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A B S T R A C T   

The brain continuously processes information coming from both the external environment and visceral signals 
generated by the body. This constant information exchange between the body and the brain allows signals 
originating from the oscillatory activity of the heart, among others, to influence perception. Here, we investi-
gated how the cardiac phase modulates multisensory integration, which is the process that allows information 
from multiple senses to combine non-linearly to reduce environmental uncertainty. Forty healthy participants 
completed a Simple Detection Task with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio- 
Visual, Visuo-Tactile) stimuli presented 250 ms and 500 ms after the R-peak of the electrocardiogram, that is, 
systole and diastole, respectively. First, we found a nonspecific effect of the cardiac cycle phases on detection of 
both unimodal and bimodal stimuli. Reaction times were faster for stimuli presented during diastole, compared 
to systole. Then, applying the Race Model Inequality approach to quantify multisensory integration, Audio- 
Tactile and Visuo-Tactile, but not Audio-Visual stimuli, showed higher integration when presented during 
diastole than during systole. These findings indicate that the impact of the cardiac phase on multisensory 
integration may be specific for stimuli including somatosensory (i.e., tactile) inputs. This suggests that the 
heartbeat-related noise, which according to the interoceptive predictive coding theory suppresses somatosensory 
inputs, also affects multisensory integration during systole. In conclusion, our data extend the interoceptive 
predictive coding theory to the multisensory domain. From a more mechanistic view, they may reflect a reduced 
optimization of neural oscillations orchestrating multisensory integration during systole.   

1. Introduction 

Interoception is defined as the brain’s capacity to represent the or-
ganism’s internal state and includes the processes by which it senses, 
interprets, integrates, and regulates signals from within the body (Chen 
et al., 2021; Khalsa et al., 2018). One of the most studied sources of 
interoceptive signals is the heart, whose physiological cycle consists of 
two phases: systole and diastole. At ventricular systole, the heart con-
tracts and ejects blood into the arteries, leading to an increase in firing 
rate of stretch-responsive baroreceptors in the arterial vessel walls 
(Lacey & Lacey, 1978; Landgren, 1952; Motyka et al. 2019; Rau & 
Elbert, 2001; Skora et al., 2022), which carry information about the 
strength and timing of each heartbeat (Critchley & Garfinkel, 2018). In 
contrast, during ventricular diastole, the heart fills with blood (i.e., 
blood is not being ejected) and baroreceptors significantly reduce their 

firing rate (Lacey & Lacey, 1978; Landgren, 1952; Motyka et al., 2019; 
Rau & Elbert, 2001). The baroreceptor-mediated signals are transmitted 
through the glosso-pharyngeal and vagus nerves to the brainstem nuclei, 
reaching the nucleus tractus solitarii (NTS) and the parabrachial nucleus 
(PBN), where they are involved in the homeostatic control of blood 
pressure and heart rate. Finally, the signals are further relayed to 
distributed subcortical and cortical regions via thalamic projections 
with the hippocampus and the insular, anterior cingulate cortex (ACC), 
medial prefrontal and somatosensory cortices receiving the inputs, as 
well as other subcortical structures, including the cerebellum, hypo-
thalamus, striatum, and the amygdala, which project to further cortical 
regions (Larra et al., 2020; Skora et al., 2022). Interestingly, research on 
interoception has shown that visceral signals, besides their role in ho-
meostatic regulation, can also influence how we process exteroceptive 
sensory information (Al et al., 2020; Al et al., 2021; Ambrosini et al., 
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2019; Azevedo, Garfinkel et al., 2017; Azzalini et al., 2019; Critchley & 
Garfinkel, 2015, 2018; Galvez-Pol et al., 2020; Galvez-Pol et al., 2022; 
Garfinkel et al. 2014; Leganes-Fonteneau et al., 2021; Salomon et al., 
2016). In particular, according to the so-called “baroreceptor hypothe-
sis” (Lacey & Lacey, 1958), afferent neural signals from arterial baro-
receptors occurring at systole induce changes in cortical inhibition 
(Duschek et al., 2013). This hypothesis has been validated using neck 
suction techniques, showing that baroreceptors’ stimulation leads to a 
globally reduced cortical excitability (Bonvallet et al., 1954; Rau et al., 
1993; Skora et al., 2022), and consequently to dampened pain sensitivity 
(Droste et al. 1994; Suarez-Roca et al., 2021), decreased muscle tone 
(Dworkin et al., 1994) and reduced startle reflex (Nyklíc̆ek et al., 2005). 

The timing of stimuli presentation along the cardiac cycle (i.e., sys-
tole vs. diastole) impacts perceptual accuracy of visual, auditory, and 
tactile stimuli (Al et al., 2020, 2021; Grund et al., 2022; Motyka et al., 
2019; Park et al., 2014; Salomon et al., 2016; Sandman, 1984; Sandman 
et al., 1977; Saxon, 1970). For example, within the somatosensory 
domain, detection of near-threshold stimuli was more accurate towards 
the diastolic phase of the cardiac cycle, compared to systole (Al et al., 
2020, 2021; Grund et al., 2022; Motyka et al., 2019). Moreover, reaction 
times and performance accuracy for auditory (Birren et al., 1963; Yang 
et al., 2017) and visual stimuli (Ren et al., 2022; Sandman et al., 1977) 
depended upon the cardiac phase in which the stimuli were presented 
with diastole improving accuracy and reaction time compared to systole. 
Altogether, these findings indicate that sensory performance is 
enhanced during the cardiac diastole for both exteroceptive modalities 
(Birren et al., 1963; Ren et al., 2022; Sandman et al., 1977; Yang et al., 
2017). Likewise, neural responses to somatosensory stimuli are modu-
lated across the cardiac cycle. Recently, late EEG somatosensory evoked 
potentials were found to be higher during diastole than systole, and 
inversely related to the amplitude of the heartbeat-evoked potential 
(HEP) (Al et al., 2020, 2021), an electrophysiological marker of cardiac 
interoception (Coll et al., 2021; Park & Blanke, 2019). Similarly, audi-
tory stimuli presentation synchronized with the diastolic phase pro-
duced a higher N1 component compared to systole, suggesting increased 
auditory sensory-perceptual processing (Sandman, 1984; van Elk et al., 
2014). 

