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a b s t r a c t

Functional connectivity has been used as a framework to investigate widespread brain interactions un-
derlying cognitive deficits in mild cognitive impairment (MCI). However, many functional connectivity 
metrics focus on the average of the periodic activities, disregarding the aperiodic bursts of activity (i.e., the 
neuronal avalanches) characterizing the large-scale dynamic activities of the brain. Here, we apply the re-
cently described avalanche transition matrix framework to source-reconstructed magnetoencephalography 
signals in a cohort of 32 MCI patients and 32 healthy controls to describe the spatio-temporal features of 
neuronal avalanches and explore their topological properties. Our results showed that MCI patients showed 
a more centralized network (as assessed by higher values of the degree divergence and leaf fraction) as 
compared to healthy controls. Furthermore, we found that the degree divergence (in the theta band) was 
predictive of hippocampal memory impairment. These findings highlight the role of the changes of aperiodic 
bursts in clinical conditions and may contribute to a more thorough phenotypical assessment of patients.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mild cognitive impairment (MCI) is a preclinical, transitional stage 
between healthy aging and dementia. Its prevalence ranges from 6.7% to 
25.2% in people older than 60 years old and increases with age and lower 
education level. Nowadays, MCI is considered as a time frame during 
which we should act to delay conversion to dementia (Jongsiriyanyong 
and Limpawattana, 2018). From a clinical standpoint, MCI patients are 
classified according to type and number of affected cognitive domains. 
The first distinction is made on the presence or absence of memory 
impairment, giving rise to the 2 major subtypes of MCI, namely amnestic 
(aMCI) and nonamnestic MCI, where the former denotes a memory loss, 
while the latter refers to a cognitive impairment which spares memory 
and affects specific cognitive domains such as executive functions, at-
tention, visuospatial ability, or language. In this context, aMCI is regarded 
as a precursor to Alzheimer’s dementia (Buldú et al., 2011; Celone et al., 
2006), and the atrophy of the hippocampus, the key region for learning 
and memory acquisition (Burgess et al., 2002), is considered as a marker 
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of the conversion from MCI to Alzheimer’s disease (AD). In this regard, 
the relationship between the hippocampal volume and both the 
memory and the functional connectivity (FC) efficiency is well estab-
lished (Apostolova et al., 2006; Jacini et al., 2018; Stoub et al., 2010; 
Wang et al., 2006; Yavuz et al., 2007). Indeed, converging lines of evi-
dence has shown that hippocampal atrophy is directly related to a 
progressive cognitive impairment (especially with respect to the 
memory retrieval impairment) and FC alterations in both MCI and AD 
(Bai et al., 2009; Cai et al., 2017). 

Of note, these clinical forms may evolve over time, so if more 
than 1 domain is involved (in both aMCI and nonamnestic MCI), the 
label of “multiple-domain,” as opposed to “single domain,” is used 
(Petersen, 2016). For example, as aMCI progresses, other cognitive 
functions may become compromised, defining a continuum between 
amnestic and multiple-domain aMCI. Hence, constraining the cog-
nitive deficits in MCI to the malfunctioning of any specific brain 
region might be misleading, as they might rather stem from the 
miss-interactions among multiple brain regions (Liu et al., 2012; 
Minati et al., 2014; Sorrentino et al., 2021b, 2018). 

Network theory has been used as a framework to characterize 
large-scale interactions, in order to pinpoint specific mechanisms 
underpinning cognitive deficits. To this end, FC, which typically 
measures the pair-wise statistical dependencies between regional 
signals (Friston, 2011), has been applied in health and disease 
(Fornito et al., 2015). The FC changes reported in MCI were non-
homogeneous even within individual studies, as the strength of the 
connectivity was increased in some brain regions and decreased in 
others (Contreras et al., 2017; Jacini et al., 2018; Liu et al., 2012; 
López et al., 2017; López-Sanz et al., 2017). Moreover, MCI partici-
pants display a hypersynchronized network, which then desyn-
chronizes if overt disease sets in (Buldú et al., 2011; Celone et al., 
2006). Importantly, the reported FC changes failed to convincingly 
replicate across studies, and new approaches are needed to provide 
reliable estimates of large-scale brain interactions. 

A source of such variability could arise from a bias in most 
FC studies, which generally assume a stationary condition in brain 
activity. These studies, by focusing on “average” connectivity over a 
time interval, disregard the evolution of the coactivations over time 
(i.e., brain dynamics) (Zalesky et al., 2014). In fact, it was shown that 
large-scale brain activity is far from stationary, and instead it is 
characterized by aperiodic, scale-free bursts of activity (in the con-
text of statistical mechanics often referred to as neuronal ava-
lanches), which are indeed expected, given a nonlinear underlying 
dynamics (Haldeman and Beggs, 2005; Shriki et al., 2013; 
Tagliazucchi et al., 2012). Hence, the study of time-averaged con-
nectivity might not be optimal to capture such bursty, nonlinear 
activities. 

The dynamics of a healthy brain has been shown to display high 
flexibility, since the regions that are recruited change at each sub-
sequent avalanche, generating complex spatio-temporal patterns. 
Hence, the number of avalanche patterns, that is, the functional 
repertoire, has been used as a proxy for the flexibility of brain ac-
tivity. Flexible dynamics is maintained in health and, conversely, is 
disrupted in disease (Palmigiano et al., 2017; Sorrentino et al., 
2021a). In fact, smaller functional repertoires occur in neurological 
diseases and are predictive of both clinical disability and disease 
progression (Duma et al., 2023; Polverino et al., 2022; Sorrentino 
et al., 2021a). 

