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Abstract: Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover
external Ca2+, which first enters the cytoplasm and then, via SERCA pump, also refills the depleted in-
tracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated
by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and
(ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs
increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent
formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum
longus (EDL) muscles from wild type mice to an ex vivo exercise protocol and verified that functional
CEUs can assemble also in the absence of blood supply and innervation. Then, we evaluated whether
parameters that are influenced by exercise, such as temperature and pH, may influence the assembly
of CEUs. Results collected indicate that higher temperature (36 ◦C vs. 25 ◦C) and lower pH (7.2 vs.
7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation
of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 ◦C) or at lower pH
(7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular
Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that
temperature and pH are two of the possible regulators of CEU formation.

Keywords: exercise; excitation-contraction (EC) coupling; skeletal muscle; store-operated Ca2+

entry (SOCE)

1. Introduction

The role of external Ca2+ in skeletal muscle contractility has been overlooked for
many years, as excitation-contraction (EC) coupling, the mechanism that allows activation
of muscle contraction by transducing the action potential into release of Ca2+ from the
sarcoplasmic reticulum (SR), is mechanical in skeletal muscle and does not depend on Ca2+

entry as in cardiac and smooth muscle [1–6]. In mechanical coupling, the alpha-1s subunit
of DHPRs, voltage-gated L-type Ca2+ channels (also known as Cav1.1) of transverse tubules
(TTs) act as a voltage sensor [5,7], which directly activates the SR Ca2+ release from RyR
type-1 (RyR1) channels [8–10]. The intracellular sites that allow mechanical interaction
between DHPR and RyR1 are called Ca2+ Release Units (CRUs) or triads, intracellular
junctions formed by the association of two SR terminal cisternae with a central TT [11,12].

Recently the role that Ca2+ entry may play in skeletal muscle function has attracted new
attention. A pathway known as excitation-coupled Ca2+ entry (ECCE), independent of SR
store depletion and not required for EC coupling itself, was identified as a slow Ca2+ entry
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pathway through DHPRs based on a retrograde signal from RyR1 to Cav1.1 [13–16]. ECCE
causes Ca2+ influx in response to physiological triggers [17,18]. In addition, a mechanism
triggered by depletion of intracellular Ca2+ stores (endoplasmic/sarcoplasmic reticulum,
ER and SR), known as store-operated Ca2+ entry (SOCE) [19–22], was also reported in
skeletal muscle [23]. SOCE is a pathway mainly mediated by the interaction between
(a) stromal interaction molecule-1 (STIM1), a protein placed in the ER/SR membrane,
which has an intra-luminal domain that acts as Ca2+ sensor; and (b) Orai1, a protein that
mediates Ca2+ release-activated (CRAC) current and is placed in external membranes
or TTs [24–34].

The mechanism of activation of SOCE was first studied in non-excitable cells: Ca2+

depletion of internal ER stores induces dimerization of STIM1 and its translocation towards
the plasma membrane (PM), enabling in this way STIM1 to interact and activate Orai1
Ca2+ channels [34,35]. In skeletal muscle, SOCE also relies on the concerted activity of
STIM1 and Orai1 [25,30,36–38], as supported by the finding that SOCE is abolished in mice
lacking STIM1 [39] and in muscle fibers from dominant-negative and muscle-specific Orai1-
knockout mice [40,41]. The exact stoichiometry of the active SOCE complex is currently
unclear [42,43]. Several studies hypothesized a 1:1 STIM1:Orai1 stoichiometry, with a
STIM1s dimer that interacts with a pair of Orai1 C-terminal subunits [44–47]. It has also
been reported that STIM1-Orai1 complexes form as a result of the interaction of oneSTIM1
dimer with one Orai1 channel [22].

The idea that impairment in SOCE can be behind muscle pathologies characterized by
increased fatigability and reduced SR Ca2+ release [48] has recently increased the interest in
this mechanism in the muscle system. Indeed, aberrant SOCE function was associated with
several forms of muscle dysfunction: weakness in aging [49–51], oversensitivity to heat in
malignant hyperthermia [52,53], and muscular dystrophy in mdx mice [54–57]. In addition,
mutations in STIM1 and Orai1 have been linked to tubular aggregate myopathy (TAM),
a rare condition characterized by muscle pain, cramping, weakness, and the presence of
peculiar remodeling of the SR [58–65].

Some authors reported that SOCE in skeletal muscle fibers has evolved in a different
mechanism that is activated in two different modes: (i) rapidly activated SOCE (within
milliseconds) of limited amplitude (phasic SOCE); and (ii) a slowly activated, large-scale
SOCE or chronic SOCE [64,66–70]. Phasic SOCE in muscle fibers is activated significantly
faster than in non-excitable cells, where the process from ER store depletion to Orai1
channel activation takes tens of seconds [35,67,69–73]. Rapid activation of SOCE in skeletal
fibers could be explained by STIM1 and Orai1 being pre-assembled in specific sites. For
this reason, initially it was proposed that SOCE would occur in triads, the intracellular
junctions deputed to EC coupling (see above). This hypothesis was based on the assumption
that in triads SR and TT membranes, which contain respectively STIM1 and Orai1, are
already associated and would easily allow rapid activation of SOCE. A STIM1 splice variant
highly expressed in skeletal muscle (STIM1-long) was proposed to account for rapid SOCE
activation [74,75]. Recently, some authors also suggested that slow and fast SOCE may use
different pools of Orai1 channels [76].