Recently, the abovementioned findings have been interpreted 
following the predictive coding framework, according to which 
perception arises from dynamic interactions between incoming sensory 
inputs from the external world and the brain’s formed hypotheses about 
their hidden causes (Clark, 2013; Friston, 2010). In this way, the brain 
works as an active inference generator minimizing the difference be-
tween priors (or predictions) and incoming sensation (i.e., prediction 
error) (Clark, 2013; Friston, 2010). According to the interoceptive pre-
dictive coding account (Barrett & Simmons, 2015; Pezzulo, 2014; Seth, 
2013; Seth & Friston, 2016), the representation of the world includes 
also interoceptive signals (e.g., the heartbeat), which can modulate the 
degree to which sensory evidence is accumulated during perception via 
changes in the precision of prediction errors (Allen et al., 2022). 
Therefore, it has been proposed that the same brain mechanism that 
predicts interoceptive bodily changes related to systole can dampen the 
perception of exteroceptive stimuli occurring in the same time window 
(Al et al., 2020, 2021; Allen et al., 2022; Grund et al., 2022). 

Despite the extensive body of literature on the influence of cardiac 
phases on sensory perception, all the studies carried out so far have 
focused on single modalities, neglecting multisensory perception, 
rendering these findings far from everyday life perception. Indeed, our 
exteroceptive perception relies on multiple senses, hence it is often the 
result of multisensory integration, which is defined as the ability to 
synthesize information arriving from cross-modal stimuli (Stein, 1998; 
Stein & Stanford, 2008). Multisensory integration generates a facilita-
tory effect on both perception and action, reducing environmental un-
certainty (Driver & Noesselt, 2008; Meredith & Stein, 1986; Vastano 
et al., 2022). At the behavioral level, this facilitatory effect is reflected in 
faster reaction times (RTs) for multisensory pair, compared to the most 

effective of its component stimuli (multisensory enhancement) (Stein & 
Stanford, 2008). Indeed, this multisensory enhancement speeds sensory 
processing shortening the interval between stimuli encoding and overt 
behavior (Bell et al., 2005; Rowland et al., 2007). At the neural level, 
multisensory perception is supported by the coherence of oscillatory 
neural signals (Keil & Senkowski, 2018; Senkowski et al., 2008). In 
particular, inter-trial coherence (ITC) increase in neural activity follows 
the impact of a sensory stimulus on spontaneous activity in the brain 
(Kanayama et al., 2015; Mercier et al., 2013; Thorne et al., 2011). 

For the first time, our work investigated the influence of cardiac 
cycle phases on a fundamental property of exteroception, namely 
multisensory integration. It also aimed at exploring whether the cardiac 
modulation of multisensory integration was specific for those bimodal 
combinations containing tactile inputs, as somatosensory signals are 
thought to be tightly linked to heartbeat-related activity. Here, we time- 
locked the presentation of unimodal and cross-modal stimuli (multi-
sensory pairs) to systole and diastole in a Simple Detection Task para-
digm. The main aim of the study was to assess the influence of the 
cardiac phase on multisensory perception, identifying two cardiac 
phase-related phenomena. First, based on previous studies suggesting a 
more efficient sensory processing during minimal baroreceptor stimu-
lation at diastole compared to systole across all sensory modalities, we 
predicted that RTs to unimodal and multimodal stimuli would vary 
depending on the phase of the cardiac cycle: responses would be slower 
at systole and faster at diastole. Second, considering recent findings 
highlighting the relevance of heartbeat-related activity on somatosen-
sory perception as both arising from the body, then we hypothesized 
that the cardiac cycle phases would specifically impact the integration of 
multimodal stimuli containing tactile inputs, leading to higher integra-
tion at diastole compared to systole. 

Overall, our research investigated the impact of cardiac phases on 
multisensory integration, expanding the interoceptive predictive coding 
framework to encompass multimodal perception. Previous studies have 
predominantly focused on individual sensory modalities, overlooking 
the significance of multisensory integration. By specifically examining 
multisensory integration, our study aimed to provide a more compre-
hensive understanding of how sensory information from the environ-
ment is processed and integrated with the fluctuating cardiac activity. 
This approach allows for a more ecologically valid exploration of the 
topic, aligning with our everyday perception. Furthermore, our research 
offers a fresh and ecologically grounded approach to comprehending the 
fundamental mechanisms that underlie brain-body-perception coupling. 
As a result, it may yield valuable insights for clinical populations 
affected by conditions like schizophrenia and autism, which exhibit 
abnormal multisensory integration and disrupted interoceptive systems 
(Di Cosmo et al., 2021; Ferri et al., 2017; Quattrocki & Friston, 2014; 
Stevenson et al., 2014; Yao & Thakkar, 2022). 

