
Citation: Paciotti, R.; Re, N.; Storchi,

L. Combining the Fragment Molecular

Orbital and GRID Approaches for the

Prediction of Ligand–Metalloenzyme

Binding Affinity: The Case Study of

hCA II Inhibitors. Molecules 2024, 29,

3600. https://doi.org/10.3390/

molecules29153600

Academic Editors: Nino Russo and

Jan Janczak

Received: 27 June 2024

Revised: 18 July 2024

Accepted: 29 July 2024

Published: 30 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Combining the Fragment Molecular Orbital and GRID
Approaches for the Prediction of Ligand–Metalloenzyme
Binding Affinity: The Case Study of hCA II Inhibitors
Roberto Paciotti * , Nazzareno Re and Loriano Storchi

Department of Pharmacy, Università “G. D’Annunzio” Di Chieti-Pescara, 66100 Chieti, Italy; nre@unich.it (N.R.);
loriano@storchi.org (L.S.)
* Correspondence: r.paciotti@unich.it

Abstract: Polarization and charge-transfer interactions play an important role in ligand–receptor
complexes containing metals, and only quantum mechanics methods can adequately describe their
contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of
human Carbonic Anhydrase II (hCA II)—an important druggable target containing a Zn2+ ion in the
active site—as a case study to predict the binding free energy in metalloprotein–ligand complexes and
designed specialized computational methods that combine the ab initio fragment molecular orbital
(FMO) method and GRID approach. To reproduce the experimental binding free energy in these
systems, we adopted a machine-learning approach, here named formula generator (FG), considering
different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP.
The main advantage of the FG approach is that it can find nonlinear relations between the energy
terms used to predict the binding free energy, explicitly showing their mathematical relation. This
work showed the effectiveness of the FG approach, and therefore, it might represent an important
tool for the development of new scoring functions. Indeed, our scoring function showed a high
correlation with the experimental binding free energy (R2 = 0.76–0.95, RMSE = 0.34–0.18), revealing a
nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic
contacts. These results, along with the FMO characterization of ligand–receptor interactions, represent
important information to support the design of new and potent hCA II inhibitors.

Keywords: machine learning; formula generator; FMO; GRID; scoring function; hydrophobic
interactions; metal complexes

1. Introduction

Computational chemistry plays a prominent role in the identification and design of
new potential drug-like molecules. Most of the computational approaches used in drug
design employ molecular mechanics (MM) methods, which are based on force fields (FFs).
These methodologies are generally fast and, within the limit of FF parametrization, disclose
an appreciable predictive accuracy. Molecular docking is the most used MM approach
in structure-based drug discovery [1], and its accuracy is related to two basic features:
(i) the efficiency of the conformational sampling of both ligand and receptor structures, and
(ii) the accuracy of the scoring function (SF) adopted to estimate the ligand–receptor (LR)
binding energy of the predicted binding poses [2].

Several docking packages, such as DOCK [3], GOLD [4] and LigandFit [5], adopt
the so-called force-field-based SFs (FF-based SFs), where the SF is described as a sum of
certain non-covalent interaction terms (van der Waals, electrostatic and hydrogen bonding)
computed based on a selected FF (the weight factors for all energy terms are equal to 1) [6].
To improve the accuracy of prediction, some additional terms, such as the number of ligand
rotatable bonds and ligand logP, can be added to the FF-based SFs leading to the so-called
empirical SFs [7]. In these extended empirical SFs, each energy term is weighted through a

Molecules 2024, 29, 3600. https://doi.org/10.3390/molecules29153600 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29153600
https://doi.org/10.3390/molecules29153600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5325-9452
https://orcid.org/0000-0002-0957-4049
https://orcid.org/0000-0001-5021-7759
https://doi.org/10.3390/molecules29153600
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29153600?type=check_update&version=2


Molecules 2024, 29, 3600 2 of 19

coefficient obtained via linear fitting of the scoring values to experimental binding data [7].
These functions have been implemented in some currently used docking software, such as
Autodock Vina [8] and Glide [9,10].

One of the most important limitations to the employment of molecular docking is
represented by the lack of FF parametrization, typically occurring when the structure of
either target or ligands includes uncommon functional groups. Moreover, some specific
contributions to the ligand–receptor binding, such as induced polarization and charge-
transfer (CT) interactions, cannot be modeled using classical MM methods that do not
explicitly treat the electronic structure, thus limiting the reliability of the docking method.
On the other hand, the quantum mechanics (QM) methods are capable of providing a more
accurate energy estimate of non-bonded interactions and polarization and CT effects by
explicitly accounting for the electronic structure of the LR adduct. However, the application
of QM methods to the study of LR complexes is subjected to a significant computational
cost, so these methods are generally used in combination with empirical approaches,
for example, to re-score the binding poses predicted through docking calculations (post-
docking treatments) [11]. Indeed, many studies were performed to build SFs based on QM
methods showing, in many cases, a significant improvement in the correlation with respect
to the experimental data [12–15]. Although the development of multilayered or hybrid
QM/MM methodologies has permitted the QM description of the chemically relevant
portions of macromolecular systems [12,16–18], reducing the computational cost, the lack
of parametrization and the possible inconsistencies at the QM/MM boundary still represent
common limitations [19].