While there was always general agreement about the important role that SOCE plays
in limiting muscle fatigue [40,41,50,51,77], exactly how and where STIM1/Orai1 interact
to allow Ca2+ entry in skeletal muscle fibers has been debated for several years. Recent
experimental evidence collected in our laboratory indicated that intracellular junctions,
named Ca2+ Entry Units (CEUs), formed by the association of SR and TT at the I band, are
the most likely sites of interaction between STIM1 and Orai1 during SOCE [77–83]. CEUs
are few and small in control conditions (the main reason that did not allow their prompt
identification), but increase in number and size during exercise [77] to then disassemble
following recovery [81]. CEU assembly during exercise requires: (i) remodeling of SR
membranes at the I band to form stacks of flat cisternae (i.e., SR stacks); and (ii) elongation
of TTs from the triad toward the Z line. This remodeling promotes enhanced STIM1
and Orai1 colocalization and increased fatigue resistance in the presence of extracellular
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Ca2+ [77]. After proposing that these junctions provide a structure to recover Ca2+ ions via
SOCE from the extracellular space [77,78], the conclusive evidence of CEUs being a site for
SOCE came with the demonstration that: (i) these junctions promote increased rate on Mn2+

quench, i.e., the gold-standard technique used to assess entry of divalent cations from the
extracellular space [77,78,81,82]; and (ii) exercise-dependent enhancement of SOCE, due to
assembly of additional CEUs, does not occur in muscle fibers lacking Orai1 [81]. Finally, as
proof of principle, we also found that CEUs are constitutively assembled in muscle fibers of
mice lacking CASQ1 [82], which develop quickly to SR depletion (i.e., the putative trigger
of STIM1 aggregation and SOCE activation) during repetitive stimulation [84].

Together, these findings indicate that CEUs are dynamic intracellular junctions be-
tween SR and TTs that form when muscle fibers need to use external Ca2+ to replenish
depleted SR stores, hence limiting muscle fatigue. Nevertheless, the mechanisms that
promote the formation of SOCE-sites (i.e., CEUs) during exercise and disassembly during
post-training recovery are still obscure. In this work, we first: (i) investigated if CEUs can
assemble in the absence of blood supply and innervation in isolated extensor digitorum
longus (EDL) muscles stimulated ex vivo; and then (ii) studied the influence of temperature
and extracellular pH in CEU assembly, two parameters that change physiologically during
exercise in vivo [85–89].

2. Results
2.1. Functional Calcium Entry Units Can Assemble Ex Vivo

We recently demonstrated that acute exercise in vivo promotes the assembly of CEUs,
intracellular junctions located at the I band that mediate SOCE. CEUs are formed by the
association of two distinct components: SR stacks and I band extensions of TTs [77,78,81].
To verify whether exercise-dependent assembly of CEUs can take place in the absence of
blood supply and innervation, we subjected isolated EDL muscles of adult wild type (WT)
mice to an ex vivo exercise protocol at 30 ◦C (see Section 4. Materials and Methods and
scheme in Figure 1 for additional detail).
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Figure 1. Schematic representation of the ex vivo experimental procedures. (A) Control EDL
muscles were kept at rest in KH solution for 45 min (the same duration of the ex vivo exercise
protocol) and then either immediately fixed for EM analysis (green arrow) or kept in a rest condition
for 30 min (25 ◦C, pH 7.4) and then subjected to the ex vivo functional test (red arrows). (B) EDL
muscles exercised ex vivo were either immediately fixed for EM analysis or kept in rest condition for
30 min (25 ◦C, pH 7.4) and then subjected to the ex vivo functional test.

Samples from two different groups were fixed for immunofluorescence and electron
microscopy (EM): (a) EDL muscles that were not electrically stimulated (controls), but
simply kept in the solution at 30 ◦C for 45 min (the same duration of the ex vivo exercise
protocol); (b) EDL muscles subjected to the ex vivo exercise protocol. To determine the
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subcellular co-localization between STIM1 and Orai1 under control conditions and to
verify if STIM1-Orai1 colocalization increases following the ex vivo exercise protocol (as
in vivo during acute exercise [77]), small bundles of EDL fibers were double-labeled in
immunofluorescence experiments (Figure 2) as follows: RyR1 vs. STIM1 (Figure 2A,B) and
RyR1 vs. Orai1 (Figure 2C,D).
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Figure 2. Sarcomeric localization of STIM1 and Orai1 before and after an ex vivo protocol per-
formed at 30 ◦C and pH 7.4. Representative immunofluorescence images of EDL fibers showing
RyR1 and STIM1 (A,B) and RyR1-Orai1 (C,D) double-staining. Each panel contains also a fluores-
cence intensity profile along three sarcomeres (see dashed line in (A)) and the Pearson’s correla-
tion coefficient value, i.e., a method of measuring the covariance of pixel intensities, given as the
mean ± SEM. * p < 0.01, compared to fibers from control mice; n = number of images analyzed. Scale
bar: 2.5 µm (insets: 1 µm).

