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Abstract

In this work, constrained univariate mixtures of generalized normal distributions
(CMGND) are introduced. Specifically, mixture parameters are constrained to be equal
across mixture components. The expectation conditional maximization (ECM) algorithm is
used to estimate the constrained parameters via the maximum likelihood estimation (MLE).
In addition, the iterative Newton-Raphson method is applied to handle the non-linear iter-
ation equations of the parameters during the estimation stage. Next, a simulation is per-
formed to assess the parameter estimation performance for a two-component CMGND with
the same scale and shape parameters, i.e. with the same variance and kurtosis. Simulation
results show that the estimation accuracy of the constrained mixture is higher than the un-
constrained mixture.

Keywords: Constrained mixtures of generalized normal distributions, ECM algorithm, Maximum
likelihood estimation, Newton-Raphson method

1. Introduction

Over time, non-normal mixture distributions have gained increasing attention to analyse datasets
characterized by non-normal features like skewness and heavy tails (10).

Among the statistical distributions available in the literature, the generalized normal distribution
(GND) is able to model a large variety of statistical behaviours thanks to the additional shape parameter
which controls the tail weights (14). Then, finite mixtures of generalized normal distributions (MGND)
have the flexibility to fit non-normal data (16).

MGND have been successfully applied in signal processing, computer vision, pattern recognition
and other recent statistical tasks that require mixture estimation (13).

Bazi et al. (2006) applied univariate MGND for image processing (5). The estimation of the param-
eters was performed via the maximum likelihood estimation (MLE), and the expectation maximization
(EM) algorithm. Allili (2012) used the univariate MGND for wavelet representation (1). Parameters
have been estimated with a Bayesian method which optimizes a minimum message length objective, and
the EM algorithm. Nguyen et al. (2014) proposed a univariate bounded generalized Gaussian mixture
model defining a bounded support region for each component (16). Recently, Wen et al. (2022) stud-
ied a univariate two-component MGND and proposed an expectation conditional maximization (ECM)
algorithm for parameter estimation (18).
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Mixture distributions with unconstrained parameters may have some problem in the estimation
phase. Firstly, in normal mixtures it is well known that when parameters are not restricted the resulting
likelihood from a sample is unbounded, “no maximum likelihood estimator exists in the unconstrained
problem” (7). Thus, it is possible to observe this problem also in MGND, since the GND is a “natural
generalization of the normal distribution” (14). Secondly, the number of parameters increases with the
number of the mixture components and the estimation could result computationally problematic.

As a consequence, different methods have been proposed to overcome these critical issues'. These
methods can be divided into two main approaches: linear constraints methods, and eigenvalue decom-
position methods. The former impose linear restrictions on the mixture parameters. By contrast, the
latter exploit the eigenvalue decomposition of the component covariance matrices to impose constraints.
Mainly these methods have been applied to constrain mixtures of normals (4; 6; 8; 9; 15; 17) and Student-
t(2; 3).

To the best of our knowledge none of the existing studies propose a constrained estimation of the
univariate MGND. We aim to fill this gap by proposing constrained univariate mixtures of generalized
normal distributions (CMGND) where the parameters are constrained to be equal across mixture com-
ponents. The ECM algorithm is used to estimate constrained parameters via the MLE together with the
Newton-Raphson method. Next, a simulation is performed to assess the parameter estimation perfor-
mance for a two-component CMGND with the same scale and shape parameters.

The rest of the paper is organized as follows. Section 2. illustrates the methodology. Section 3.

illustrates the simulation. Finally, Section 4.provides some conclusions.

2. Methodology

A univariate finite MGND is given by the marginal distribution of the random variable X

K

F@l0) = mipr (@l or, i), (D)

k=1
where:

- 0= {m, i, ok, k=1, K;

K is the number of mixture components;

- 7 is the k-th mixture weight which satisfies Zle 7w = 1 and 7, > 0;

pr (x|, ok, Vi) is the k-th probability density function of the generalized normal distribution
(GND), which is defined as follows

Prl() = 5 expq - [T HE
: 20,1'(1 / i) O,

where i, is the k-th location parameter (ug € R), oy is the k-th scale parameter (o > 0), and v,
is the k-th shape parameter (v, > 0).

Vg
} with T(1 / vp) = [§° tV/ve—lexp=tdt,  (2)

It is possible to capture a wide range of statistical distributions by varying the shape parameter v, who
determines the tail weights (See Figure 1). The normal distribution is yielded with v, = 2, whereas the
Laplace distribution is yielded with v, = 1. It is noticed that 1 < v < 2 yields an “intermediate distri-
bution” between the normal and the Laplace distribution. As limit cases, for v, — 400 the distribution
tends to a uniform distribution, while for v, — 0 it will be impulsive (5; 13; 18).

'(11) and (7) give a more detailed account of what has been done so far.
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Figure 1: k-th probability density function for i, = 0, 0, = 1 and different shape values.

Constraints are imposed on pug, o and vy to be equal across the mixture components: pux = [,
or = o, v, = v, for k = 1,..., K. Thus, taking all possible combinations of these constraints into
consideration would result in a 8-model family>. For identifiability purposes, we need to impose that the
mixture weights must be different to each other.

Following (18), the ECM algorithm (12) is applied to perform parameter estimation of the CMGND.