In this study, in analogy with previous findings (Polverino et al., 
2022; Sorrentino et al., 2021a), we hypothesize that MCI would re-
sult in a more stereotyped brain dynamics, as measured by a smaller 
functional repertoire. Then, we moved on to an in-depth character-
ization of the spatio-temporal dynamics of avalanches (Sorrentino 
et al., 2021c, 2023a). In fact, perturbations of local activation do not 
occur randomly but, rather, they spread preferentially across the 

white-matter bundles (i.e., the structural connectome) (Sorrentino 
et al., 2021c, 2022). As a consequence, not all regions are recruited 
equally by the avalanches (as the topology of the structural con-
nectomes will tend to attract the functional dynamics to its eigen-
modes) (Tewarie et al., 2022). We hypothesize that the reduction in 
the flexibility of brain dynamics would be mirrored by a re-
arrangement of the spreading of the perturbations on the large-scale 
activity. In particular, we predict that, in MCI, the regions that are 
structurally more central would be recruited more often as com-
pared to healthy controls (HC) (which achieve a more flexible dy-
namics). Conversely, more peripheral regions would be recruited 
even less often in MCI participants. The reasoning behind this hy-
pothesis lies in the fact that, in the healthy brain, the spreading of 
neuronal avalanches is influenced by the structural connectome, but 
it is not fully determined by it. In fact, healthy participants display a 
flexible dynamic that varies over time and “departs” from the 
structural connectome. In MCI, the lack of flexibility would reduce 
the number of dynamical reconfigurations, resulting in a stronger 
influence of the underlying structure over the spatio-temporal 
evolution of neuronal avalanches. Globally, this would result in 
changes in a rearrangement of the functional topology toward a 
more “centralized” network. 

To test our hypothesis, we performed magnetoencephalography 
(MEG) recording on 32 MCI patients and 32 HC. Then, the source- 
reconstructed brain signals were analyzed to extract neuronal ava-
lanches, operationally defined as an event starting when large 
fluctuations of activity are present in at least 1 brain region and 
ending when all the regions return to their baseline. Hence, we 
define an avalanche pattern as the set of brain regions recruited in 
each individual avalanche. In turn, the totality of the unique ava-
lanche patterns (i.e., discarding repetitions) occurring over time is 
defined as the functional repertoire, and the number of such pat-
terns defines its size, which is used to quantify flexibility. Finally, the 
topological features of brain dynamics were assessed using the re-
cently developed avalanche transition matrix (ATM). The ATMs 
convey the spatio-temporal trajectories of neuronal avalanches as 
they spread across the brain and define the probability that 2 brain 
regions will move away from their baseline activity (i.e., avalanches 
are occurring) in 2 consecutive time frames (Sorrentino et al., 
2021c). Finally, in order to verify a possible relationship between the 
topological organization of brain dynamics in MCI and its clinical 
features, we built a multilinear regression model to test if the to-
pological properties of the ATMs can predict the clinical impairment. 

2. Materials and methods 

2.1. Participants 

Thirty-two MCI patients (18 males and 14 females; 21 single- 
domain aMCI and 11 multiple-domain aMCI; mean age 71.31; SD 
±  6.83; mean education10.54; SD ± 4.33) were recruited from the 
Center of Cognitive and Memory Disorders of the Hermitage 
Capodimonte Clinic in Naples, Italy. All the patients were right- 
handed and native Italian speakers. The MCI diagnosis was done 
according to the National Institute on Ageing-Alzheimer’s 
Association criteria (Albert et al., 2011). Inclusion criteria were (1) 
the absence of neurological or systemic illness that could affect the 
cognitive status, (2) no contraindications to MRI or MEG recording, 
and (3) Fazekas score (for both periventricular white matter and 
deep white matter scores) ≤2. Thirty-two participants (19 males and 
13 females) matched for age (69.9  ±  5.61) and education 
(12.96  ±  4.56) were enrolled as a control group (HC). The cohort 
characteristics are summarized in Table 1. Both HC and MCI patients 
underwent neurological examination, MRI scan (which included the 
estimation of the hippocampal volumes), and MEG recording. The 
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neuropsychological screening (see Table 2) included also the free 
and cued selective reminding test (FCSRT), which is highly sensitive 
in detecting hippocampal amnestic deficits (Auriacombe et al., 2010; 
Grober and Buschke, 1987). In particular, the FCSRT assesses the 
ability of encoding and retrieval through semantic cues by exploiting 
and maximizing the learning effect (Dubois et al., 2014). The first 
part of the test is defined as “immediate recall,” and it aims to induce 
the semantic encoding while the second part (performed after 
20 minutes) is defined as “delayed recall.” The sum of these 2 
measures (i.e., the total recall) distinguishes with high sensitivity 
and specificity the older adults with dementia from those without it. 
For both parts of the tests, the recall was first free and then cued 
(Auriacombe et al., 2010). 

The study protocol was approved by the ‘‘Comitato Etico 
Campania Centro’’ (Prot.n.93C.E./Reg. n.14-17OSS) and all partici-
pants provided written informed consent in accordance with the 
Declaration of Helsinki. 