The fragment molecular orbital (FMO) method is a full QM approach that can be
used to investigate the structure and the stability of macromolecular adducts, such as LR
complexes, and to predict their binding affinities [20]. In the two-bodies FMO approach
(FMO2), the target system is split into several fragments (e.g., one amino acid per fragment),
and the total energy is computed as the sum of the fragments’ internal energy and the
pair interaction energies (PIEs) [21]. The accuracy of FMO calculations can be increased by
adopting the FMO3 and FMO4 approaches [22,23]. It is worth noting that the interfragment
interaction energies can be split in several energy contributions, such as the electrostatic
(Ees), exchange repulsion (Eex), charge transfer (Ect), dispersion (Edisp) and solvation energy
(Esol) contributions, by performing the energy decomposition analysis (EDA) that provides
for important insights about the chemical nature of the pair interactions [24–26].

This decomposing scheme is particularly useful in the study of LR complexes, where
one fragment includes the whole ligand, and the sum of its PIEs represents the interaction
energy between the ligand and receptor, EINT, which can be considered an evaluation of the
ligand–receptor binding strength. The EDA of each PIE between the ligand and residues
pertaining to the binding site provides relevant details on the nature of LR interactions.

The FMO binding energy, ∆EFMO, can be more accurately computed as the differ-
ence between the FMO energy of the whole LR complex and the sum of energies of the
separated ligand and receptor [20,27]. Indeed, ∆EFMO takes into account the polarization–
destabilization and desolvation energies associated with the binding process, providing
ideally a more accurate evaluation of the binding strength than EINT.

The accuracy of the FMO prediction can be further improved by including hydrophobic
interaction contributions, typically playing a relevant role in the stabilization of LR adducts,
and not accurately accounting for the QM calculation at the level of theory allowed by
the size of the considered system. Recently, we have shown how the FMO description
can be coupled with the GRID Force Field calculations [28,29] to define the hydrophobic
interaction energies (HIEs) [30,31].

The FMO results were also included in several SFs designed for systems not containing
metals where EINT can be considered an evaluation of the enthalpy of the LR interaction,
and other terms of the SF are represented by entropic and/or hydrophobic contributions,
providing a good correlation with experimental values [32–36].
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The relevance of polarization and CT interactions to the stabilization of LR adducts
is widely enhanced when metal atoms are present in the active site or part of the lig-
and/protein structure. Many druggable enzymes contain metal ions in the catalytic site,
such as, for instance, Nitric oxide synthase (NOS), Cyclooxygenase (COX), beta-lactamase
and Human Carbonic Anhydrase (hCA), to cite some of them. The development of QM-
based scoring functions able to correctly estimate these interaction contributions to the
binding energy can significantly improve the efficiency of the in silico drug discovery of
new metalloenzyme inhibitors.

In this work, a set of congeneric benzenesulfonamide ligands bearing an extended
hydrophobic portion and their respective LR complexes with hCA II (Figure 1), retrieved
from protein data bank [37–39], were selected to develop new SFs based on the combination
of FMO and GRID methods.
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Figure 1. Rendition of the human CA II enzyme co-crystallized with a benzenesulfonamide derivative
(PDB ID: 6h2z) (left) and structural details of the binding site (right).

Several energy terms were combined by adopting two machine learning approaches:
the multilinear regression method, widely applied to build SFs, and the formula generator
(FG) [40]. To reduce the computational burden and to make our approach applicable to
typical in silico drug discovery studies, each LR complex was modeled by assuming the
ligand and the CA II residues within a range of 6 Å from all ligands.

The predicted LR binding free energies have been compared to experimental data [37–39]
by means of a correlation analysis, and the best SF obtained by using the above-mentioned
procedure has been compared with other ones developed with similar theoretical ap-
proaches, highlighting its strengths and discussing possible improvements.

2. Results and Discussion
2.1. FMO Binding Energies and Pair Interaction Energies

The FMO method is a powerful tool to investigate the structure and the stability
of LR complexes in which the pair interaction energy decomposition analysis (PIEDA)
provides for a QM description of the interactions between a ligand and all residues of the
receptor, supporting the quantitative structure–activity relationship analysis. The sum
of all PIEs between ligand and receptor proteins, EINT, has been widely used to estimate
LR binding affinities [30,34,41]. Although the FMO scheme is nowadays applied to the
study of biomolecular systems, this methodology is characterized by a high computational
burden; hence, the chemical nature, the size and the number of the molecular fragments
may hamper the application of this methodology. For instance, the use of a high level of
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theory could be required by the presence of transition metals or heavy elements so that
FMO2 calculations of these systems at the RI-MP2 level of theory may be computationally
expensive by even using small basis sets. For the same reason, the application of the more
accurate FMO3 approach is often unviable. A possible solution to the application of FMO to
LR complexes at a moderately reduced computing time is to focus on the FMO description
to a reduced model of the system, i.e., the core model, comprising only the ligand and a set
of neighbor residues defining the binding pocket. This strategy was already used with the
FMO2 approach to estimate the binding energies of human estrogen receptor α with some
ligands providing satisfying results [42].