2. Materials and methods 

2.1. Participants 

Forty healthy participants (27 females; 8 left-handed; mean age =
25.9 years, SD = 4.2) participated in the study. All participants had 
normal or corrected-to-normal vision, no history of hearing loss, and 
neither mental nor neurological disorders, as self-reported. We esti-
mated the sample size with an a-priori power analysis for paired t-test 
through the G*Power 3 software (Version 3.1.9.6, Düsseldorf, Germany) 
(Faul et al., 2007), based on previous literature on multisensory inte-
gration showing medium-to-large effect sizes (Barutchu & Spence, 2020; 
Tong et al., 2021). The power analysis indicated a sample size of 34 
participants to detect significant within-subjects effects, with a medium 
effect size (Cohen’s d = 0.5) and a statistical power of 0.8 Ethical 
approval from the local ethics board was obtained (Institutional Review 
Board of Psychology – IRBP. Department of Psychological, Health and 
Territorial Sciences, University “G. d’Annunzio”, Chieti-Pescara, 
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Protocol Number 20015). The experiment was conducted in accordance 
with the Declaration of Helsinki and its later amendments. Before the 
experiment, participants gave written informed consent. 

2.2. Stimuli and procedure 

Participants were presented with three types of unimodal stimuli 
(Auditory - A, Tactile - T, and Visual - V) and their bimodal combinations 
(Audio-Visual - AV, Audio-Tactile - AT, and Visuo-Tactile - VT). The A 
stimulus consisted of a pure tone (1000 Hz; 30 ms of duration) presented 
approximatively at 60 dB using a buzzer; the V stimulus (30 ms of 
duration) was delivered through a light-emitting diode (LED) (5 mm 
diameter; 200 mcd); the T stimulus consisted of a suprathreshold elec-
trical pulse (duration of 100 µs), delivered on the middle finger of the 
right hand using a Digitimer (model DS7A, Digitimer Ltd., Welwyn 
Garden City, UK). A and V stimuli were delivered through an in-house 
box containing a fixation cross, the buzzer, and the LED (Fig. 1). All 
stimuli were administered using the E-Prime 3.0 software (Psychology 
Software Tools, Pittsburgh, PA, USA) connected to a TriggerStation™ 
(BRAINTRENDS LTD 2010, Rome, Italy). 

Individual thresholds for the tactile stimulus were determined for 
each participant with the method of the limits (Gerr & Letz, 1988; 
Vastano et al., 2022). Before starting the experiment, the intensity of the 
stimulator was set to 0 mA, and then progressively increased by 1 mA 
until the participant reported to clearly perceive the stimulation (i.e., 
suprathreshold stimulation). Then, the participant was additionally 
stimulated 5 times: if only one of the additional stimuli was not detected, 
the intensity was increased by 1 mA, and the procedure was repeated 
(Vastano et al., 2022). Unbeknownst the participants, stimuli were 
presented with timings that allowed synchronization with phases of the 
cardiac cycle (i.e., systole or diastole). To this purpose, 3 ECG electrodes 
(Ag/AgCl) were placed in a II-Lead chest configuration: two electrodes 
were positioned on the left side and right side of the participant’s lower 

abdomen, and another electrode was located underneath the right 
collarbone. The cardiac signal was continuously recorded with a BIO-
PAC MP160 System (BIOPAC System, Inc., Goleta, CA, USA) (low-pass 
filter: 35 Hz; high-pass filter: 0.05 Hz; notch filter: 50 Hz; sampling rate: 
2000 Hz) using the AcqKnowledge software (version 5.0.5, BIOPAC 
System, Inc., Goleta, CA, USA). The occurrence of the R-peaks in the ECG 
signal was identified online through a Digital Trigger Unit (DTU100, 
BIOPAC System, Inc., Goleta, CA, USA). 

Stimuli were presented 250 ms after the R-peak in the systole con-
dition, and 500 ms after the R-peak in the diastole condition. Such de-
lays were chosen according to a number of several studies, which 
estimated the maximum peak of arterial baroceptors activity at 
R+ 250 ms, and the lowest peak of baroreceptors’ activity at R+ 500 ms 
(Ambrosini et al., 2019; Edwards et al., 2009; Garfinkel et al., 2014; 
Kroeker & Wood, 1955). Due to high heart rate, the offline control 
analysis of ECG recordings revealed that very few diastole trials (25 out 
of 19200: i.e.,0.13%) were presented immediately after the subsequent 
R-peak. Those trials were not excluded as they were presented only few 
milliseconds (~15 ms) after the R-peak, within a time lag in which the 
brain is not yet informed about the heartbeat (i.e., after 250 ms) (Angell 
James, 1971; Coleridge et al., 1987; Edwards et al., 2007). Despite the 
individual variability of heart rate that can, in turn, affect the actual 
time locking at systole and diastole, the presentation of stimuli triggered 
to the cardiac phases allowed us to have enough trials to perform 
multisensory integration’s analysis (i.e., Race Model Inequality) (Gon-
dan, 2010; Gondan & Minakata, 2016; Kiesel et al., 2007). We presented 
a total of 480 stimuli to each participant, divided into 2 blocks. In each 
block, 240 presented stimuli were equally divided for each unimodal 
and bimodal stimulation (40 A, 40 T, 40 V, 40 AT, 40 AV, 40 VT). 
Among these, half of the stimuli were presented within the participant’s 
cardiac systole (systole condition), whereas the other half was presented 
within the cardiac diastole (diastole condition). The number of trials was 
chosen based on published recommendations (Gondan, 2010; Gondan & 
Minakata, 2016; Kiesel et al., 2007; Mahoney & Verghese, 2019). 

The experiment consisted of a Simple Detection Task. Each trial 
started with the online R-peak detection performed by the DTU100 
(BIOPAC System, Inc., Goleta, CA, USA). After either 250 ms (systole 
condition) or 500 ms (diastole condition) from the R-peak, either a 
unimodal (A, T, V) or a bimodal stimulus (AT, AV, VT) was presented in 
random order. Participants were seated 57 cm from the in-house box 
and were instructed to respond by pressing a pedal with the right foot as 
soon as they perceived any stimulus or pair. The allowed maximum 
response time was set to 2000 ms. After a fixed inter-trial interval 
(500 ms), the next trial started (Fig. 2). We used fixed inter-trial interval 
as the jittering of the onset of each trial was guaranteed by the natural 
occurring variability in inter-beat intervals. The experimental session 
was preceded by a brief training session to familiarize with the task. RTs 
were collected using a pedal board connected to the TriggerStation™ 
(BRAINTRENDS LTD 2010, Rome, Italy). Missed trials were not 
replaced. To prevent fatigue and maintain focus, participants were 
allowed to take a break between the two blocks. 