2.2. MRI acquisition 

Magnetic resonance images (MRIs) of both MCI patients and HC were 
acquired using a 3T Biograph mMR tomograph (Siemens Healthcare, 

Erlangen, Germany) equipped with a 12 channels head coil. The MR 
registration protocol was (i) three-dimensional T1-weighted magneti-
zation-prepared rapid acquisition gradient-echo sequence (240 sagittal 
planes, 214 × 21 mm2 field of view, voxel size 1 × 1 × 1 mm3, TR/TE/TI 
2400/2.5/1000 ms, flip angle 8°); (ii) three-dimensional T2-weighted 
sampling perfection with application optimized. Contrasts using dif-
ferent flip angle evolution sequence (SPACE, 240 sagittal planes, 
214 × 214 mm2 field of view, voxel size 1 × 1 × 1 mm3, TR/TE 3370/563); 
(iii) two-dimensional T2-weighted turbo spin echo fluid attenuated in-
version recovery sequence (44 axial planes, 230 × 230 mm2 field of view, 
voxel size 0.9 × 0.9 × 0.9 mm3, TR/TE/TI 9000/95/25,00, flip angle 150°). 
The FreeSurfer software (version 6.0) (FreeSurfer, 2012) was used to 
obtain the volumetric analysis. Specifically, the hippocampal volumes 
were normalized by the estimated total intracranial volum, while the 
Fazekas scale was used to evaluate the vascular burden (Fazekas et al., 
1987). Two patients and 10 HC refused or did not complete the MR scan; 
hence, a standard MRI template was used for the source reconstruction 
of the MEG signals, and they were excluded from structural volumetric 
analyses. 

2.3. MEG acquisition and preprocessing 

Data were acquired using a magnetoencephalography (MEG) 
system composed of 154 magnetometers, superconductive quantum 
interference device, and 9 reference sensors. The acquisition took 
place in a magnetically shielded room (ATB, Biomag, ULM, Germany) 
to reduce external noise. To define the position of the head under the 
helmet, we used Fastrack (Polhemus), that digitized the position of 4 
anatomical landmarks (nasion, right and left preauricular points, and 
vertex of the head) and the position of 4 reference coils (attached to 
the head of the subject). Each subject was recorded twice 
(3.5 minutes each) with a 1-minute break, in resting state with 
closed eyes. We also recorded the cardiac activity and the eyes 
movement to remove physiological artifacts. After applying an an-
tialiasing filter, data were sampled at 1024 Hz. Data preprocessing 
was performed similarly to Liparoti et al. (2021). Briefly, the MEG 
data were filtered in the band 0.5–48 Hz through the implementa-
tion of a fourth-order Butterworth IIR band-pass filter, using the 
Fieldtrip toolbox in the MATLAB environment. Moreover, a principal 
component analysis was carried out to reduce environmental noise. 
Finally, we performed a supervised independent component ana-
lysis to remove physiological artifacts from the electrocardiography 
(1 component per participant) and the electroculography (no com-
ponent per participant, rarely one) (Romano et al., 2022; Rucco 
et al., 2022). 

2.4. Source reconstruction 

The time series of the regions of interest (ROIs), based on the 
automatic anatomical labeling atlas (AAL) (Gong et al., 2009), were 
reconstructed using the volume conduction as in Nolte (2003) and 

Table 1 
Participants characteristics      

Parameters HC MCI Group differences  

Sample size (total) n 32 n 32 p value 
Age (mean ±  SD) 69.9 ( ± 5.61) 71.31 ( ± 6.83) NS 
Male/Female (n; %) 19/13 (59.37%; 40.62%) 18/14 (56.25%;43.75%) / 
Education level (mean ± SD) 12.96 ( ± 4.56) 10.54 ( ± 4.33) NS 
Sample size (MRI) n 22 n 30  
Left hippocampal volume cm3 ( ± SD) 3.37 ( ± 0.35) 2.81 ( ± 0.55)  < 0.001 
Right hippocampal volume cm3 ( ± SD) 3.38 ( ± 0.33) 2.82 ( ± 0.43)  < 0.001 
Total hippocampal volume cm3 ( ± SD) 6.76 ( ± 0.67) 5.64 ( ± 0.95)  < 0.001 

The structural information was available for 22 out of 32 healthy controls and for 30 out of 32 MCI patients. 
Key: HC, healthy controls; MCI, mild cognitive impairment; MRI, magnetic resonance image; NS, not significant; SD, standard deviation.  

Table 2 
Neuropsychological evaluation      

Test HC (n 32) 
Mean ( ± SD) 

MCI (n 32) 
Mean ( ± SD) 

p value  

MMSE 27.56 ( ± 1.69) 26.4 ( ± 1.72) 0.012 
FAB 16.21( ± 1.27) 15.93 ( ± 2.06) NS 
BDI 8.06 ( ± 4.41) 9.43 ( ± 6.45) NS 
MDB    
Rey’s 15-word immediate 

recall 
44.85 ( ± 6.05) 26.54 ( ± 5.89)  < 0.01 

Rey’s 15-word delayed recall 10.32 ( ± 2.49) 4.11 ( ± 1.62)  < 0.01 
Word fluency 39.32( ± 10.39) 29.16 ( ± 9.43)  < 0.01 
Phrase construction 18.24 ( ± 5.93) 16.78 ( ± 6.34) NS 
Raven’s 47 progressive 

matrices 
28.22 ( ± 3.98) 24.25 ( ± 5.53)  < 0.01 

Immediate visual memory 19.71 ( ± 1.71) 17.91 ( ± 3.25)  < 0.01 
Freehand copying of drawings 10.02 ( ± 1.24) 9.19 ( ± 2.07) NS 
Constructive apraxia with 