In the present study, we applied the FMO2 method within the core model approach
to investigate the binding affinity of nine benzenesulfonamide ligands for the hCA II. By
starting from the corresponding X-Ray structures (see Materials and Methods), we included
all residues within 6 Å of the ligand to form the core model of each LR complex. For the
sake of consistency, the same set of protein residues, i.e., the union of all residues of each
reduced binding pocket computed for each LR complex (Table S1), was used to compose
the core model of each LR system, consisting of 36 fragments (34 residues, the Zn2+ ion and
the ligand) (Figure 2).
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In the reduced binding pocket, the EINT might be affected by the absence of the
polarization effect of the excluded residues and, most importantly, by the capping of single
residue termini with H atoms, which changes their chemical nature from amidic CO and
NH to aldehyde functions, COH and primary amine, -NH2, respectively (Figure 2). Thus,
to assess the reliability and the consistency of this approach, we computed the EINT and
the single PIEs by performing a preliminary set of calculations at the FMO2 RI-MP2/6-
31G//PCM [1] level of theory using the entire LR complexes. As shown in Table S2 and
Figure S1a, the EINT computed considering the reduced systems reproduces, in a fair way,
the EINT of the entire receptor with R2 = 0.90. The correlation is even better when comparing
the single PIE between ligands and each residue in both whole and reduced systems as
shown in Figure S1b–f (R2 ~ 0.999).

Thus, these results clearly indicate that PIEs computed for the reduced LR complexes
using an H atom to cap the residue termini reproduced with great accuracy the corre-
sponding values computed for the entire system. This approach can be therefore applied
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to evaluate the binding strength at the QM level of theory of a great number of binding
poses (multi-conformational approach) as the results of molecular docking and molecular
dynamics calculations.

The Zn2+–ligand interaction provides a relevant contribution to the binding en-
ergy (Table S3) and assumes a comparable value for each system between −215.4 and
−200.7 kcal/mol. Indeed, all ligands are characterized by the benzenesulfonamide scaffold,
which directly binds the Zn2+ ion with similar geometrical parameters. Thus, most of
the variance affecting the binding geometries and energies for the 1–9 LR complexes is
expectedly influenced by the remaining part of the ligand scaffold, represented by a mostly
hydrophobic aromatic tail. The involvement of this portion in hydrophobic interactions
was suggested by PIEDA results, which showed favorable Edisp terms in all the examined
LR complexes (Table S4).

The PIE charts computed for each ligand provide a clear picture of the key LR inter-
actions. In this case, considering the great structural similarity between ligands, the PIE
charts are characterized by very similar shapes, indicating that all binders interact with
the same residues with comparable magnitudes (Figures S2a–f and S3a–c). This behavior
can be appreciated in Figure 3, where the PIE graphs of all ligands are reported. The PIE
analysis per protein residue showed how, with the exception of Gln92 and Thr200, all other
negative PIEs involve hydrophobic residues (i.e., Phe131, Val135, Val143, Thr199, Pro202,
Trp209) corroborating the important role played by hydrophobic contacts to determine the
right placement of the ligand in the binding pocket and, therefore, determining its binding
affinity. Indeed, the EDA of these interactions indicates that the most favorable energy term
is Edisp in agreement with the hydrophobic nature of these contacts.
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His94, His96 and His119, which coordinate the Zn2+ ion in the catalytic site and place it
in close contact to the coordinated benzenesulfonamide moiety, are involved in unfavorable
interactions with ligands.

To deepen the different roles played by the benzenesulfonamide function and the hy-
drophobic aromatic tail, we performed further FMO calculations considering separately F1
and F2 fragments for each ligand. As shown in Figures S4 and S5, the benzenesulfonamide
moiety (F1) interacts specifically with His94, His96 and His119 (repulsive contacts) and
with Val143, Thr199, Thr200 and Trp209 by means of attractive interactions.

On the contrary, the most relevant interactions established by the F2 fragment are
attractive and involve basically hydrophobic residues, such as Trp5, Phe131, Val135 and
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Pro202, as well as polar His64 and Gln92. This evidence confirms the relevant role played
by hydrophobic contacts in LR interactions in this particular system.

The PIEs between ligand and receptor fragments were used to provide several esti-
mates of the receptor–ligand affinity, namely the ∆EFMO, F2LE, EINT and FE values (see
Materials and Methods) computed at the RI-MP2/6-311G//PCM [1] level of theory for
each reduced LR complex (Table 1). Although these energy terms have been shown to
reproduce the relative binding affinity of a set of structurally correlated ligands [30,34,41],
in this case, the correlation with experimental free binding energies was low with an R2 of
0.16, 0.26, 0.12 and 0.25 for ∆EFMO, F2LE, EINT and FE values, respectively.

Table 1. ∆EFMO, F2LE, EINT and FE values computed for LR complexes formed by ligands 1–9 and
hCA II. All energy values are in kcal/mol.

ligand ∆EFMO F2LE EINT FE

1 −37.6 −1.6 −173.2 −7.2
2 −53.7 −2.1 −186.2 −7.2
3 −37.4 −1.5 −175.5 −7.0
4 −42.7 −1.7 −173.6 −6.9
5 −61.1 −2.5 −181.1 −7.5
6 −36.7 −1.5 −163.2 −6.8
7 −67.6 −3.1 −180.1 −8.2
8 −70.5 −3.2 −179.3 −8.2
9 −38.6 −1.8 −163.8 −7.4

Thus, we hypothesized that the only FMO energy terms are not sufficient to describe
the binding free energy of benzenesulfonamide derivatives investigated in this work, and
further energy contributions should be considered, such as the hydrophobic interactions.