2.3. Statistical analyses 

We first performed ANOVAs to assess whether the cardiac phase (i.e., 
systole vs. diastole) affected simple Reaction Times (RTs) to sensory 
stimuli, and to confirm the well-known redundant signals effect (RSE, i. 
e., faster RTs to bimodal stimulations than to unimodal ones) (Diederich 
& Colonius, 2004; Hershenson, 1962; Todd, 1912). A further step was to 
assess any effect of the cardiac phase on multisensory integration by 
testing the Race Model Inequality (RMI) (Miller, 1982) separately for 
systole/diastole and each multisensory combination. RMI rejection ac-
counts for interactions that allow unimodal signals from redundant in-
formation sources to integrate or combine non-linearly (Mahoney et al., 
2011). As the performance accuracy is expected to be at ceiling with 
high detection rates and RMI typically works on RTs distributions (Otto 

+

LED

Fixation cross

Buzzer

Electrodes

Fig. 1. Stimulus delivery apparatus. The in-house box allowed to present 
stimuli: electrical pulse on the right middle finger (T), the LED (V), and the 
buzzer (A), in close spatial proximity. 
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& Mamassian, 2017), we did not analyze it further. 

2.3.1. Effect of the cardiac phase on reaction times 
The following adjustments of RTs were performed before entering 

them into the ANOVA models. First, RTs faster than 120 ms were 
considered fast guesses and were removed from the analysis (Couth 
et al., 2017). Next, as RTs distributions violated the assumption of 
normality (K-S normality test, d = 0.12, p < .01; Lilliefors p < .01), they 
were normalized using a log-transformation. Finally, for each stimulus 
type and participant, we trimmed all log-transformed RTs falling outside 
2 SD from the mean. Adjusted RTs were entered into three separate 
3 × 2 repeated-measure ANOVAs with the Heart (i.e., systole vs. dias-
tole) and Modality (i.e., A/T/AT or A/V/AV or V/T/VT) as 
within-subject factors (Vastano et al., 2022). These analyses allowed us 
to verify the influence of the cardiac phase on RTs. In addition, they 
were also used to confirm the well-known RSE (i.e., faster RTs to 
bimodal stimulations than to unimodal ones) (Diederich & Colonius, 
2004; Hershenson, 1962; Todd, 1912). Post-hoc analyses were run, 
when necessary, using the Tukey test. 

2.3.2. Race model inequality 
Multisensory integration in bimodal stimulations was assessed with 

the RMI (Miller, 1982). In brief, typically participants exhibit shorter 
RTs in bimodal stimulations than in unimodal ones, and several models 
have been proposed to explain this effect, known as RSE (Diederich & 
Colonius, 2004; Hershenson, 1962; Todd, 1912). In general, Race Model 
approaches consider the redundancy gain as a mere consequence of 
statistical facilitation (Raab, 1962), which does not reflect multisensory 
integration processes. In other words, according to Race Model ap-
proaches, components of the two unimodal stimuli would be processed 
in separate sensory channels, and the fastest one would trigger the 
response (i.e., “wins the race”). The RMI is used to rule out the possi-
bility that RTs facilitation could be explained by separate processing (i. 
e., Race Model). It states that the cumulative RTs distribution for the 
redundant stimuli never exceeds the sum of the RTs distribution for the 
unimodal stimuli (Gondan, 2010; Gondan & Minakata, 2016), while the 
rejection of this possibility reflects multisensory interactions. 

To assess multisensory integration, the RMI was performed sepa-
rately for each modality combination (i.e., A/T/AT, A/V/AV, V/T/VT). 
Following the procedure proposed by Mahoney & Verghese (2019), we 
clustered raw RTs into 21 progressively increasing time-bins, by first 
identifying a specific RT range for each participant, obtained by sub-
tracting its slowest RT from the fastest RT, and then by gradually adding 
the 5% of this range to each time-bin. Next, we created the cumulative 
distribution frequency (CDF) by summing the total probabilities across 
the quantized bins, obtaining 11-time bins (0%, 0% + 10%, 0% + 10% +
20%, etc.) for each of the three multisensory pair. The CDF of the 

multisensory pair (i.e., AT, AV, VT) represents the observed CDF, 
whereas the predicted CDF corresponds to the independent version of 
the Race Model (Fig. 3) (Stevenson et al., 2014) calculated across each of 
the 11-time bins using the following formula:  

CDF(Unix)+CDF(Uniy) - CDF(Unix)*CDF(Uniy)                                       

To test for significant violations of the RMI, while controlling for 
Type I error (Kiesel et al., 2007), we conducted a series of permutation 
tests (Gondan, 2010; Mahoney & Verghese, 2019, 2020) over group 
averaged RMI data within the violated portion of the CDF (i.e., those 
portions where differences between observed CDF and predicted CDF 
were positive). The RMI permutation test provides a Tmax value, a 
Tcritic value, the 95% criterion, and a p-value, representing the signif-
icance level. If the observed CDF was significantly greater than the 
predicted CDF, the RMI was rejected (or violated) and RTs facilitation in 
multimodal stimuli was considered dependent on multisensory inte-
gration, and not on redundancy gain (Mahoney & Verghese, 2019, 
2020). 