In Boncompagni et al., 2017 [77], we showed that in resting muscle STIM1 is primarily
localized throughout the entire I band region, while Orai1 has a preferential localization
in TTs at the triads. Results collected in experiments performed for the present work
confirmed previous findings (Figure 2): the level of Orai1 co-localization with RyR1 in the
resting condition is high, as shown by Pearson’s correlation coefficient value (Figure 2C).
On the other hand, in muscles exercised ex vivo (Figure 2D) a fraction of the Orai1 signal
shifted toward the I band, decreasing in this way RyR1-Orai1 co-localization, as shown
by peaks of fluorescence (traces in Figure 2D) and by the decreased Pearson’s correlation
coefficient value (compared with Pearson’s correlation coefficient values in Figure 2C; p
< 0.01). As the subcellular localization of STIM1 does not change following exercise (i.e.,
STIM1 is localized primarily throughout the I band region, also after the ex vivo exercise
protocol; Figure 2B), the increased presence of Orai1 at the I band (Figure 2D) is consistent
with an increased co-localization with STIM1.

Muscles fixed and processed for EM were used to verify the presence of CEUs
(Figure 3A,B). The presence of fully assembled CEUs was assessed by quantitative analysis
of their two main components, i.e., SR stacks and TT extensions at the I band. We performed
quantitative analysis of four different parameters that are indicative of the structural assem-
bly of CEUs: (i) the percentage of fibers containing SR stacks (Figure 3C); (ii) the number of
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SR stacks/100 µm2 of cross-section (Figure 3D); (iii) the extension of TTs at the I band in
100 µm2 of cross-section (Figure 3E); and finally (iv) the extension of SR-TT contacts at the I
band (Figure 3F). The data collected in Figure 3 clearly indicate that CEUs can assemble ex
vivo following an exercise protocol at 30 ◦C and pH 7.4, as all the parameters quantified
in Figure 3C–F are increased following the ex vivo exercise protocol (see also Table S1).
The increased inferred colocalization of STIM1 and Orai1 at the I band (data in Figure 2) is
supported by the elongation of T-tubules at the I band (Figure 3E), which underlines the
translocation of Orai1 at the I band.
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We previously demonstrated that the exercise-dependent assembly of CEUs in-
creases the resistance to fatigue of EDL muscles in the presence of extracellular Ca2+ [77]. 
Here, we verified if muscles containing a greater number of CEUs (pre-exercised ex vivo) 
are also more resistant to fatigue than controls (Figure 3G). EDL muscles were subjected 
to an ex vivo functional test (see Section 4. Materials and Methods and scheme in Figure 1 
for additional detail): as shown in Figure 3G, pre-exercised muscles display greater re-

Figure 3. Quantitative and functional analysis of Ca2+ entry units (CEUs) assembled ex vivo at
30 ◦C and pH 7.4. (A,B) EM images of fibers from isolated EDLs that: (i) have rested at 30 ◦C and
pH 7.4 for 45 min (panel (A)); and (ii) have been subjected to an ex vivo exercise protocol performed
at 30 ◦C and pH 7.4 (panel (B)). The inset in panel A shows SR appearance at the I band; the empty
arrow and the inset in panel (B) shows the remodeling of SR in stacks. (C,D) Percentage of fibers
containing SR stacks and number of SR stacks/100 µm2 of section. (E,F) Extension of TTs at the I
band in 100 µm2 of section and analysis of SR-TT contact length. (G) Ex vivo functional test showing
time course of average relative force decay in EDL muscles previously exercised ex vivo and of
controls (experiments performed at 30 ◦C and pH 7.4). Arrow points to the bump-phase, previously
characterized in two papers by Michelucci and colleagues as the phase of activation of SOCE [81,82].
(H) Semi-log plot showing results of multiple unpaired t test followed by Tukey post hoc test. Data
are shown as mean ± SEM (* p < 0.05). n = number of EDL analyzed. Scale bar: (A,B) = 0.1 µm;
insets = 0.2 µm.

We previously demonstrated that the exercise-dependent assembly of CEUs increases
the resistance to fatigue of EDL muscles in the presence of extracellular Ca2+ [77]. Here,
we verified if muscles containing a greater number of CEUs (pre-exercised ex vivo) are
also more resistant to fatigue than controls (Figure 3G). EDL muscles were subjected to an
ex vivo functional test (see Section 4. Materials and Methods and scheme in Figure 1 for
additional detail): as shown in Figure 3G, pre-exercised muscles display greater resistance
to fatigue than control muscles during a fatigue protocol in which muscles were stimulated
at 60 Hz, for 1 sec every 5 sec (in the presence of extracellular Ca2+).
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2.2. The Assembly of CEUs Is Affected by Temperature and Extracellular pH