landmarks 
67.75 ( ± 3.82) 66.25 ( ± 3.39) NS 

FCSRT    
FCSRT immediate free recall 30.36 ( ± 2.83) 22.34 ( ± 7.55)  < 0.001 
FCSRT immediate total recall 35.92 ( ± 0.26) 32.21 ( ± 4.68)  < 0.001 
FCSRT delayed free recall 10.15 ( ± 1.11) 5.13 ( ± 3.58)  < 0.001 
FCSRT delayed total recall 11.93 ( ± 0.25) 9.06 ( ± 3.46)  < 0.001 
FCSRT index of sensitivity of 

cueing 
0.99 ( ± 0.03) 0.77 ( ± 0.22)  < 0.001 

Key: BDI: Beck Depression Inventory (Sica and Ghisi, 2007); FAB: frontal assessment 
battery (Ilardi et al., 2022); FCSRT: free and cued selective reminding test (Frasson 
et al., 2011); HC, healthy controls; MCI, mild cognitive impairment; MDB: mental 
deterioration battery (Carlesimo et al., 1996); MMSE: Mini Mental State Examination 
(Folstein et al., 1975); NS: not significant; SD: standard deviation.  
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the linearly constrained minimum variance (Van Veen et al., 1997) 
beamformer algorithm, based on the native MRI of each subject. 
Indeed, an expert operator, visually inspected the individuals’ MRI, 
and individuated the coordinates of the 4 anatomical fiducials that 
were recorded on the participants’ head before the MEG recording 
(i.e., nasion, left preauricular, right preauricular, vertex). We then 
matched the reconstruction of the sources with the structural image 
of the brain of each participant, using parcels defined based on the 
automatic anatomical labeling atlas. The time series were filtered in 
the 5 canonical frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–48 Hz). 

2.5. Analysis of brain dynamics 

2.5.1. Neuronal avalanches and branching parameter 
We estimated the “Neuronal Avalanches” to quantify the spatio- 

temporal fluctuations of brain activity. A neuronal avalanche is defined 
as an event starting when massive fluctuations of brain activity are 
present in at least 1 ROI and ending when all the ROIs return to their 
usual activity (Sorrentino et al., 2021a). Firstly, we calculated the z-score 
of each ROIs’ time series, and then each time series was thresholded 
according to a cut-off of 3 standard deviations (i.e., z = |3|). Note that we 
also changed the threshold from 2.5 to 3.5 to confirm that the results 
were not dependent upon the choice of the threshold (Supplementary 
materials 1–3). To be sure that we were actually capturing the critical 
dynamics (if present), we binned the time series. Similarly to Sorrentino 
et al. (2021a), we estimated the suitable time bin length by computing 
the branching ratio σ for each subject, each neuronal avalanches, and 
each time bin duration (Haldeman and Beggs, 2005). Indeed, a branching 
ratio 1 typically indicates a critical process. Specifically, the branching 
ratio was calculated as: 

= +

=

n j
n j

( 1)
( )i

j

N
events

events

N

1

1 1
1bin

bin

where σ is the branching parameter of the i-th avalanche in the dataset, 
Nbin is the total number of bins in the i-th avalanche, and nevents (j) is the 
total number of events in the j-th bin. We then (geometrically) averaged 
the results over all avalanches as follows: 
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N
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1
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However, we repeated our analysis exploring different time bins, 
ranging from 1 to 5 obtaining similar results (see Supplementary 
materials 2–3). For each avalanche, an avalanche pattern was defined 
as the set of all brain regions that were above threshold. 

2.5.2. Functional repertoire 
The functional repertoire represents the number of unique ava-

lanche patterns expressed during the recording (Sorrentino et al., 
2021a). Unique means that each avalanche pattern is counted only 
once to define the avalanche size of the functional repertoire (i.e., 
repetitions are discarded). 

2.6. Transition matrices 

We built an ATM in which its element (i, j) represented the prob-
ability that region j was active at time t + δ, given that region i was active 
at time t. That is, 1 ATM was build per each avalanche, and then they 
were averaged element-wise to obtain a subject-specific ATM. The ATMs 
were then averaged per participant and symmetrized. Please note that 
ATMs are extremely sparse matrices. In the subject-specific ATM, each ij- 
th entry is computed from those avalanche-specific ATMs when the ij-th 
edge was recruited, and not from the others. As such, the quantity of 

data that contributes to the estimate is edge-specific. However, since 
avalanches are rare, fast-lived events, each edge typically refers to 
5%–10% of the data points, sampled in a in homogeneous fashion 
(nonperiodically) since the sampling is done according to when the 
avalanches were occurring (for more details, see Sorrentino et al., 2021c). 
We explored the frequency-specific ATMs, by filtering the source-re-
constructed signal in the classical frequency bands (delta, 0.5–4 Hz; 
theta, 4–8 Hz; alpha, 8–13 Hz; beta, 13–30 Hz; gamma, 30–48 Hz) since 
recent lines of evidence suggest a coexistence between the frequency- 
specific oscillatory activity and large-scale aperiodic perturbations. These 
2 kinds of activities (i.e., periodic and aperiodic) operate simultaneously, 
are embedded into each other, and affect each other (Beggs and Plenz, 
2003; di Santo et al., 2018; Gireesh and Plenz, 2008; Lombardi et al., 
2023; Poil et al., 2012). However, we wish to stress that we filtered the 
data in the classical frequency bands since their physiological sig-
nificance is well established. However, we cannot rule out that the fil-
tering introduces distortions on the aperiodic activities. 