To assess the influence of the cardiac phase on multisensory inte-
gration, we first performed the RMI in each participant separately for 
each cardiac phase and stimulus combination (e.g., A/T/AT systole, A/ 
T/AT diastole, A/V/AV systole, A/V/AV diastole, etc.), then we calcu-
lated the area-under-the-curve (AUC) of the difference wave (i.e., 
observed CDF minus predicted CDF) for each stimulus combination and 
each cardiac phase. The AUC quantifies the magnitude of multisensory 
integration as it provides the accumulated probability of the RMI 
violation over consecutive time bins, allowing us to disentangle the 
impact of cardiac phases (Mahoney & Verghese, 2019, 2020). Conse-
quently, we performed a series of paired t-tests between systole AUC vs. 
diastole AUC, for each time-bin and bimodal stimulation (e.g., AUC 0.1 – 
0.2 AT systole vs. AUC 0.1 – 0.2 AT diastole, etc.). Obtained p-values 
were adjusted for multiple comparisons with the Benjamini & Hochberg 
procedure (False Discovery Rate – FDR) (Benjamini & Hochberg, 1995). 
Following previous literature, we determined that at least two consec-
utive t-tests have to reach the significance level to indicate violations of 
the RMI (Senkowski et al., 2011). 

3. Results 

3.1. Reaction Times 

Repeated-measures ANOVAs were performed on 40 participants, 
after excluding 3 participants due to excessive missing responses (> 50% 
in any condition). Performance accuracy was high across all unimodal 
and multimodal stimulations (A/Sys = 99%, AT/Sys = 99%, AV/Sys =
99%, T/Sys = 91%, V/Sys = 98%, VT/Sys = 98%, A/Dia = 99%, AT/Dia 

R-peak detection Stimulation Inter Trial Interval

+ + + +

Inter Stimulus Interval Response

A T V

AVAT VT

2000 ms 500 ms

or or

or or

Wait
Systole (R + 250 ms)

or
Diastole (R + 500 ms)

Fig. 2. Timeline of the experimental trials. Each trial started with online detection of the R-peak. After either 250 ms (systole condition) or 500 ms (diastole 
condition) from the R-peak, either unimodal (Auditory, Tactile, Visual) or bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli were presented. Participants 
had to respond by pressing a pedal within 2000 ms. There was a fixed inter-trial interval (500 ms) before the subsequent trial. 
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= 99%, AV/Dia = 98%, T/Dia = 92%, V/Dia = 98%, VT/Dia = 99%). 
Results from A/T/AT repeated-measures ANOVA showed the main ef-
fect of Modality (F (2, 78) = 25.62; p < .001; ηp2 = .387) with detection 
accuracy lower for T stimuli (Mean = 91.41; SD = 9.73) compared to A 
stimuli (Mean = 98.56; SD = 2.46; t = − 4.92; ptukey<.001) and AT 
stimuli (Mean = 98.88; SD = 1.94; t = − 5.10; ptukey<.001). Similarly, 
results from V/T/VT repeated-measures ANOVA showed the main effect 
of Modality (F (2, 78) = 24.01; p < .001; ηp2 = .381) with detection 
accuracy lower for T stimuli (Mean = 91.41; SD = 9.73) compared to V 
stimuli (Mean = 98.13; SD = 3.07; t = − 4.64; ptukey<.001) and VT 
stimuli (Mean = 98.88; SD = 1.98; t = − 5.23; ptukey<.001). 

For reaction time, results from repeated-measures ANOVA for the A/ 
T/AT modalities showed a significant main effect of Modality (F (2, 78) 
= 142.05; p < .001; ηp2 = .785; Fig. 4, Panel A). Post hoc tests showed 
faster RTs for bimodal stimulation (AT Mean = 5.81; AT SD = 0.20) 
compared to unimodal stimulation (A Mean = 5.89; A SD = 0.20; 
t = − 10.09, ptukey<.001; T Mean = 6.03; T SD = 0.18; t = − 15.95, 
ptukey<.001) and faster responses to A stimuli than to T stimuli 
(t = − 8.51, ptukey<.001). The main effect of Heart was also significant (F 
(1, 39) = 17.33; p < .001; ηp2 = .308) with faster RTs at diastole (Mean 
= 5.89; SD = 0.19) as compared to systole (Mean = 5.91; SD = 0.18; 
Fig. 4, Panel B). 

The ANOVA on V/T/VT modalities showed a significant main effect 
of Modality (F (2, 78) = 112.15; p < .001; ηp2 = .742; Fig. 4, Panel C). 
Post hoc tests showed faster RTs for bimodal stimulation (VT Mean =
5.86; VT SD = 0.17) compared to unimodal stimulation (V Mean = 5.94; 
V SD = 0.16; t = − 13.70, ptukey<.001; T Mean = 6.03; T SD = 0.18; 
t = − 14.29, ptukey<.001). Also, responses to V stimuli were faster than 
to T stimuli (t = − 5.88, ptukey<.001). The main effect of Heart was also 
significant (F (1, 39) = 29.52; p < .001; ηp2 = .431) with faster RTs at 
diastole (Mean = 5.93; SD = 0.17) compared to systole (Mean = 5.96; 
SD = 0.16; Fig. 4, Panel D). 