CEUs assembled in vivo during a fatigue protocol in which mice ran on treadmill for
about 1 h [77]. Nevertheless, the mechanism underlying the SR and TT remodeling necessary
to increase number and size of CEUs during exercise is unknown. Here, we tested the effect
of two physiological parameters that change during exercise (Figures 4 and 5), i.e., body
temperature rises, and extracellular pH becomes more acidic due to the combined effect of
increased CO2 and lactic acid production [86–89].
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Figure 4. Electron-micrographs and quantitative analysis of assembly of CEUs at 25 vs. 36 ◦C
(pH 7.4). (A–C) EM images of fibers in isolated EDL muscles that: (i) have rested at 25 ◦C and pH 7.4
for 45 min (panel (A)); (ii) have been subjected to the ex vivo exercise protocol performed at 25 ◦C and
pH 7.4 (panel (B)); and (iii) have been subjected to the ex vivo exercise protocol performed at 36 ◦C
and pH 7.4 (panel (C)). The insets in panels (A,B) show SR appearance at the I band; the empty arrow
and the inset in panel (C) show the remodeling of SR in stacks. (D,E) Percentage of fibers containing
SR stacks and number of SR stacks/100 µm2 of section. (F,G) Extension of TTs at the I band in
100 µm2 of section and analysis of SR-TT contact length. Data are shown as mean ± SEM (* p < 0.05).
n = number of EDL analyzed. Scale bar: (A–C) = 0.1 µm; insets = 0.2 µm.
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Figure 5. Electron-micrographs and quantitative analysis of assembly of CEUs at pH 7.4 vs. 7.2
(25 ◦C). (A–C) EM images in isolated EDL muscles that: (i) have rested at 25 ◦C and pH 7.4
(panel (A)); (ii) have been subjected to the ex vivo exercise protocol performed at 25 ◦C and pH 7.4
(panel (B)); and (iii) have been subjected to the ex vivo exercise protocol performed at 25 ◦C and
pH 7.2 (panel (C)). The insets in panel (A,B) show SR appearance at the I band; the empty arrows
and the inset in panel (C) show the remodeling of SR in stacks. (D,E) Percentage of fibers containing
SR stacks and number of SR stacks/100 µm2 of section. (F,G) Extension of TTs at the I band in
100 µm2 of section and analysis of SR-TT contact length. Data are shown as mean ± SEM (* p < 0.05).
n = number of EDL analyzed. Scale bar: (A–C) = 0.1 µm; insets = 0.2 µm.

2.3. CEUs Assembled Ex Vivo (i.e., at Higher Temperature and Lower Extracellular pH) Promote
Enhanced Resistance to Fatigue in Presence of External Ca2+

Following EM analysis shown in Figures 4 and 5, we performed ex vivo functional
experiments to assess the contractility of EDL muscles in the presence of either external Ca2+

or blocking Ca2+ entry by removing external Ca2+ (replaced by an equimolar concentration
of Mg2+) or supplementing the solution with a compound that is frequently used to block
SOCE, i.e., BTP-2 [90] (Figures 6 and 7). We analyzed resistance to fatigue using a short
protocol of the duration of 2.5 min (see ex vivo functional test in Section 4. Materials
and Methods), in EDL muscles previously subjected to the ex vivo exercise protocol at
the different conditions reported in Figures 4 and 5. Specifically, we compared muscles
fatigued ex vivo at 25 ◦C at pH 7.4 vs. 36 ◦C at pH 7.4 (experiments designed to test
the effect of temperature on CEU assembly; structural analysis in Figure 4) and 25 ◦C at
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pH 7.4 vs. 25 ◦C at pH 7.2 (experiments designed to test the effect of pH; structural analysis
in Figure 5). Control muscles not subjected to the ex vivo exercise protocol (analyzed with
EM in Figures 4 and 5) were excluded from these experiments. Results of these experiments
are shown in Figures 6 and 7 and summarized in the following section.
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Figure 6. Contractile force of EDL muscles after the ex vivo exercise protocol at 25 vs. 36 ◦C
(pH 7.4). (A) Time course of average specific force decay during 30 consecutive frequency stimulus
trains (60 Hz, 1 s, every 5 s), normalized to CSA, in EDL muscles previously ex vivo exercised at 25 ◦C
or at 36 ◦C. Arrow points to the bump-phase, previously characterized in two papers by Michelucci
and colleagues, as the phase of activation of SOCE [81,82]. (B) Data represented as relative force
(normalized to the first stimulus train). (C) Time course of average relative force decay (in presence
or absence of 2.5 mM extracellular Ca2+ and in a solution supplemented with 10 µM BTP-2) in EDL
muscles previously subjected to the ex vivo protocol at 36 ◦C. Data are shown as mean ± SEM.
Bottom panels represent semi-log plot showing results of multiple unpaired t test (first two panels) or
two-way repeated measures ANOVA followed by Tukey post hoc test (right panel). n = number of
EDL muscles analyzed for each condition.