2.2. Scoring Functions

As stated above, the PIEDA clearly indicates that, beside the strong interaction between
F1 and Zn2+ ions in all examined LR complexes, the interactions of the hydrophobic F2
tail with hydrocarbonic side chains of Phe131, Val135, Pro202 and Leu198 are crucial to
determine the binding pose of the benzenesulfonamide derivative and probably provide
the highest contribute to the binding energy variance with the considered set of ligands.
The strong hydrophobic nature of the F2 interaction with the hCA II residues was suggested
by the relevant value assumed by Edisp in the corresponding PIEDA.

Thus, we envisioned that the binding energies or affinities calculated via the FMO
approach could be complemented by parallel estimates of the LR hydrophobic interac-
tions. The intrinsic hydrophobicity of the ligand and the estimate of the LR hydrophobic
interaction were obtained by means of the GRID method (see Materials and Methods).

In order to define the ligand hydrophobicity, we calculated the logP of ligand 1–9
(Table 2) and found that ligand 1, the most active compound according to ∆Gexp, is also
characterized by the highest value of logP. Moreover, the HIE values computed with the
GRID method also show the most favorable value for ligand 1 supporting the evidence
indicated by PIEDA analysis (Table 2).

It is worth noting that, although both logP and HIE can be associated with the hy-
drophobic features of a ligand, they describe different chemical quantities: logP has been
generally used as a measure of lipophilicity (the 1-octanol/water partition coefficient),
while HIE is a measure of the interaction energy between hydrophobic regions in the LR
complex, and consequently, it is strictly related not only to the ligand lipophilicity but also
to its binding pose. Therefore, the combination of FMO terms with logP and HIE values
might lead to a function able to correctly reproduce the experimental binding energies of
the investigated ligands.
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Table 2. Computed values for HIE, HIE-E (HIE/number of heavy atoms) and logP.

Ligand HIE * HIE-E * logP

1 −38.9 −1.6 0.92
2 −37.9 −1.5 −0.01
3 −28.1 −1.1 −0.36
4 −30.6 −1.2 0.41
5 −35.0 −1.5 −0.28
6 −24.3 −1.0 0.68
7 −32.0 −1.5 0.6
8 −30.2 −1.4 0.32
9 −34.3 −1.6 0.46

* values in kcal/mol.

In this view, the general form of the scoring function used in this work is the follow-
ing one:

∆G = f(FMO term, logP, HIE) (1)

The considered FMO terms are ∆EFMO2, EINT, F2LE and FE. LogP, HIEs and the
corresponding HIE-Efficiency (HIE-E) values, obtained by dividing the HIE by the number
of ligand heavy atoms, are used to describe the hydrophobic contacts. The complete data set
used to develop our scoring function, via the described Formula Generator (FG) approach,
is reported on Table S4.

The multilinear regression method is widely used to derive SFs and, although they
can be characterized by a lack of accuracy, they present the advantage of being easily
interpretable just by looking at the physical meaning of either positive or negative weights
assigned to favorable and unfavorable energy terms, respectively. We did not find an
appreciable correlation between the experimental binding free energies and the calculated
energy terms by using the multilinear regression method with our data set, suggesting that
eventually these variables might be instead non-linearly dependent.

However, Guareschi et al. recently found a high correlation between experimen-
tal binding energy and the linear combination of EINT with logP for several sets of LR
complexes [32].

Thus, we deepened the relation between EINT and logP/HIE computed for our data set.
We found that the best correlation with experimental values can be obtained by considering
only five ligands (1, 2, 3, 4 and 9) over nine of the complete data set with an R2 of 0.68,
computed combining EINT with logP or with HIE, as shown in Figure S6. These results
suggest that the linear combination of EINT and logP/HIE can be used to describe the
binding affinity only of a limited number of hCA II inhibitors investigated here. In this
frame, we opted for a different approach able to identify non-linear dependencies between
several quantities and obtain SFs for the prediction of the LR binding affinities within the
entire data set.

Indeed, by using the FG approach we found a great number of potential SFs and that
one with the highest R2, 0.76 and RMSE = 0.34, combines logP, HIE-E and F2LE (Figure 4a):

∆G = −7.4{[0.7(logP)3 − 0.5(eHIE-E)]/[0.5(F2LE)3 − 0.4(HIE-E)5]} − 13 (2)

In order to evaluate possible overfitting problems, we adopted the Leave-One Out
Cross Validation (LOOCV) approach; the final LOOCV RMSE is 0.31 kcal/mol, which is
absolutely comparable to the final model RMSE of 0.34 kcal/mol, indicating that the model
is not overfitting.