Finally, results from A/V/AV modalities showed a significant main 
effect of Modality (F (2, 78) = 103.53; p < .001; ηp2 = .726; Fig. 4, 
Panel E). Post hoc tests showed faster RTs to bimodal stimuli (AV Mean 
= 5.81; AV SD = 0.20) compared to unimodal stimuli (A Mean = 5.89; A 
SD = 0.20; t = − 10.02, ptukey<.001; V Mean = 5.94; V SD = 0.16; 
t = − 14.96, ptukey<.001). Furthermore, responses to A stimuli were 
faster than to V stimuli (t = − 4.97, ptukey<.001). The main effect of 
Heart was also significant (F (1, 39) = 13.32; p < .001; ηp2 = .255) with 
faster RTs at diastole (Mean = 5.87; SD = 0.19) compared to systole 
(Mean = 5.89; SD = 0.18; Fig. 4, Panel F). Although we did not have a 

specific hypothesis on the interaction effects, here we reported the result 
for completeness. The interaction Modality x Heart was significant (F (2, 
78) = 5.05; p = .01; ηp2 = .115). Post hoc tests showed faster responses 
for AV stimuli at diastole (Mean = 5.79; SD = 0.20) compared to AV 
stimuli at systole (Mean = 5.82; SD = 0.19; t = − 5.23; ptukey<.001). 

Taken together, results from ANOVAs indicated faster RTs to multi-
sensory as well as unisensory stimuli delivered at diastole compared to 
systole. Moreover, they confirmed faster RTs to bimodal stimulations 
than unimodal ones (i.e., RSE). All these effects were found for each 
stimulus combination (A/T/AT, V/T/VT, A/V/AV). These main effects 
motivated a further analysis, using the RMI, to understand, first, 
whether the RSE was due to multisensory integration, second and most 
important if the cardiac cycle modulated such multisensory integration 
processes. 

3.2. Race model inequality 

To investigate the presence of multisensory integration in bimodal 
stimulations, we performed a series of RMI permutation tests (Gondan, 
2010) for each multisensory pair and cardiac phase. We found signifi-
cant violations of the RMI, showing multisensory integration in all the 
conditions. In particular, for the AT stimulation, we found a significant 
violation of the RMI at systole within time bins ranging from 0.1 to 0.3 
(Tmax = 3.96, Tcritic = 2.04, p = .001), and at diastole on time bins from 
0.1 to 0.4 (Tmax = 5.31, Tcritic = 2.06, p < .001). Multisensory integra-
tion occurred also for AV stimuli in both systole (time bins 0.1 – 0.2, Tmax 
= 3.31, Tcritic = 1.89, p = .002) and diastole (time bins 0.1 – 0.3, Tmax =

3.97, Tcritic = 2.01, p = .001). Similarly, for the VT stimulation, RMI 
permutation tests indicated significant integration in both cardiac pha-
ses: systole (time bins 0.1 – 0.2, Tmax = 4.26, Tcritic = 1.88, p < .001), 
and diastole (time bins 0.1 – 0.4, Tmax = 5.95, Tcritic = 2.11, p < .001). 

Crucially, when we focused on the role of the cardiac phase on 
multisensory integration, paired sample t-test between AUC belonging 
to systole and diastole showed a significantly larger violation at diastole 
compared to systole for the AT and the VT stimulation (AT, time bins 0 – 
0.3, Table 1; Fig. 5, Panel A; VT, time bins 0.2 – 0.4, Table 1; Fig. 5, Panel 
C), indicating a different impact of the cardiac phases on multisensory 
integration, specifically for AT and VT. In contrast, we found no dif-
ferences in multisensory integration among cardiac phases for AV 
stimulations, as the criterion of at least two significant consecutive time 
bins was not fulfilled (see Section 2.3.2) (Table 1, Fig. 5, Panel B). 
Indeed, as indicated in Table 1, AUC in the time bin 0.3–0.4 for AV 
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stimulations are both negative (systole and diastole), so they cannot be 
considered as multisensory integration. 

4. Discussion 

The fundamental impact of cardiac activity has been reported for a 

wide variety of perceptual and cognitive processes (Azzalini et al., 2019; 
Critchley & Garfinkel, 2018; Edwards et al., 2001, 2009; Garfinkel et al. 
2013, 2014; Park & Tallon-Baudry, 2014; Rae et al., 2018; Skora et al., 
2022). However, its role in modulating the perception of external sen-
sory stimuli has not been fully described so far. The aim of the present 
study was to investigate the influence of cardiac phases on multisensory 
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Table 1 
T-test results between systole and diastole for AT, AV, and VT (for AT *p < .05; for VT *p < .025, 5 t-tests FDR corrected). Only those time bins containing violation of 
the Race Model Inequality are reported. Differences in multisensory integration were considered only if the criterion of at least two significant consecutive time bins 
was fulfilled. AUC = Area Under the Curve.   

Audio-Tactile Audio-Visual Visuo-Tactile 

AUC Systole Diastole p-value Systole Diastole p-value Systole Diastole p-value 

0–0.1  0.01(0.05)  0.04(0.06) .035 *  0.02(0.06)  0.03(0.05)  .442  0.03(0.05)  0.02(0.05) .559 
0.1–0.2  0.03(0.07)  0.07(0.09) .005 *  0.03(0.09)  0.04(0.09)  .431  0.03(0.06)  0.05(0.08) .126 
0.2–0.3  0.02(0.09)  0.05(0.08) .040 *  -0.02(0.09)  0.01(0.11)  .033  0.00(0.07)  0.04(0.08) .019 * 
0.3–0.4  0.00(0.08)  0.01(0.06) .223  -0.06(0.09)  -0.01(0.09)  .007  -0.02(0.06)  0.01(0.06) .014 * 
Total  0.05(0.25)  0.17(0.24) .004 *  -0.03(0.25)  0.06(0.30)  .015  0.05(0.19)  0.13(0.21) .030  
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integration, i.e., the mechanism that allows a coherent perception of the 
external environment by synthetizing information from multiple senses 
(Stein & Stanford, 2008). Here, we presented unimodal and bimodal 
stimuli to shed light on the process underlying the interplay between 
interoception and exteroception. In a Simple Detection Task paradigm, 
we assessed the influence of the cardiac phase on multisensory inte-
gration by analyzing and modeling reaction times to unimodal and 