EDL muscles stimulated at 36 ◦C and pH 7.2 exhibited an increased ability to maintain
contractile force during a high frequency fatigue protocol in comparison to those stimulated
at 25 ◦C and pH 7.4, shown by the reduced decay of muscle force along the protocol
(Figure 6A,B and Figure 7A,B). Note the bump-phase (indicatedby arrows in Figures 6A and
7A), which was previously characterized in two papers by Michelucci and colleagues as the
phase of activation of SOCE [81,82]. To demonstrate whether the increased fatigue resistance
registered in EDL muscles exercised ex vivo at 36 ◦C (pH 7.4) and at 7.2 (25 ◦C) was due
to increased Ca2+ entry via SOCE, we performed parallel experiments conducted using
either: (i) a Ca2+-free solution, in which Ca2+ was replaced by an equimolar concentration
of Mg2+; or (ii) a Ca2+-containing solution supplemented with 10 µM BTP-2 (Figures 6C
and 7C), an established inhibitor of SOCE [77,79,90–92]. These experiments indicated that
the enhanced fatigue resistance of EDL muscles exercised ex vivo at 36 ◦C (pH 7.4) and at
pH 7.2 (25 ◦C) containing ex vivo assembled CEUs (Figures 4 and 5) was effectively due to
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the entry of extracellular Ca2+ via SOCE, as inhibition of Ca2+ entry results in faster decay
of contractile force (Figures 6C and 7C).
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Figure 7. Contractile force of EDL muscle after the ex vivo exercise protocol at pH 7.4 vs. 7.2
(25 ◦C). (A) Time course of average specific force decay during 30 consecutive frequency stimulus
trains (60 Hz, 1 s, every 5 s), normalized to CSA, in EDL muscles previously ex vivo exercised
at pH 7.4 or at pH 7.2. Arrow points to the bump-phase, previously characterized in two papers
by Michelucci and colleagues as the phase of activation of SOCE [81,82]. (B) Data represented as
relative force (normalized to the first stimulus train). (C) Time course of average relative force decay
(in presence or absence of 2.5 mM extracellular Ca2+ and in a solution supplemented with 10 µM
BTP-2) in EDL muscles previously subjected to the ex vivo protocol at pH 7.2. Data are shown as
mean ± SEM. Bottom panels represent semi-log plot showing results of multiple unpaired t test (first
two panels) or two-way repeated measures ANOVA followed by Tukey post hoc test (right panel).
n = number of EDL muscles analyzed for each condition.

3. Discussion
3.1. Background

We recently found that acute exercise induces a striking remodeling of SR and TTs at
the I band of sarcomeres, which leads to increased STIM1/Orai1 colocalization, enhanced
Ca2+ entry via SOCE, and improved fatigue resistance [77–79,81–83]. These new junc-
tions were named Ca2+ entry units (CEUs), dynamic entities that form during exercise to
promote recovery of external Ca2+ to then disassemble during recovery; the mechanisms
underlying their assembly are still obscure. Here, we first investigated whether CEUs can
assemble in isolated muscles, in the absence of nerve and blood supply, applying an ex vivo
incremental protocol to mimic the treadmill protocol previously used in vivo [77]. Then,
we tested if temperature and pH, physiological parameters that change in muscle during
exercise [86–89], may affect the exercise-mediated assembly of CEUs, comparing different
physiological conditions: (a) 36 vs. 25 ◦C at pH 7.4; (b) pH 7.2 vs. 7.4 at 25 ◦C. After
these protocols, we performed a combination of confocal and electron microscopy and ex
vivo contractile experiments (in the presence or absence of external Ca2+) to quantify the
assembly of functional CEUs in the different experimental conditions.
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3.2. Main Findings of the Study

Data collected in the first part of this work (Figures 2 and 3) suggest that CEUs can also
assemble in isolated muscles during an ex vivo exercise protocol (in which temperature and
extracellular pH were respectively kept at 30 ◦C and 7.4) without innervation and blood
supply. The presence of fully assembled CEUs were verified by qualitative and quantita-
tive EM analysis of EDL muscles excised immediately after the ex vivo exercise protocol
(see Figure 1 for a scheme of the experimental procedures). These structures were analyzed
in their two main components (i.e., SR stacks and elongated TTs). Increased presence of Orai1
at the I band following the ex vivo protocol (Figure 2) in immunofluorescence experiments,
which implies increased co-localization with STIM1, is the consequence of TTs being more
extended at the I band following the exercise protocol (Figure 3 and Table S1). Note that
the I band is the sarcomeric region where CEUs assemble also in vivo [77]. The increased
length of contacts between SR stacks and TTs would provide the structural framework
for increased STIM1-Orai1 colocalization and for the functional interaction between them.
Indeed, during the fatigue protocol in Figure 3, the force generation in the presence of
external Ca2+ is increased in those muscles that have increased presence of CEUs.

In the second part of this study, we tested the effect of temperature and of extracellular
pH on the assembly of CEUs (Figures 4–7). Results collected indicate that the remodeling of
SR in stacks and the elongation of TTs at the I band are both temperature and pH sensitive.
Indeed, the EM analysis shows how number of SR stacks, elongation of TTs, and finally, the
establishment of contact between SR stacks and TTs are structural parameters all influenced
both by temperature and extracellular pH (Figures 4 and 5 and Tables S2 and S3). The
classic features of sarcotubular remodeling that emerged from the quantitative analysis
were also clearly visible in EM images of cross-sections of EDL muscle fibers stimulated at
36 ◦C (pH 7.4) and pH 7.2 (25 ◦C), where the insets highlight the typical flattening of SR
into stacks (EM images in Figures 4 and 5).