From Eq. 1 the log-likelihood function is given by

Vi
} } 3)

N K
Vg
log L(6) = 1 o _
8 L0) = 2 Og{ 2 "Gt ) {

The E-step involves computing the conditional expected value by using the following equation

In — [k
Ok

K N Vi
g.0m—1)y — (m=1)4 Yk _|Tn T HE 4
Q( ) ) ; [nl an Og TerO’kF(l / Vk) exp ok I ( )
where
(m—1) _ TFkP(UCan,Uk,Vk)
nk

S kD (Tl Ok k)

The CM-Step maximizes (0, 9(""_1)) with respect to # to obtain the m-th parameter estimates and
increases the expectation of the complete likelihood of the data. The derivatives of the log-likelihood
function are set to zero with respect to 7z and each constrained parameter, i.e. i, o, and v:

aQ(0,00m1)
o

(m—1) (m—1) (m—1)
o GQO0UTY) 0.0 0.0 o
ou do ov

It is possible to demonstrate that a non-linear equation is obtained from Eq. (5) for each constrained
parameter. In order to compute the constrained parameters values at the ECM iteration m-th from the

’The iteration equations of the unconstrained parameters are provided by (18).
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non-linear equations, the iterative Newton-Raphson method is applied (9; 5; 18) as follows

oy L)y ey _PETY) Gy ey 9

(m) _ LA i S — CASOENNNYS
pm = F(pm D)’ W (oD’ =V g (VD)
(6)
where
(m—1) (m—1) (m—1)
f(,LL(m_l)) _ 8Q(9>9 ) h(o_(m—l)) _ aQ(970 ) g(y(m_l)) _ 6@(9,9 ) (7)

o ’ Do ' ov

3. Simulation

Using the R software, the simulation is performed for the CMGND with common scale and shape
parameter, i.e. with the same variance and kurtosis. The common shape parameter is set to 1.5 in
order to test the fitting of the “intermediate distribution” (See Section 2). Samples are generated with
the R’s function rgnorm. Besides, the sampling procedure is repeated £ = 50 times and sample sizes
N = 500, 2000, 5000. To assess the estimation performance Bias, MSE and Std are computed as follows:

a1
Bms(@) = E;GT — 0|,
MSE(é) - %i(ér ~9), ®)

1 & 1 &)
sufd) =\ 32 (0 320

s=1 r=1

where 6 is the true parameter value and 6, is the estimate of § for the r-th simulated data. To avoid
the label switching issue, mixtures components are sorted according to the location parameter (i) since
K =2and p1 # po.

Tables 1 and 2 show the simulation results. The bias, MSE, and Std of the CMGND are lower than
those of the MGND. It can be seen that the estimation accuracy of the CMGND is high from that of the
MGND. For N = 5000, the bias and MSE are quite similar for both mixtures models. To conclude, Table
3 shows the CPU time in seconds for sample sizes of 500, 2000, and 5000 of the MGND and CMGND.
It is found that as the sample size increases the CMGND consumes les CPU time than the MGND.

4. Conclusions

In this work, a new constrained univariate mixture model has been introduced. Specifically, this
study adds to the literature the CMGND where the parameters are constrained to be equal across mixture
components. The ECM algorithm is used to estimate constrained parameters via the MLE. Besides, the
iterative Newton-Raphson method is applied to handle the non-linear iteration equations of the param-
eters during the estimation stage. In brief, simulation results show that the estimation accuracy of the
constrained mixture is higher than the unconstrained mixture. The proposed model can be improved in
two directions: introducing the multivariate version, and applying a global optimization of the parameters
since the solutions strongly depend on the initial starting point.
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Table 1: Simulation results for the MGND.
™ 1 o o1 02 4t V2

0 0.7 0 5 2 2 1.5 1.5 N
Est. 0.6219 0.1026 4.3516 1.9295 2.8049 1.8487 2.4341 500
Bias 0.0781 0.1026 0.6484 0.0705 0.8049 0.3487 0.9341

MSE 0.0301 0.1387 1.9467 0.2672 2.7476 1.7744 3.6243

Std 0.1565 0.3617 1.2480 0.5173 1.4637 1.2986 1.6757

Est. 0.6998 -0.0065 49755 2.0022 2.0458 1.5043 1.5572 2000
Bias 2e-04 0.0065 0.0245 0.0022 0.0458 0.0043 0.0572

MSE 3e-04 0.0041 0.0170 0.0085 0.0329 0.0081 0.0327

Std 0.0169 0.0643 0.1293 0.0930 0.1774 0.0905 0.1734

Est. 0.7005 -0.0041 5.0002 2.0051 2.0070 1.5052 1.5151 5000
Bias 5e-04 0.0041 0.0002 0.0051 0.0070 0.0052 0.0151

MSE 1e-04 0.0020 0.0040 0.0058 0.0129 0.0040 0.0132

Std 0.0115 0.0448 0.0640 0.0768 0.1144 0.0635 0.1152

Table 2: Simulation results for the CMGND with the same scale

and shape parameter.

m H1 H2 2 14

0 0.7 0 5} 2 1.5 N
Est.  0.6989 0.0299 5.0201 1973 1.4898 500
Bias 0.0011 0.0299 0.0201 0.0270 0.0102

MSE 8e-04 0.0106 0.0258 0.0344 0.0305

Std  0.0291 0.0996 0.1611 0.1852 0.1762

Est.  0.7007 -0.0034 49836 2.0153 1.5136 2000
Bias  7e-04 0.0034 0.0164 0.0153 0.0136

MSE 2e-04 0.0022 0.0102 0.0058 0.0071

Std 0.0137 0.0471 0.1008 0.0757 0.0843

Est.  0.7004 -0.0045 4.9987 2.0051 1.5048 5000
Bias  4e-04 0.0045 0.0013 0.0051 0.0048

MSE 1e-04 0.0014 0.0027 0.0031 0.0030

Std 0.0088 0.0370 0.0528 0.0563 0.0553

Table 3: CPU time in seconds for sample
sizes of 500, 2000, and 5000.

500

2000

5000

MGND
CMGND 4.1522

4.5646

14.2914 39.8010
11.5124 29.9576
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