Thereafter, based on the frequency-specific ATMs, we estimated 
the topology of the avalanches by calculating the minimum span-
ning tree (MST), a spanning tree (a subgraph that, while connecting 
every node, has no cycles) whose edges have the least total weight. 
In particular, we calculated the MST using Kruskal’s algorithm 
(Kruskal, 1956) and extracted both global and nodal topological 
parameters. The former were the degree divergence (DD), which re-
presents the amplitude of the degree distribution (i.e., how much 
the most central nodes differ, in terms of number of connections, 
from the least central nodes); the leaf fraction (LF), which is defined 
as the fraction of nodes with degree = 1; the tree hierarchy, which 
conveys the trade-off between an efficiently connected network and 
its resiliency to targeted attacks, and the assortativity, which re-
present the tendency of a node to be connected to similar nodes (in 
terms of degree) in a given network (Jacini et al., 2018; Stam et al., 
2014; Tewarie et al., 2015). Then, as nodal parameters, we calculated 
the betweenness centrality and the degree, which represent the to-
pological importance of a node within the network (Rubinov and 
Sporns, 2010) ( Fig. 1). 

2.7. Multilinear regression analysis 

We hypothesized that the alterations of brain dynamics could be 
used to predict the patients’ clinical impairment. Therefore, we built a 
multilinear regression model in which the neuropsychological tests re-
presented the dependent variable while age, gender, education, and 
brain dynamics features were the predictors. Multicollinearity was as-
sessed through the variance inflation factor. To validate our approach, we 
performed k-fold cross-validation, with k = 5 (Varoquaux et al., 2017). 
Specifically, k iterations were performed to train our model, and at each 
iteration, the k-th subgroup was used as a test set. 

2.8. Statistical analysis 

Statistical analysis was carried out in MATLAB 2021a. The com-
parison between patients and HC was performed through permu-
tation testing. Data labels of both groups were shuffled 10,000 times. 
At each iteration, 2 random groups were generated, and the absolute 
difference between the means of the 2 groups was calculated. Hence, 
we obtained a null distribution of 10,000 random differences, to 
which we compared the observed absolute difference between the 
means of patients and HC. Finally, a possible relationship between 
the topological features of brain dynamics and the clinical conditions 
(hippocampal volumes and cognitive impairment) of the patients 
was explored through Spearman’s correlation. The results were 
corrected for multiple comparisons across both frequency bands and 
parameters using the false discovery rate (FDR) method (Benjamini 
and Hochberg, 1995) and the significance level was set at p value  
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<  0.05 (corrected). Finally, we have used phase-surrogates in order 
to demonstrate that the changes in topology genuinely depend upon 
the interactions between regions and are not to be expected by the 
regional dynamics alone. Similarly to Sorrentino et al. (2023b), we 
generated surrogates that disrupt the dependencies between re-
gions, while preserving the local (i.e., regional) activities. In short, 
starting from the real, broadband, source-reconstructed time series, 
we have performed a Fourier transform and shifted the phase of 
each frequency component by a random amount (while preserving 
the Hessian symmetry of the power spectra), and then anti-
transformed the signal. This way, we have obtained surrogate real 

signals which are characterized by the same power spectra as the 
original data, while the relationships between frequencies are dis-
rupted. After doing this, we performed the same analyses that we 
had previously reported on the surrogate data. 

3. Results 

3.1. Cohort characteristics 

As shown in Table 1, the comparison between the demographic 
characteristics of the MCI and the HC groups revealed no significant 

Fig. 1. Pipeline overview. (A) 1. Registration of neuronal activity through MEG; 2. Raw sensor signals including physiological artifacts; 3. Cleaned sensor signals (without 
physiological artifacts); 4. MRI of the subject; 5. Beamforming obtained from the coregistration of MRI and MEG signals. (B) Source-reconstructed temporal series. The blue lines 
represent the z-score activity of a brain region, and the light blue embossed boxes represent the time frame in which a neuronal avalanche occurred. Specifically, the red dots 
indicate the frame in which the time series was above threshold (z-score > 3). (C) Schematic representation of a neuronal avalanche. A neuronal avalanche occurred when at least 
1 region was above threshold and ended when all the brain regions returned below threshold. The avalanche time-evolution matrix displays which regions (only 4 are displayed 
for visualization purposes) were above threshold (blue boxes) during each specific time frame. Collapsing the time outlines an avalanche pattern that includes regions that were 
active for at least 1 time frame during the avalanche. As a whole, the patterns represent the functional repertoire, a measure of brain flexibility. (D) Schematic representation of a 
transition matrix. The light blue squares indicate that the region i was above threshold 3 times during the avalanche. Region j was active, after the activation of region i, only in 2 
cases out of the 3 taken into consideration (as indicated by the green arrows). Thus, the probability that region j was active after the activation of region i was 2/3. Averaging across 
avalanche-specific transition matrices creates the avalanche transition matrix of an individual. Finally, a topological analysis was conducted to highlight the network properties of 
the brain activity propagation. Abbreviations: MEG, magnetoencephalography; MRI, magnetic resonance image; MST, minimum spanning tree. 
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differences in both age and education level. With respect to the 
structural information, only 30 MCI patients out of 32 and 22 out 
of 32 HC completed the MRI scan. MCI patients exhibited a reduction 
of hippocampal volumes compared to the HC (p  <  0.001). As ex-
pected, MCI displayed a worse cognitive performance. Specifically, 
the comparison between the neuropsychological evaluation of the 2 
groups showed a significant difference in the: Mini Mental State 
Examination (p = 0.012), Rey’s 15-word immediate recall (p  <  0.01), 
Rey’s 15-word delayed recall (p  <  0.01), word fluency (p  <  0.01), 
Raven’s 47 progressive matrices (p  <  0.01), immediate visual 
memory (p  <  0.01), and the FCSRT (immediate free recall, immediate 
total recall, delayed free recall, delayed total recall, and index of 
sensitivity of cueing) (p  <  0.001). No significant differences were 
found in the evaluation of the Beck Depression Inventory, Frontal 
Assessment Battery, Phrase construction, Freehand copying of 
drawings, and Constructive apraxia with landmarks (see Table 2). 