It is also important to underline two other aspects of these findings:

a. Both higher temperature (36 ◦C) and lower pH (7.2) promote CEU assembly inde-
pendently, as: (i) in experiments comparing 25 ◦Cvs. 36 ◦C, the extracellular pH
was kept in both at 7.4 (Figure 4 and Table S2); (ii) when we tested pH 7.2 vs. 7.4,
temperature was kept in both at 25 ◦C (Figure 5 and Table S3). Yet in both conditions,
formation of CEUs was greatly improved only changing one of the two parameters
(Figures 4 and 5 and Tables S2 and S3).

b. Numeric values collected in quantitative analysis of EDL muscles stimulated at
25 ◦C (pH 7.4) (Figures 4 and 5 and Tables S2 and S3) were not different from those of
control muscles, i.e., EDL muscles held at 25 ◦C (pH 7.4) for 45 min and not subjected
to the ex vivo exercise protocol (Figures 4 and 5 and Tables S2 and S3).

Structural assembly of CEUs assessed in Figures 4 and 5 by EM was followed by
functional protocols aiming to determine fatigue resistance in different conditions: (i) in
the presence of external Ca2+, (ii) in nominally Ca2+ free solution, and (iii) in the pres-
ence of external Ca2+, but in a solution supplemented with a SOCE inhibitor (BTP-2)
(Figures 6 and 7). The results collected indicate that muscles containing more CEUs display
a greater fatigue resistance (Figures 6A,B and 7A,B), which is reduced in conditions that
limit Ca2+ entry from the extracellular space (Figures 6C and 7C).

One aspect of our findings deserves additional attention: when comparing structural
assembly of CEUs by EM at 30 ◦C and 36 ◦C (Figure 3 vs. Figure 4; see also Tables S1 and S2)
surprisingly, we found no significant quantitative difference in the formation of SR stacks
and elongation of TTs. Though, functional analysis suggests that activation of SOCE at
30 ◦C is not as prompt as at 36 ◦C, as shown by the slightly less pronounced bump-phase
at the lower temperature (compare Figure 3G with Figure 6). The reason for this difference
is still unclear and deserves a more in-depth investigation. Though we could speculate
that while SR stacks and TT elongation are fully assembled already at 30 ◦C, at 36 ◦C either
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(i) part of STIM1 and Orai1 are already pre-assembled or (ii) they respond to electrical
stimulation more promptly at higher temperature.

3.3. Our Findings in the Context of Existing Knowledge

It is well known that skeletal muscle tissue is capable of great plasticity and shows a
wide spectrum of adaptations in response to mechanical and metabolic stress induced by
physical exercise.

- Changes in temperature. STIM1-mediated SOCE has been proposed to play a critical
role inthe development, contraction, fatigue resistance, and remodeling of skeletal
muscle cells [39,40]. Xiao and colleagues demonstrated that heating cells induce
STIM1 clustering and activation of STIM1/Orai1-mediated Ca2+ influx [93]. Moreover,
the same authors demonstrated that temperature sensitivity of STIM1-dependent
Ca2+ signaling can impact gene expression in immune cells in response to heat alone,
suggesting that STIM1 acts as a temperature sensor. Muscle activity generates heat:
the temperature of human skeletal muscle can increase from 33 ◦C up to 39 ◦C during
exercise [94], raising the possibility that heat-induced Ca2+ influx via SOCE could play
a role in skeletal muscle physiology. We have recently shown that exercise-dependent
assembly of CEUs could contribute to exertional heat stroke when exercise is per-
formed in adverse environmental conditions [92]. In the present study, the assembly
of functional CEUs was favored by physiological temperature, when compared to
25 ◦C. In addition, functional activation of SOCE (shown by the bump-phase, pointed
by arrows in Figures 6 and 7) was more pronounced at 36 ◦C than at 25 or 30 ◦C.

- Changes in pH. Cytosolic pH in cells is tightly regulated [95], because dramatic differ-
ences in protein function and cell behavior are driven by relatively small changes in pH.
Under normal physiological conditions extracellular pH in healthy tissues is maintained
within a narrow range between 7.3 and 7.4, while intracellular pH is kept between 7.1
and 7.2. For example, increases in pH are permissive for growth factor–induced cell
proliferation [96], cell cycle progression [97,98], and differentiation [99,100]. Regarding
pH regulation of Ca2+ entry, SOCE-mediated platelet aggregation is dependent on
extra-platelet pH [101]. In exercising muscle, both extracellular and intracellular pH
can drop as low as 6.9 and 6.7, respectively [102]. Results regarding pH regulation on
STIM1-Orai1 interaction are controversial, and reduction of pH has not always been
associated with gain of function on SOCE. Tsujikawa and colleagues demonstrated that
the Orai1/STIM1 channel is regulated by changes of both intracellular and extracellular
pH [103]. Authors showed that acidic internal and external pH reduce STIM1/Orai1
interaction, whereas alkaline intracellular and extracellular pH enhance SOCE activity.
Mancarella and colleagues showed that intracellular low pH caused by oxidative stress
induces uncoupling of Orai1 and STIM1, thereby inhibiting ICRAC, and that intracellular
high pH causes store depletion, thereby activating ICRAC [104]. Though, in our results,
a change of extracellular pH from 7.4 to 7.2 greatly improved CEU assembly and SOCE
activation (Figures 5 and 7).