Looking at the Equation (2), we can easily observe that in the numerator, there are
only BPs related to the hydrophobicity and hydrophobic interactions (logP and HIE-E,
respectively) and in the denominator, the difference between F2LE, mainly related to polar
and electrostatic interactions, and HIE-E, the hydrophobic interaction energy efficiency.
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This automatically generated formula suggests that the predicted binding free energy is
highly related to hydrophobic interactions.
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As shown in Figure 4b, the term at the numerator [0.7(logP)3 − 0.5(eHIE-E)] assumes
very small numbers, close to zero, while denominators are larger values. Therefore, the
predicted ∆G becomes more favorable (more negative value) if the denominator decreases.
Indeed, it is the difference between 0.5(F2LE)3 and −0.4(HIE-E)5, which are negative and
positive values, respectively. These results can be interpreted from a chemical point view
as follows: the ligand with a high (more negative) 0.5(F2LE)3 term is likely to be a less hy-
drophobic molecule, since EINT is strictly related to electrostatic and polar interactions, with
a consequent lower (less positive) −0.4(HIE-E)5 term related to hydrophobic interactions.
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Thus, to improve the binding affinity of the benzenesulfonamide derivatives, there
should be a certain balance between electrostatic 0.5(F2LE)3 and hydrophobic interactions
−0.4(HIE-E)5 in order to minimize the denominator and maximize the binding affinity
(Figure 4c).

This analysis is possible since, unlike many other SFs based on machine learning
approaches (e.g., Artificial Neural Network or Random Forest), which are generally not
characterized by an easy interpretability, acting mainly as black box [43], the FG approach
clearly shows the mathematical relation between the energy terms used to predict the
binding free energy, making this machine learning method an interesting option to support
the SF development. Moreover, the FG approach, as all other machine learning methods,
can be used with any other molecular descriptor and therefore might be applied for the
development of new effective SFs to predict the binding free energy.

The prediction accuracy shown by our SF is comparable with that one obtained using
a different QM approach used to specifically study the zinc ion-mediated ligand binding,
such as hCA and 5-carboxypeptidase inhibitors achieving an R2 of 0.8 [44].

However, it is worth noting that the predicted ∆G value for ligand 2 shows the
largest displacement from the correlation line (Figure 4a). Interestingly, removing ligand
2, the correlation significantly improves with R2 and RMSE of 0.95 and 0.18, respectively
(Figure 5).
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A possible explanation of why ligand 2 shows the highest squared error can be
obtained by analyzing its chemical structure. Indeed, the F2 portion of ligand 2 connected
to the benzenesulfonamide is characterized by a more polar structure compared to other
ligands, which determines, in principle, a better interaction with water molecules. Thus,
we hypothesize that the ligand 2 binding pose in the experimental conditions assumed in
the measurement of the Ki could be influenced by surrounding water molecules and be
slightly different from that observed in the crystal structure.

As a final remark, it is important to underline as the FG procedure has two clear
advantages with respect to classical machine learning methods: (i) it provides a mathe-
matical formula, a simple relation between the selected features and label; (ii) it can be
applied also to a small dataset, being based on simple linear regression. Nevertheless, it
should be clarified that, although one can impose some constraints to the FG, the produced
mathematical relation is, by construction, obtained minimizing the prediction error, and so
its physical meaning should be always assessed. Indeed, the procedure is a computational
recipe to automatically build a mathematical formula via human readable construction that
relates the features to the label.

Thus, although the limited data set and high similarity between ligands investigated
in this work reduce the transferability of our SF to different hCA II binders, we think
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that this study represents an interesting example of the potentiality of the FG method
for the development of an empirical SF. Our future work will be devoted to test the its
performance, combined with the FMO/GRID approach, to predict the binding free energy
of LR complexes using an extended and more heterogeneous data set.

3. Materials and Methods
3.1. The FMO Approach

The ab initio FMO approach has been widely applied to study ligand–receptor
adducts [34,41] but also to characterize the interactions between biological macromolecules,
such as protein–protein [45,46] and DNA–protein [47] complexes and protein domain
interactions [48]. Recently, the FMO method has also been used to investigate the reactivity
and stability of small metal complexes [49,50].

A ligand–receptor system, where the receptor is a protein, can be split into N fragments
where N-1 of them contain one protein residue, while the N-th fragment contains the ligand.
The total FMO2 energy, using the polarization continuum method (PCM) [51] to simulate
the solvation effect, is computed as the sum of energies of fragments, E’, and fragment pair
interaction energies, PIE as follows:

E = ∑E’ + ∑PIEij (3)

where E’ is the sum of the internal energy (E”) and solvation energy of each fragment. PIE
is computed as the difference between the E” values of the ij pair and those of the fragments
i and j, including Esol, the solvation energy of the ij pair interaction and Tr(∆Dij*Vij) which
is the explicit embedded CT energy:

PIE = (Eij” − Ei” − Ej”) +Tr(∆Dij*Vij) + Eij
sol. (4)

PIE can be decomposed in several terms according to the pair interaction EDA
(PIEDA) [23,24] as

PIEij = Ees + Eex + Edisp + Ect + Esol (5)

where Ees, Eex, Ect+mix, Edisp and Esol are the electrostatic, exchange repulsion, charge
transfer, dispersion, and solvation contributions, respectively.