3.2. Functional repertoire 

In order to analyze the size of the functional repertoire (i.e., the 
number of unique and different avalanches configurations in each 
participant), we used source-reconstructed MEG data. As shown in  
Fig. 2, the MCI group showed a reduction in the number of unique 
patterns in the theta band (pFDR = 0.047), revealing a restricted 
functional repertoire as compared to the HC. These analyses have 
been repeated on the surrogate data (Supplementary materials 4), 
and the differences disappear. 

3.3. Transition matrices topology 

To study avalanche topology, we built an ATM (Sorrentino et al., 
2021c) for each subject. Then, we computed the MST for each ATMs 
(Wijk et al., 2010). Patients showed higher values of LF and DD 
compared to the healthy participants (Fig. 3). Specifically, with re-
spect to the LF, we found a statistically significant difference be-
tween the 2 groups in the delta (pFDR = 0.020) and theta bands 
(pFDR = 0.041). Similarly, we found a statistically significant differ-
ence of the k between the 2 groups in the delta (pFDR = 0.006), theta 
(pFDR = 0.046), and gamma bands (pFDR = 0.020). We did not find 
any statistical difference neither for the nodal parameters (i.e., be-
tweenness centrality and degree) nor for the remaining global 
parameter (i.e., the tree hierarchy). Again, these results are not 
present in the surrogate data (Supplementary material 4). 

3.4. Correlations with clinical parameters 

Spearman’s correlation was used to determine whether there was 
a relationship between topological network features and both the 
episodic memory (assessed through the FCSRT) and the structural 
parameters (i.e., hippocampal volumes). We focused on the FCSRT 
due to its sensitivity in detecting the hippocampal damage and 
amnesic deficits even in the earliest phase of disease (Auriacombe 
et al., 2010; Dubois et al., 2014). Firstly, we found a significant po-
sitive correlation, after FDR correction, between the DD in the theta 
band and the FCSRT immediate total recall (r = 0.536; pFDR = 0.046). 
In addition, the DD in the theta band positively correlated with the 
right hippocampal volume (r = 0.438; pFDR = 0.030) (Fig. 4). Lastly, 
we found a significant positive correlation between the FCSRT im-
mediate total recall and both right (r = 0.553; pFDR = 0.001) and left 
(r = 0.463; pFDR = 0.009) hippocampal volumes (data not shown). No 
significant correlation was found between the topological para-
meters and the other neuropsychological test scores and the left 
hippocampal volume. 

3.5. Predictive model: multilinear regression analysis 

Taken into consideration the relationship between the DD (i.e., 
the width of the degree distribution) and both the memory im-
pairment and the right hippocampal atrophy, we asked ourselves 
whether the width of the degree distribution could improve the 
prediction of the clinical impairment (as measured via the FCSRT 
immediate total recall). To this end, we built a multilinear regression 
model and we validated it using a k-fold cross-validation approach. 
The model also contained 4 nuisance predictors, that is, age, edu-
cation level, gender, and the right hippocampal volume (see Fig. 5). 
We added the right hippocampal volume as a predictor given its role 
in memory and its involvement in MCI and AD (Apostolova et al., 
2006; Devanand et al., 2012; Sarazin et al., 2010; Yavuz et al., 2007; 
Zammit et al., 2017). Our aim was to observe whether the DD im-
proved the prediction over the FCSRT immediate total recall as 
compared to using demographics and structural changes (i.e., right 
hippocampal volume) alone. We found that the DD in the theta band 
significantly predicted the FCSRT immediate total recall (p = 0.041; 
R2 = 0.47; β = 2.7). Furthermore, the only other significant predictor 
was the education level (p = 0.012; β = 0.448) (Fig. 5). As an extra 
check, we rebuilt the same predictive model, but this time we 
switched the order of the last 2 predictors (i.e., the DD and the right 
hippocampal volume). Our aim was to visually assess the residual 
predictive power of the hippocampus after the DD was added. As 
shown in the supplementary materials (Fig. S5), the hippocampal 
volume did not significantly contribute to the prediction of the 
functional impairment after the functional DD was taken into ac-
count. 

4. Discussion 

In the present work, we used source-reconstructed MEG data in a 
cohort of 32 MCI patients and 32 healthy participants to explore the 
topological organization of the large-scale brain dynamics and its 
relationship with the clinical impairment. Firstly, we hypothesized 
that MCI participants would show more stereotyped brain dynamics 
and, consequently, such stereotyped brain dynamics might result in 
a reorganization of the spreading of the large-scale perturbations, as 
captured by changes in the functional topology. We used neuronal 
avalanches to quantify the flexibility of fast brain dynamics 
(Sorrentino et al., 2021a). The brain flexibility is given by its ability to 
generate a large number of functional configurations, that likely 
conveys a large number of different ways by which brain regions can 
interact among themselves (Shine et al., 2016; Zalesky et al., 2014). 

