deviation.
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of an aggregation operator that combines the individual forecasts instead of the
popular keep-the-best (KTB) model [23, 24].

Our base learning model generates eight predictive signals. We subsequently
employ a deep learning algorithm to construct a classifier ensemble that will
improve the accuracy of the final signal, which we will use to obtain the prediction
Pf . The precise process flow is shown in figure 2.

Fig. 2. The diagram shows each step of the process flow for the generation of the final
prediction.

We employ the feedforward multilayer perceptron as our metalearning model
to build the function f . The forecast for y(t+1) is obtained using single predictors,
which were prior built employing the Poisson process, as explanatory variables.
The target function is identical to the one used for individual predictors construc-
tion. Our final output is a binary indicator, used as the decision support signal
in relation to a particular asset:

- 0 for a cash/short operation to be executed on the day t+1;
- 1 for a long positions to be executed on the day t+1.

3 Experimental evaluation

In the table below we provide a comparison between the classification accuracy
of the stacking ensemble and of the individual predictors. The backtesting results
are obtained using the walk-forward validation method on four time series,
selected arbitrarily [25].
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Table 1. Output comparison between the stacking ensemble and the individual
predictors.

Classifier Nvidia Microsoft DAX S&P500

Classifier R0 54% 55% 53% 51%
Classifier R1 53% 57% 55% 55%
Classifier R2 58% 58% 57% 56%
Classifier R3 53% 54% 52% 54%
Classifier R4 57% 58% 57% 55%
Classifier R5 54% 55% 53% 53%
Classifier R6 53% 55% 52% 53%
Classifier R7 48% 50% 48% 46%

Stacking ensemble 73% 73% 75% 74%

The accuracy of the classifiers is calculated on an out-of-sample ten-year
period. Due to the application of walk-forward validation, the behavior and
performance of individual classifiers vary over time. The stacking ensemble that
uses different classifiers as input, is employed to determine the best performing
one on a relevantly small time window.

4 Conclusion

Forecasting financial time series is a challenging task for analysts and researchers,
due to the irregular fluctuations, chaotic dynamics and constantly changing
patterns that characterize financial data. In this paper we have proposed a Neural
network metamodeling technique, which is based on stacking generalization
classifier ensemble, applied to a pool of individual signals from a Poisson process-
based model.

Empirical results of practical data experiments on a set of price time series
demonstrated that the Neural network-based metamodel can be used as an
effective approach to financial time series forecasting as it outperforms the
individual components of the underlying model. It shows substantially improved
predictional accuracy, which was the main focus of our application, when mode-
ling stock price trend dynamics, as well as a mitigated sensitivity to parameters.
Our subsequent objective is exploring the ability of increased accuracy signals
to enhance the financial performance of a relevant investment product. Further
research may also be directed to exploring the scalability of the proposed method
in relation to other price series (e.g. testing multi-index or multi-asset class
application).
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