3.4. Final Remarks

The present work aimed to investigate which conditions could influence the forma-
tion of functional CEUs. Our structural and functional analyses demonstrate that CEU
assembly (i) is a process controlled by the muscle itself, as it does not require blood sup-
ply and innervation, as demonstrated by the fact that they do form also when neural
and vascular components are removed away from the skeletal muscle; and (ii) is favored
by physiological temperatures and acidification of extracellular pH, as demonstrated by
manipulating the extracellular milieu surrounding the isolated muscle during ex vivo
contractility experiments.

Many other parameters that deserve investigation may influence and modulate the
remodeling of SR and TT during exercise. For example, STIM1 was shown to be di-
rectly activated via S-glutathionylation under conditions of oxidative stress, suggesting
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that STIM1 is a redox sensor. Hence, STIM1 could function as a polymodal sensor of
temperature, ER Ca2+, and oxidative stress [105]. Several reactions occurring in muscle
during exercise change the intracellular micro-environment, as (a) decrease in ATP/ADP
ratio and increase in levels of inorganic phosphate; (b) repetitive activation-relaxation
cycles of contractile machinery, which activate mechano-sensors in contractile filaments
and cytoskeleton [106,107].

These events may also play a role in membrane remodeling during CEU assembly,
even though we have not yet tested this hypothesis. See also Protasi et al., 2021 [83], for
additional discussion of the role that proteins involved in TT biogenesis and membrane-
bending may play [108–111].

4. Materials and Methods
4.1. Animals

All experiments were conducted according to the Directive of the European Union
2010/63/UE and were approved by the Animal Ethical Committee of the University of
Chieti-Pescara and by Italian Ministry of Health (n. 1202/2020-PR).

Wild type (WT) C57bl/6 male mice were housed in microisolator cages at 20 ◦C in a
12 h light/dark cycle and provided free access to standard foodand water. All animals were
sacrificed by cervical dislocation at 4 months of age, as approved by the Italian D. lgs. n.26/2014.

4.2. In Vitro Experiments

Extensor digitorum longus (EDL) muscles were excised from euthanized 4-month-
old male WT mice and subjected to invitro contraction experiments using the Aurora
Muscle Physiology System (1200A: Isolated Muscle System, Aurora Scientific, ON, Canada).
Intact excised EDL muscles were attached to a servo motor and force transducer (model
1200A, Aurora Scientific, ON, Canada) and stimulated using two platinum electrodes in a
chamber continuously perfused with Ringer’s solution as previously described [77]. Before
starting each experiment, optimal stimulation and muscle length (L0) were determined
using a series of 1 Hz twitch stimulation trains while stretching the muscle to a length that
generated maximal force (F0). After establishing L0, muscles were first equilibrated using
three tetani (0.5 s, 150 Hz) given at 1 min intervals and then ex vivo exercised to induce
CEU assembly, as follows.

- Ex vivo exercise protocol (Ex. ex vivo). In order to evaluate the role of temperature
and pH in the ex vivo assembly of CEUs induced by the incremental fatigue protocol,
the above-mentioned protocol was carried out using Ringer’s solution at different
temperatures (25 ◦C, 30 ◦C, or 36 ◦C) and two different pH levels (7.4 or 7.2). The
experimental protocol consisted of4 steps of tetanic stimulus train: (i) 25 consecutive
0.5 s stimulus trains at 80 Hz of frequency applied every 25 s; (ii) 35 consecutive
0.5 s stimulus trains at 80 Hz of frequency applied every 20 s; (iii) 45 consecutive
0.5 s stimulus trains at 80 Hz of frequency applied every 15 s; (iv) 55 consecutive
0.5 s stimulus trains at 80 Hz of frequency applied every 10 s. EDL muscles were
then directly intended for electron microscopy (EM) or subjected to an ex vivo
functional test.

- Ex vivo functional test. After the ex vivo exercise protocol, muscles were kept in
Ringer’s solution at 25 ◦C, pH 7.4, for 30 min to allow muscle recovery. For a schematic
representation of the ex vivo procedures, see Figure 1. Then, EDL muscles were
subjected to an ex vivo functional test consisting of 30 consecutive stimulus trains at
60 Hz of frequency (each pulse having a duration of 1 s) applied every 5 s. To determine
the relative contribution of extracellular Ca2+ entry, experiments were conducted also
in the presence of 10 µM BTP-2, an established inhibitor of SOCE [90], or in the absence
of external Ca2+. Specific force (mN/mm2) was calculated by normalizing the absolute
force (mN) to the cross-sectional area (CSA, mm2) obtained as the following formula:
muscle wet weight (mg)/L0 (mm) × 1.06 (mg/mm3).
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4.3. Immunofluorescence Labeling and Confocal Microscopy (CM)