bimodal stimuli presented at each cardiac phase. Our results indicated 
that responses to multisensory pairs (AT, AV, VT) were faster than those 
to unimodal stimuli (A, T, V). That is the demonstration of the redundant 
signal effect, according to which redundant conditions (two sensory 
signals) elicit quicker reaction times compared to the single sensory 
condition (Diederich & Colonius, 2004; Hershenson, 1962; Miller, 1982; 
Otto & Mamassian, 2017; Todd, 1912). To confirm our first hypothesis, 
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the presentation of stimuli time-locked to each cardiac phase signifi-
cantly affected behavioral performance, resulting in faster responses to 
unimodal and bimodal stimuli during diastole, compared to systole. This 
is consistent with previous studies on cardiac interoception reporting 
enhanced stimulus detection during diastole rather than systole due to 
interoceptive feedback from baroreceptors (Al et al., 2020, 2021; Birren 
et al., 1963; Motyka et al., 2019; Sandman, 1984; Sandman et al., 1977), 
which affects brain activity specifically during systole (Critchley & 
Garfinkel, 2015; Duschek et al., 2013; Rau et al., 1993). These results are 
also in agreement with the interoceptive predictive coding account, 
according to which bodily consequences of biorhythms, such as the 
heartbeat, are actively predicted and suppressed from entering 
conscious perception by the same top-down suppression mechanism that 
inhibits the detection of external stimuli when presented in the time 
window of baroreceptors firing (i.e., the systolic phase) (Al et al., 2021; 
Salomon et al., 2016). Thus, the cardiac systole can be regarded as a 
period of perceptual uncertainty in which the differentiation between 
“internal noise” and exteroceptive stimuli becomes more difficult (Bar-
rett & Simmons, 2015; Seth & Friston, 2016). 

Crucially, here we demonstrated a specific effect of the cardiac phase 
on multisensory perception, providing support to our second hypothesis. 
Despite multisensory integration occurred in all bimodal pairs and car-
diac phases, it was significantly stronger at diastole compared to systole 
only for Audio-Tactile and Visuo-Tactile pairs, but not for Audio-Visual 
pair. This specific involvement of the tactile input can be partially 
explained by the shared physiological pathways between somatosensory 
processing (i.e., tactile perception) and heartbeat-related sensations (i. 
e., the ability to detect one’s own heartbeats) (Khalsa et al., 2009; 
Knapp-Kline et al., 2021). Indeed, the somatosensory cortex has been 
mentioned among the relay stations of cardiac sensory information, as 
well as among the cortical sources of the heartbeat evoked potential 
(Coll et al., 2021; Park & Blanke, 2019). Therefore, it might be possible 
that the decreased multisensory integration at cardiac systole is due to a 
less efficient interaction of tactile stimuli with auditory and visual 
stimuli. In particular, the tactile stimulus weakened by the top-down 
predictive suppression related to the systolic interference (Al et al., 
2021) would not be able to optimize the response to the auditory or 
visual stimulus, and this would result in a reduction of early multisen-
sory integration. 

This hypothesis is based on a large body of evidence from both an-
imal and human studies. Generally, multisensory integration refers to 
the process by which a behavioral response, or the activity elicited by 
one stimulus, can be modulated (enhanced or depressed) by a stimulus 
from another sensory modality (Kayser & Logothetis, 2007). Contrasting 
a traditional view that posits a hierarchical structure of sensory pro-
cessing ranging from low-level unimodal areas to higher-level multi-
modal or associative areas, compelling anatomical, physiological and 
neuroimaging evidence suggests that cross-modal interactions occur 
even earlier at the primary stages of sensory cortical processing (Cappe 
& Barone, 2005; Foxe et al., 2002; Foxe & Schroeder, 2005; Ghazanfar & 
Schroeder, 2006). From an electrophysiological standpoint, recording 
laminar current source density and multiunit activity directly from 
macaques’ brain, Lakatos et al. (2007) outlined the mechanisms by 
which co-presentation of somatosensory and auditory stimuli results in a 
super-additive multisensory interaction at the level of the primary 
auditory cortex (Lakatos et al., 2007). Later animal studies confirmed 
that the integration of other multisensory stimuli, such as Audio-Visual 
and Visuo-Tactile pairs, occurred at the level of the primary sensory 
cortices (Kambe et al., 2015; King & Walker, 2012; Sieben et al., 2013). 
In humans, increases in the stimulus-locked inter-trial coherence of 
spontaneous activity of the brain, which is generally considered to result 
from the phase-reset of ongoing neural oscillation following sensory 
stimulation (Kanayama et al., 2015; Mercier et al., 2013; Thorne et al., 
2011), has been reported to support multisensory perception (Keil & 
Senkowski, 2018; Senkowski et al., 2008). In general, during a multi-
sensory stimulation, the first stimulus induces the phase-reset of ongoing 

spontaneous neural oscillations, while the second stimulus, arriving 
during this ideal high excitability phase, leads an to enhanced response 
to multisensory pairs (Lakatos et al., 2007). Consequently, we inter-
preted our findings of reduced multisensory integration during systole 
following this mechanistic explanation, according to which the tactile 
stimulus is weakened by the predictive top-down suppression related to 
the “systolic interference” and hence would not be able to optimize the 
response to the auditory or visual stimuli, resulting in a reduction of 
early sensory integration. 

Another possible contribution to the weakening of the tactile stimuli 
may be due to bottom-up (peripheral) influences of the cardiac systole. 
The discharge of tactile mechanoreceptors afferents in the fingers has 
been shown to be modulated by the cardiac pulse wave arriving 
immediately after each heartbeat (Macefield, 2003). This pulse can be 
considered by the central nervous system as an “additive noise” that 
would decrease the resolution of the tactile stimulus, hence it must be 
filtered out (Macefield, 2003). However, the lowest tactile detection rate 
for near-threshold stimuli has been located 250–300 ms after the 
R-peak, that is before the pulse wave peak (at 405 ms post R-peak) 
(Grund et al., 2022). Thus, this suggests that tactile perception is un-
likely influenced by the peripheral influences of the cardiac systole. 
Rather, it seems to interact with the above mentioned higher-level 
predictive suppressive mechanism (Grund et al., 2022). 