The sum of all the PIEs between the ligand (L) and all the protein residues (r), EINT,
represents an estimation of the ligand–receptor affinity

EINT = ∑PIELr (6)

The FMO binding energy, ∆EFMO, at variance of EINT, includes the destabilization po-
larization and desolvation energies associated with the binding process [26,27], providing,
in principle, a better description of the binding affinity. It can be computed as the difference
between the total FMO energy of LR complex and the sum of the total FMO energy of
receptor and ligand in the isolated states [26,27], as follows:

∆EFMO = ELR − (ER + EL) (7)

As known, the magnitude of PIEij is size-dependent, and therefore, a ligand (fragment)
with many atoms might have a high EINT. This issue can be mitigated dividing the
interaction energy by the number of heavy atoms (n), obtaining the fragment efficiency,
FE [52]

FE = EINT/n (8)

Based on analogy with the ligand efficiency (LE) [53], we introduced, in a previous
work, the FMO2 ligand efficiency, F2LE [27], computed as follows:

F2LE = ∆EFMO2/n (9)
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Notably, as already performed for the classic LE [54], FE and F2LE can be easily
combined with other properties, such as lipophilicity, combinations of physicochemical
properties, the functional group and entropy contributions to define an efficient SF.

3.2. The GRID Approach

In the GRID approach [28], the target structure (e.g., as a ligand or a protein) is
surrounded by a three-dimensional grid where a specific probe is moved at each point
of the grid (Figure 6). The hydrophobic probe, named DRY, allows for detection of the
hydrophobic regions and computing the hydrophobic interaction field (HIF). In detail, it is a
neutral probe described as a sort of inverse water molecule, able to establish Lennard–Jones
interactions in the same way of the water probe (OH2 probe) but without including the
electrostatic interaction term in the energy (Equation (10)) and considering the inverted
hydrogen-bond energy to reproduce the energetically unfavorable interaction between the
polar parts of the target and the hydrophobic probe. Thus, at each point of the 3D grid, the
interaction energy between the DRY probe and an atom of the target is computed as the
sum of van der Waals energy (EVDW), the inverted hydrogen-bonding energy and entropic
(∆S) terms [28]:

HIE = EVDW + EHB + ∆S (10)
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∆S is the constant entropic term of –0.848 kcal/mol, added to the total HIE. Indeed, in
bulk conditions, the water molecule is assumed to make three hydrogen bonds from the
possible four and there are four possible combinations of three hydrogen bonds (1, 2, 3; 1, 2,
4; 1, 3, 4; 2, 3, 4) [28]. The entropy change is computed as

∆S = RTln(4) = −0.848 kcal/mol (11)
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where R is the ideal gas constant and T the temperature. Therefore, in GRID, although
approximate, the favorable entropic contribution to the binding due to the displacement
of one water molecule from a hydrophobic surface (also known as hydration entropy) is
taken into account and assumed to be constant.

3.3. The Formula Generator (FG) Method—A Machine Learning Approach

Machine learning techniques are currently used in a wide range of scientific areas from
chemistry [55–57] to material science [40] and far beyond [58]. The range of possible models
one can adopt is wide, from the simplest linear regression models to the Deep Learning
approaches based on an Artificial Neural Network (ANN) [59]. Different techniques have
different advantages and disadvantages; the simplest ones generally guarantee an easy way
to interpret the results obtained, although they generally cannot be used with too complex
a dataset. For instance, the ANN models can be used in many contexts, and the final
results can be a black-box model that is difficult to be practically interpreted. Nevertheless,
in the last few years, there has been an enormous step forward in terms of the so-called
Interpretable Machine Learning [60]. Thus, nowadays, there are many methods that can be
used to obtain insight about the importance of the features in a model and in any case to
explore the internal working mechanism also of complex models. However, a mathematical
equation connecting two or more quantities has a clear advantage, as it allows for a simple
and immediate interpretation of the relation among the quantities involved.

The approach we are here proposing (the general workflow is reported in Figure 7)
is based on a combination of high-throughput computation and a simple LR model. The
basic idea that has been explored by some of us also in a different context [40] is to combine
some basic quantities (basic properties, BPs, from now on) to build more complex features
that can be used to build a linear regression model.
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Once a proper set of BPs has been selected, we choose some prototype functions
that are simple analytical operations applied to each BP. In our case, we selected seven
prototype functions, f(x), namely x, x2, x3, x4, x5, ex and

√
x, where x is a BP. We impose

some constraints, that is rising to even powers, as well as taking the square root, which is
applied only to always positively defined BPs. Then, we obtain a final set of basic features
(BFs) mixing together the prototype functions, via a combinatorial approach, following
two simple rules (i.e., generators):

(i) we sum, subtract or multiply two prototype functions both at the numerator and
denominator checking each time that three or four different BPs have been selected. The
final general shape of each BF is the following:

BFi = [f(BP1) * f(BP2)]/[f(BP3) * f(BP4)] (12)

where * is addition (+), subtraction (–) or multiplication (x).
(ii) We sum, subtract or multiply two prototype functions to build the numerator, and

we choose instead a single prototype function at the denominator. So, the general shape of
the final set of BFs is the following:

BFi = [f(BP1) * f(BP2)]/f(BP3) (13)

where, once again, * is +, – or x.
From a practical implementation point of view, each BF generator is a Python function

producing a set of strings. Therefore, we can easily exploit the Python capability to
parse a source code and run a Python expression (code) within a program to compute
all the BFs’ values starting from the generated sets of strings. This allows for an easy
implementation and plugin of other generators, as well as to easily adopt different sets
of basic properties, leaving the workflow unchanged. That is, a new BF generator can be
introduced implementing a Python function returning a list of strings, each one being a
valid BF.