Fig. 2. Functional repertoire comparison. The violin plots represent the comparison of 
the number of unique avalanche patterns between HC and MCI patients in theta band. 
MCI patients display a reduced functional repertoire compared to the HC. The median 
is represented by the white dot, the gray bar in the middle of the violins shows the 
first and the third quartile, and the thin gray line is representative of the 95% con-
fidence interval. The outliers are individually represented by the single dots. 
*p  <  0.05. Abbreviations: HC, healthy controls; MCI, mild cognitive impairment. 
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These large-scale interactions manifest themselves as bursty activity 
(i.e., neuronal avalanches), and the number of different ways neu-
ronal avalanches propagate across the brain defines the size of the 
functional repertoire (Chialvo, 2010; Sorrentino et al., 2021a). 

Our results showed that MCI patients exhibited a restricted 
functional repertoire (i.e., lower number of unique avalanche pat-
terns) in the theta band compared to HC. Thus, MCI patients dis-
played a reduction of their brain flexibility, which implies less 
reconfigurations of brain activity and a more stereotyped brain dy-
namics (Sorrentino et al., 2021a). This is in line with previous reports 

that used the same approach in other neurodegenerative diseases 
such as Parkinson’s disease (Sorrentino et al., 2021a) and amyo-
trophic lateral sclerosis (Polverino et al., 2022), suggesting that the 
loss of flexibility might be a common dynamical change induced by 
different neurodegenerative processes. 

Of note, our results were evident mainly in the theta band and 
were undetectable from the broadband signals (Supplementary 
materials 6). We speculate that the aperiodic bursts, which are the 
effect of the resonances occurring among cross-regional frequency- 
specific activities, possess themselves an emergent characteristic 

Fig. 3. Topological parameters comparison. Violin plots represent the comparison between HC and MCI patients for topological parameters obtained from the transition matrices. 
MCI patients display higher values of leaf fraction in delta and theta bands with respect to HC as well as higher values of degree divergence in delta, theta, and gamma 
bands. *p  <  0.05; **p  <  0.01. Abbreviations: HC, healthy controls; MCI, mild cognitive impairment. 

Fig. 4. Correlation between MCI clinical features and degree divergence. (A) Spearman’s correlation between the DD and the FCSRT immediate total recall. The positive correlation 
coefficient shows that, as the DD increases, the FCSRT score increases as well. (B) Positive correlation between the DD and the right hippocampal volume. Higher values of DD 
correspond to a greater preservation of the right hippocampal volume of the patients. For panel B, the Spearman’s correlation analysis was performed taking into account the only 
30 MCI patients who complete the MRI scan. (C) For completeness, we reported the not significant correlation between the left hippocampal volume and the DD in theta 
band. Abbreviations: FCSRT, free and cued selective reminding test; FDR, false discovery rate. 
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time-scale, which makes them detectable after appropriate filtering. 
However, further studies will have to systematically investigate the 
rhythmicity of the aperiodic activities and the effect of different 
filtering strategies. 

We performed surrogate data analysis to partially test this hypoth-
esis by disrupting the cross-regional resonances while keeping the re-
gional power spectra unchanged. In other words, we disrupted the 
(phase) relationships among different frequency bins. We performed this 
procedure over the entire frequency spectrum, without selecting any 
specific frequency a priori. When we repeated the whole analysis pi-
peline on surrogate data, including the filtering procedure, we show that 
the differences between MCI patients and controls are no longer evident 
in the case of surrogates. We conclude that the resonances generated by 
all the frequency-specific activities produce higher-order bursts that 
spread with characteristic timescales. On a speculative note, this might 
be due to specific subpopulations that operate at particular timescales, 
which is reminiscent of the well-known bursty dynamics occurring in 
Parkinson’s disease in the beta-frequency range (Bonaiuto et al., 2021). 

Then, we generated the ATMs which provide information about 
the spatio-temporal avalanches dynamics estimating the probability 
that 2 brain regions will move away from their baseline activity in 2 
consecutive time frames (Sorrentino et al., 2021c). By applying the 
MST on the ATMs, we proceeded to investigate their topological 
properties. The comparison between MCI patients and HC revealed 
that the former exhibited higher values of both LF (in the delta and 
theta bands) and DD (in the theta and gamma bands) with respect to 
the latter. Higher LF values (i.e., fraction of nodes with degree = 1) 
are indicative of a more integrated network (as in a star-like to-
pology), suggesting the idea that, when the LF increases in the pa-
tients, the network shifts toward a more centralized organization 
(Boersma et al., 2013). The DD (i.e., the width of degree distribution) 
is a measure of the network’s synchronisability and its resilience 
against pathological events (Tewarie et al., 2015). Higher values of 
DD convey the presence of high-degree nodes (Boersma et al., 2013), 
which, again, is consistent with a more centralized topology of the 
network. In line with previous evidence (Sorrentino et al., 2018; 
Stam, 2014), one might speculate that the higher centrality might be 