However, the existence of such predictive suppressive mechanism 
has been proposed also for other sensory modalities. For example, in the 
auditory domain, the brain can distinguish sounds in-sync with the 
heartbeat from sounds not in-sync, via a sensory suppression process 
reflected in a reduced auditory N1 component in the former condition 
(van Elk et al., 2014). Similarly, integration of the systolic signal with 
simultaneous visual stimulation reduces the detection of a target among 
distractors, as indexed by prolonged reaction times as well as by 
inhibitory modulations in event-related potential amplitude (Ren et al., 
2022). In line with these findings, we found a general increase in the 
reaction times during systole for all the sensory modalities; only the 
impact on multisensory integration was specific for the tactile domain. 

Our findings also shed light on the interaction between interoception 
and multisensory representations of the bodily self (Ardizzi & Ferri, 
2018; Azzalini et al., 2019; Tsakiris et al., 2011), such as the sense of 
body ownership, as investigated by the rubber hand illusion and 
full-body illusion. Both these body illusions are induced by multisensory 
conflicts between exteroceptive sensory modalities, such as vision and 
touch (Blanke & Metzinger, 2009; Ehrsson et al., 2004; Kalckert & 
Ehrsson, 2012; Serino et al. 2013; Tsakiris & Haggard, 2005). Relevant 
to the present study, the experience of body ownership is also modulated 
by interoceptive signals, as demonstrated by providing participants with 
visual information about their heartbeat. In particular, presenting a vi-
sual feedback in-sync with the heartbeat (nearly coincident with the 
systolic phase) led to an enhanced experience of ownership of a virtual 
hand, and a greater shift in self-location towards a virtual body, 
compared to the cardiac asynchronous visual feedback (Aspell et al. 
2013; Heydrich et al. 2018; Suzuki et al., 2013). Moreover, Aspell et al. 
(2013) noted that the synchronous cardio-visual signals also altered the 
perception of tactile stimuli, so that touch was mislocalized towards the 
virtual body, further strengthening the link between somatosensory 
perception and cardiac cortical processing. 

Someone could argue that there would be a systematic influence of 
fixed ITI on RTs, caused by shorter ITIs preceding systolic trials and 
longer ITIs before the diastolic ones. However, this relationship is not 
always straightforward (Vallesi, Lozano, & Correa, 2013) and the 
additional jitter provided by the variability in the inter-beat interval 
excluded this potential confound (see Supplementary Materials). 

Although the results about perception and cardiac interoception 
agree with most previous studies, some limitations should be noted. The 
study employed a time-locked presentation of stimuli at 250 ms and 
500 ms post R peak instead of uniformly sampling the cardiac cycle. 
Nevertheless, those fixed intervals allowed us to have a comparable 
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number of trials between conditions as required by the RMI analysis. 
Also, the use of an electrical pulse as a tactile stimulus can be considered 
a potential weakness. Indeed, the detection accuracy for tactile inputs 
was lower compared to other stimuli probably due to adaptation 
(Graczyk et al., 2018; Kaczmarek et al., 1991). However, the percentage 
of correctly detected trials was enough to perform RMI analysis. 

In conclusion, the present study enriches current knowledge on the 
impact of the cardiac phase on sensory perception, including the 
multisensory domain. Our findings show that Audio-Tactile and Visuo- 
Tactile integration is reduced when stimuli are presented in-time with 
the cardiac systole. We interpret these results within the interoceptive 
predictive coding framework, according to which brain-body in-
teractions shape the perception of the external environment. Future 
studies should consider the role of another fundamental body rhythm, 
such as respiratory activity, in modulating multisensory integration, 
given the tight coupling with cardiac activity and its well-described 
influence on brain activity and cognitive functions (Allen et al., 2022; 
Heck et al. 2022; Kluger et al., 2021; Kluger & Gross, 2021; Varga & 
Heck, 2017; Zaccaro et al., 2022). Moreover, the electrophysiological 
correlates of interoceptive influences on multisensory integration should 
be tested taking, for instance, the inter-trial coherence as an index of 
cardiac driven cross-sensory phase resetting. 
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Senkowski, D., Saint-Amour, D., Höfle, M., & Foxe, J. J. (2011). Multisensory interactions 
in early evoked brain activity follow the principle of inverse effectiveness. 
NeuroImage, 56(4), 2200–2208. https://doi.org/10.1016/j.neuroimage.2011.03.075 

Senkowski, D., Schneider, T. R., Foxe, J. J., & Engel, A. K. (2008). Crossmodal binding 
through neural coherence: Implications for multisensory processing. Trends in 
Neurosciences, 31(8), 401–409. https://doi.org/10.1016/j.tins.2008.05.002 

Serino, A., Alsmith, A., Costantini, M., Mandrigin, A., Tajadura-Jimenez, A., & Lopez, C. 
(2013). Bodily ownership and self-location: Components of bodily self- 

consciousness. Consciousness and Cognition, 22(4), 1239–1252. https://doi.org/ 
10.1016/j.concog.2013.08.013 

Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in 
Cognitive Sciences, 17(11), 565–573. https://doi.org/10.1016/j.tics.2013.09.007 

Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional 
brain. Philosophical Transactions of the Royal Society of London Series B, Biological 
Sciences, 371(1708), 20160007. https://doi.org/10.1098/rstb.2016.0007 
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