Clearly, depending on the set of BPs chosen, we will obtain a different set of BFs. In
order to choose the optimal formulas, we build a linear regression model (i.e., we use
scikit-learn [61]) for each of the generated BFs using the entire dataset. To practically select
the best model, i.e., the “best formula”, we consider those ones with the highest R2. Once
the best formulas have been selected, there is an extra optimization step based on a simple
grid search.

Specifically, to further improve the performance of our models, we introduced a
“formula optimization” step. In detail, we focus on the top formulas obtained using each
one of the two generators, and we use a grid search to find the relative weights of each
prototype function of the basic properties (i.e., each f(BPi)) within the formula. The grid
search ranges between 0.0 and 1.0 with the increasing step of 0.1 used simultaneously for
all the weight coefficients (i.e., an exhaustive search through the specified subset of values
for the a, b, c, d coefficients is simultaneously performed). We multiply each f(BPi) of the
formula by the weight coefficient, and we optimize the final R2 value. It is important to
note here that for each set of weight coefficients generated during the grid search, we build
a new linear regression model. Thus, at each step of the grid search, we are updating the
weight coefficients, as well as the slope and intercept coming from the linear regression. The
final shape of the generated formulas corresponding to potential SFs will be, accordingly to
the generators used, the following:

SF1 = m × {[af(BP1) * bf(BP2)]/[cf(BP3)]} + q (14)

SF2 = m × {[af(BP1) * bf(BP2)]/[cf(BP3) * df(BP4)]} + q (15)

where m and q are the slope and intercept coming from the LR, respectively, and a, b, c and
d are the weights optimized via the described grid search step.

The FG code is available for free (see Data Availability Statement ).
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3.4. Computational Details

The geometry of LR complexes between hCA II and benzenesulfonamide ligands were
retrieved from the protein data bank with following PDB IDs: 6h2z, 6h34, 6h33, 3v7x, 4z1k,
4z1e, 4z0q, 4z1j and 3vbd [37–39]. For the sake of clarity, we refer hereafter to the ligands
and to the corresponding LR complexes as 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. The ligand
2D structures are reported in Figure 8.
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The free hCA II structure was obtained from the PDB ID: 1ca2 [62].
The LR complexes and the free hCA II structures were prepared for FMO calculations

by using the protein preparation tool [63] followed by geometry optimization using the
Powell–Reeves conjugate gradient (PRCG) as implemented in Macromodel [64]. During
the optimization, the Zn2+ ion, nitrogen atoms of the coordinating His (His94, His96 and
His119) and the nitrogen and sulfur atoms of the sulfonamide function were frozen in
their X-ray coordinates. For the free hCA II (PDB ID: 1CA2), the crystallization water
coordinating the Zn2+ ion was maintained during the optimization step, which was then
not included in the FMO calculations. This approach was necessary since without any
constraint, the sulfonamide group coordinates the Zn2+ ion also via oxygen atoms as result
of a geometry optimization calculation, drastically altering the binding pose of the ligand
with respect to the X-ray structure.

The ligand structure was refined by using the ligand preparation tool [65] and then
optimized using the same parameters adopted for LR complexes. For both protein and
ligand preparation procedures, the OPLS 2005 FF and the GB/SA effective solvation model
(water) were adopted.

Then, for each LR complex, we detected the residues within a range of 6 Å from the
ligand, and the final binding pocket was made via the union of residues of all 6 Å binding
pockets. The amino acid termini resulting after backbone cutting, -NH and -C=O, were
capped by adding H atoms. The reduced LR complexes were built using Python scripts
based on ProDy [66–68] and Open Babel [69].

Then, the optimized structures of the isolated ligands and of the reduced structures of
LR complexes and hCA II were used as input geometry for FMO2 single-point calculations
at the RI-MP2/6-311G level of theory.
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The protein structures were split in fragments, each one containing a single amino acid.
The covalent bond connecting the Cα and NH group was selected as the fragmentation
point, using the hybrid orbital projection (HOP) treatment for bond detachment [23].

The water solvation effect was simulated by using the PCM [1] method [51], in-
cluding the repulsion and dispersion terms (relating keywords: idisp = 1, ntsall = 240,
method = FIXPVA, icomp = 2, radii = suahf, icomp = 2, icav = 1). To simulate the solvent
screening effect, we used the partial screening method [70].

As reported in recent works [27,71], to avoid the overestimation of the embedded
charge transfer energy determined based on the presence of a metal atom, we adopted the
ESP-PTC approximation using the screened point charges for all atoms (ESP-SPTC). The
atomic charges were screened by adopting the gaussian dumping function (a = b = 1) [72].