due to hubs compensating for the impairment of more peripheral 
nodes. As a consequence, the communication between brain regions 
becomes less efficient. Hence, MCI participants can put in place more 
effective compensation mechanisms, whereby the reduction of 
lower-degree nodes might be effectively compensated by the more 
central hubs (Rucco et al., 2019). A possible unifying explanation of 
the current results might lay in a functional compensatory me-
chanism which would be in place before the structural changes. In 
other words, one could speculate that, in the earliest phase of a 
neurodegenerative disease, functional anomalies, for example, as in 
the case of Aβ-mediated synaptic dysfunctions in the initial stages of 
AD (Zhang et al., 2022), provoke a whole-brain functional network 
rearrangement in order to maintain proper cognitive performances. 
Conversely, as the disease progresses, this “functional” failure is 
flanked by a progressive loss of gray matter that becomes pre-
ponderant in the advanced stage of the disease, when multiple brain 
areas are involved (Cipriano et al., 2022). What stated so far is in line 
with our results showing that an increase in DD reflects a better 
cognitive performance and is also correlated with greater right 
hippocampal volume. Indeed, the higher the DD, the better the 
FCSRT immediate total recall scores and the larger the hippocampal 
volume. In addition, we found a positive correlation between the 
FCSRT immediate total recall scores and the right and left hippo-
campal volumes. Our results are in line with previous evidence 
(Jacini et al., 2018; Wang et al., 2006), which demonstrated the re-
lationship between the loss of memory efficiency and hippocampal 
atrophy. For instance, a longitudinal study conducted by Stoub et al. 
(2010) showed that, over 5 years, MCI patients showed a progressive 
cognitive impairment directly related to changes of hippocampal 
volume. 

Specifically, our results revealed a correlation between the to-
pology (i.e., DD in theta band) of the MCI and the right hippocampal 
volume. According to Cai and colleagues, MCI patients show a re-
duction of their FC in the right hippocampus (which is also char-
acterized by a greater rate of atrophy with respect to the left one). 
Importantly, these alterations may be related to a worse cognitive 
performance expressed by a deficit of the episodic memory retrieval 

Fig. 5. Clinical impairment prediction in the theta band. Multilinear regression analysis with k-fold cross validation was performed to verify the ability of the degree divergence to 
predict the memory impairment assessed by the FCSRT immediate total recall. The left column displays the explained variance obtained by adding the predictors (age, education 
level, gender, right hippocampal volume, and the degree divergence in the theta band). The significant predictors are highlighted in bold while the significant p-value is indicated 
with *(p  <  0.05), **(p  <  0.01). The central column displays the comparison between the predicted and the actual values of the responsive variable validated through the k-fold 
cross validation. Lastly, the right column shows the distribution of residuals, which represent the standardization of the difference between the actual and predicted values for the 
FCSRT immediate total recall. Abbreviations: FCSRT, free and cued selective reminding test. 
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(Cai et al., 2017). This is in agreement with Heckers et al. who 
showed that the best retrieval of encoded words through a semantic 
cue was associated with higher right hippocampal activation 
(Heckers et al., 2002). However, we would like to specify that the 
brain network alterations in MCI are not constrained to the right 
hippocampus, but extend to the left hemisphere, reflecting, similarly 
to the right hemisphere, poorer cognitive performance (Bai et al., 
2009). In this regard, O’Neill et al., in a recent study, analyzed the 
source reconstruction in MEG with regard to hippocampal activity, 
finding a possible bias of functioning with regard to activity re-
construction performed with LCMV beamformer. In particular, it is 
observed that the LCMV beamformer, in cases of correlated source 
suppression (e.g., bilateral activation of hippocampus), may not be 
able to reconstruct the entire activity (O’Neill et al., 2021). These 
limitations warrant caution in interpreting the results. In particular, 
we cannot rule out that these technical limitations might have a role 
in the fact that we did not find any functional differences in the 
analysis of hippocampal dynamics, and that we only found a uni-
lateral correlation between DD and hippocampal volume. 

In the current paper, we wished to take advantage of the in-
formation about the fast brain dynamics, in order to further improve 
the individual predictions of clinical impairment (Bosboom et al., 
2006; Chen et al., 2021). To this end, we built a multilinear regres-
sion model which demonstrated the predictive power of the DD in 
the theta band over the FCSRT immediate total recall. Including the 
DD in the model improved predictions over other nuisance pre-
dictors such as age, gender, education level, and the right hippo-
campal volume. Interestingly, as shown in supplementary materials 
(Fig. S5), the structural information alone is unable to predict the 
clinical impairment (as assessed by the FCSRT immediate total re-
call), while functional rearrangement (defined by the higher DD) 
carries predictive power. 

In summary, these results show that the functional data provide a 
more comprehensive information, which also takes into account 
potential compensatory mechanisms which might be overlooked 
when focusing purely on structural data (i.e., atrophy) (Cipriano 
et al., 2023). These findings show that dynamical features predict 
functional abilities (i.e., behavior). Besides the DD, only the educa-
tion level was a significant predictor for the FCSRT immediate total 
recall. Although the FCSRT scores are corrected by taking into ac-
count the education level, it is quite obvious that such a relationship 
would exist since it is expected that highly educated participants are 
also those who exhibit better cognitive performance (Frasson et al., 
2011). Finally, it is worth mentioning that the topological properties 
of both MCI patients and healthy participants were obtained from 
the ATMs, that characterize the spatio-temporal evolution of neu-
ronal avalanches. In other words, our evidence corroborates the 
clinical and behavioral relevance of aperiodic activity at the fast 
timescales. 

5. Conclusion 

In the current work, we applied the novel framework based on 
ATMs to investigate the spatio-temporal dynamics of neuronal ava-
lanches in MCI and HC. As we hypothesized, MCI patients displayed a 
reduction of their brain dynamic flexibility, which resulted in sub-
optimal functional topology and predicted the memory impairment. 
Based on these findings, we hope that the proposed framework may 
be helpful in monitoring the development of the disease and effec-
tively capturing subtle information derived from dynamical analysis 
to achieve a more thorough phenotypical assessment of patients. 
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