EDL muscles were dissected from sacrificed mice, mounted in the above described
system for ex vivo experiments, and subjected to the ex vivo exercise protocol or not
(control muscles) at 30 ◦C. EDLs were then fixed in 2% paraformaldehyde in phosphate
buffered saline (PBS) for 20 min at room temperature (RT). Small bundles of fixed fibers
were (a) permeabilized for 30 min in 10% goat serum and 0.5% Triton X-100 PBS/BSA
solution; (b) blocked for 1 h in PBS containing 10% goat serum; (c) washed 3 times for
10 min in PBS/BSA 1% solution; (d) incubated overnight at 4 ◦C in primary antibody
diluted in PBS/BSA 1%; washed 3 times in PBS; (e) incubated with the secondary antibody
for 1 h at RT; and (f) washed 3 times in PBS/BSA 1% solution before being mounted
on coverslips with anti-bleach media. Primary antibodies used (a) mouse monoclonal
anti-RyR1/RyR3 (34C antibody, 1:30, Developmental Studies Hybridoma Bank, IA, USA);
(b) rabbit polyclonal anti-stromal-interacting molecule-1 (STIM1) (1:100, Sigma Aldrich,
St. Louis, OH, USA); and (c) rabbit polyclonal anti-Orai1, (1:20, Thermo Scientific, Waltham,
MA, USA). Secondary antibodies used (a) Cy5-labeled goat anti-mouse IgG (1:50); or
(b) Cy3-labeled goat anti-rabbit (1:200) [112]. All secondary antibodies were from Jackson
ImmunoResearch Laboratories (West Grove, PA, USA). Specimens were viewed and imaged
using a scanning laser confocal microscope (LSM 800 Carl Zeiss, Germany) interfaced
with an inverted Zeiss Axio Observer microscope. Fluorescence image profiles and co-
localization were obtained from ZEN blue image analysis software (Carl Zeiss, Germany).

4.4. Preparation of Samples for EM

EDL muscles for ultrastructural analysis were prepared for EM after being subjected
to invitroexperiments (see above). Muscles were pinned on Sylgard dishes and fixed at RT
in 3.5% glutaraldehyde in 0.1 M sodium cacodylate (NaCaCO) buffer (pH 7.2) and stored in
the fixative solution at 4 ◦C until the embedding procedure. Fixed muscles were then post-
fixed, stained en-block, and embedded in epoxy resin as previously described [112,113].
Briefly, for standard EM analysis, fixed muscle samples were post-fixed for 1–2 h in 2%
OsO4. For transverse tubule (TT) staining in EM, specimens were post-fixed in a mixture
of 2% OsO4 and 0.8% potassium ferrocyanide (K3Fe(CN)6) for 1–2 h followed by a rinse
with 0.1 M NaCaCO buffer with 75 mM CaCl2 and then further processed. Potassium
ferrocyanide precipitate within the TT network is visualized as an electron-dense dark
precipitate in EM images [77].

EM ultra-thin sections (∼50 nm of thickness) were cut from embedded samples
(either with standard protocol orwith TT staining) using a Leica Ultracut R microtome
(Leica Microsystem, Wien, Austria) with a 45◦ Diatome Ultra diamond knife (Diatome, Biel,
Switzerland) and stained with uranyl acetate replacement and lead citrate. Sections were
viewed at 60 kV using a FP 505 Morgagni series 268D transmission electron microscope (FEI
Company, Brno, Czech Republic), equipped with a Megaview III digital camera (Olympus
Soft Imaging Solutions, Munster, Germany) and Soft Imaging System.

4.5. Quantitative Analysis by EM

For all quantitative EM analyses, micrographs of non-overlapping regions were ran-
domly collected from transverse sections of internal areas of fast-twitch EDL muscle fibers,
as described previously [77]. The following ultrastructural parameters were evaluated:

- SR stacks. Incidence of fibers presenting SR stacks (expressed as percentage) and num-
ber of SR stacks (per 100 µm2 of section) were determined in micrographs collected
from EDL muscle fibers in transverse sections. In each specimen, 15–20 fibers were
analyzed, and in each fiber, 5 micrographs were taken at 28,000× magnification.

- Non-triadic TT network at the I band. We determined both (i) the extension of the SR
in close association with the TT, and (ii) the total network of the TT at the I band of
sarcomere. The non-triadic TT network was evaluated in micrographs collected from
EDL muscle fibers either stained or not with ferrocyanide in transverse sections and
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reported as average number per area of section (100 µm2). In each specimen, 15–20 fibers
were analyzed, and in each fiber, 5 micrographs were taken at 28,000× magnification.

4.6. Statistical Analyses

Statistical analyses were determined using PRISM 9 (GraphPad Software, San Diego,
CA, USA) and Microsoft Excel (Microsoft Office, Redmond, WA, USA). Significance was
evaluated using Chi-square, ANOVA, and t-tests for EM analysis. The significance of
ex vivo experiments was evaluated using two-way ANOVA followed by Tukey’s post hoc
test for pairwise comparisons of more than two groups or multiple t tests followed by
Tukey’s post hoc test. In all cases, data are shown as mean ± SEM and differences are
considered statistically significant at p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24065328/s1.
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