The Zn atom was treated by adopting the triple-zeta model core potential (MCP-
TZP) [73] and considered as a single fragment.

The validity of choice to adopt the reduced structures for FMO calculations was
assessed by performing the comparison between the EINT and PIEDA computed at FMO2
calculations considering the entire and the reduced receptor structures of 1, 2, 3, 4 and
9 LR complexes using the 6–31 G basis set and same setup above-mentioned for the
remaining part.

Ligands 1–9 are all characterized by the anionic benzenesulfonamide group coordinat-
ing the Zn2+ ion linked to hydrophobic tail bearing aromatic rings, hereafter named F1 and
F2, respectively. To assess the role played by these two moieties, we performed additional
FMO calculations considering separately the F1 and F2 portions. To do so, each ligand was
split into two fragments, and the fragmentation point was the bond connecting the benzoyl
C atom with the N/C of the hydrophobic tail. F1 and F2 termini were capped by using -H
and -CH3, respectively, as shown in Figure S7.

All FMO calculations were performed by using the GAMESS-US package (version:
30 June 2021—R1) [74].

EINT, ∆E, FE2 and F2LE values, computed as described above, are different represen-
tations of the same quantity, and therefore, only one of them can be included in one SF.

The ligand HIE was computed by adopting the GRID method, and the ligand hy-
drophobicity was described using the logP (octanol/water) calculated by using Moka [75].

The experimental free binding energies (∆Gexp) of the investigated LR complexes
(Table S6) were computed starting from Ki [37–39] according to the following formula:

∆Gexp = −RTln(1/Ki) = RTlnKi (16)

4. Conclusions

The interactions concurring in the stabilization of metalloprotein–ligand complexes are
strongly characterized by polarization and CT phenomena that can be evaluated accurately
by using QM methods. As a case study, we selected a set of nine small molecules, character-
ized by a benzenesulfonamide group linked to an aromatic hydrophobic tail, able to inhibit
the hCA II enzyme, which contains a Zn2+ in the active site. These specific complexes can
be profitably studied by means of our FMO/GRID procedure combining the ab initio FMO
method, to evaluate the electrostatic and CT interactions, and the GRID approach, to assess
the hydrophobic interactions. To reduce the computation burden of FMO calculations,
we used reduced models of the LR complexes’ binding core, composed of the ligand and
35 surrounding fragments. We found that the EINT values computed on these reduced LR
complexes were highly consistent with the corresponding values computed on the entire
receptors (R2 = 0.90). These results suggest that the use of reduced LR complexes might be
considered a routine approach in FMO-based CADD studies allowing for the assessment
of many binding poses at a reduced computational demand.

The FMO energy terms, such as ∆EFMO2, EINT, F2LE and FE, were combined with
hydrophobic interaction energies (HIE and HIE-E) and logP within a machine learning
approach, to obtain a final SF formula. While the multilinear regression method was not
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able to find a satisfying SF to reproduce the experimental binding energies, we evidenced
how an FG approach succeeded in finding specific nonlinear relations among HIE-E, logP
and F2LE and reproducing the experimental binding free energy with a high accuracy
(R2 = 0.76, RMSE = 0.34) that was even improved by considering eight over nine ligands
(R2 = 0.95, RMSE = 0.18).

The mathematical form of the SF obtained by using the FG approach reflected a specific
balance between electrostatic and hydrophobic interactions, with the latter playing a key
role in determining the binding free energy. These results can be used to support the design
of new and potent hCA II inhibitors.

As a final remark, this work shows that the FG approach can be considered a promising
machine learning method to develop effective empirical SFs since it permits finding the
relative contribution to the final binding free energy of each energy term, eventually
non-linearly correlated, supporting the CADD studies, even with a reduced data set.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29153600/s1, Figure S1: scatter plots of FMO energy terms
computed considering the reduced and the entire receptor for ligands 1, 2, 3, 4 and 9; Figure S2: PIE
graphs of interactions between ligands 1–6 and residues of the reduced hCA II structure; Figure S3:
PIE graphs of interactions between ligands 7–9 and residues of the reduced hCA II structure; Figure S4:
PIE graphs of the interactions of F1 and F2 fragments (ligands 1–6) with the residues in the reduced
hCA II structure; Figure S5: PIE graphs of interactions between F1 and F2 fragments of ligands 7–9
and residues of the reduced hCA II structure; Figure S6: scoring functions obtained using the MLR
approach combining EINT with logP and with HIE; Figure S7: ligand fragmentation scheme adopted
for the second run of FMO calculations; Table S1: list of the FMO fragments composed of the reduced
LR complex; Table S2: EINT values computed at the RI-MP2/6-31G//PCM [1] level of theory for
ligands 1, 2, 3, 4 and 9 using the entire and reduced LR complex; Table S3: EDA of the ligand–Zn2+

interaction energy computed using the reduced LR model; Table S4: EDA of the ligand–residue
interaction energy computed using the reduced LR complex; Table S5: experimental binding free
energy values and all the basic property values used to build the SF; Table S6: binding free energy
values derived from experimental Ki, the number of ligand heavy atoms for each hCA II inhibitor
investigated in this work and the PDB IDs of the corresponding LR complexes.
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