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Abstract: The COVID-19 pandemic is having a strong influence in all areas of society, like wealth,
economy, travel, lifestyle habits, and, amongst many others, financial and energy markets. The
influence in standard energies, like crude oil, and renewable energies markets has been twofold:
from one side, the predictability of volatility has strongly decreased; secondly, the linkages of the
price time series have been modified. In this paper, by using DCC-GARCH and Price Leadership
Share methodology, we can investigate the changes in the influences between standard energies and
renewable energies markets by analyzing one-minute time series of West Texas Intermediate crude
oil futures contract (WTI), the Brent crude oil futures contract (BRENT), the STOXX Europe 600 oil &
gas index (SXEV), and the European renewable energy index (ERIX). Our results confirm volatility
spillover between the time series. However, when assessing the accuracy of the predictability
of the DCC-GARCH model, the results show that the model fails its prediction in the period of
higher instability. Besides, we found that price leadership has been strongly influenced by the virus
spreading stages. These results have been obtained by dividing the period between September 2019
and January 2021 into 6 subperiods according to the pandemic stages.

Keywords: COVID-19; crude oil; European renewable energy; DCC-GARCH; price leadership share

1. Introduction

The COVID-19 pandemic has had, and still has, a strong influence in all areas of
society, like wealth, economy, travel, lifestyle habits, and, amongst many others, financial
markets. Many authors have already studied the consequences of the COVID-19 pandemic
on financial systems. For instance, in Reference [1], the author notes several possible
long-term adjustments to financial systems caused by COVID-19. In our paper, we focus
the attention on the oil market, which experienced, for the first time, a negative spike in
the price of the West Texas Intermediate (WTI) crude oil futures contract in April 2020 due
to declining global demand. As reported in Reference [2], the crude oil market experienced
strong price fluctuations in the period between March and April 2020 due to the price war
between Russia and Saudi Arabia. The authors assessed the predictive power of historical
uncertainty related to infectious diseases, not only COVID-19, for oil return volatility.
Other authors tried to assess the influence of the extreme conditions we are experiencing on
co-movements and spillovers of oil and renewable firms [3]. They focused their attention
on the period of April 2020, where WTI oil future prices became negative.

In this paper, we study the influence of the COVID-19 outbreak on two crude oil
futures contracts, the West Texas Intermediate (WTI) and the Brent crude oil (BRENT),
and two market indexes, namely the STOXX Europe 600 oil & gas index (SXEV) and
the European renewable energy index (ERIX). We employ a multivariate GARCH model,
the DCC-GARCH model, to study the volatility spillover between the four mentioned
stocks. Historically, ARCH models, introduced by Reference [4], have been a popular
choice to model financial univariate time series with time-varying volatility. These models
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are Markovian stochastic processes with zero mean and non-constant time-dependent
variances. Such models have global stationarity and local non-stationary behavior [5–9].
A generalization of ARCH models are GARCH models introduced by Reference [10].
GARCH models are simple models which have the advantage of easy estimation of the
parameters. Even in their simplest forms, this family of models has proven surprisingly
successful in predicting conditional variances [6,11–14]. The predictability of the time
series of financial returns using GARCH models have been explored in Reference [15].
To allow volatility linkages between the time series and to generalize to multivariate models,
Engle [16] introduced the DCC-GARCH model. This model has been extensively applied
to financial markets, in particular to the oil market. For example, some authors analyze
the volatility interactions between the oil market and the foreign exchange market [17,18]
while others study the linkages between the oil market and the stock indices [19]. Moreover,
the DCC-GARCH model has been used to study the volatility spillover between fuel oil and
stock index futures markets in China by considering its time-variant feature [20] and to test
the existence of financial contagion during the U.S. subprime crisis [21]. While extensions
and variations of the multivariate GARCH models have been extensively studied in the
past years, see, for example, Reference [22], the DCC-GARCH model remains an easy
model to implement, and it is widely used also by practitioners.

The epidemic spread of COVID-19 in 2020 has given rise to a worldwide financial crisis
during which the oil price has reached negative values for the first time. The DCC-GARCH
model has already proven to be a useful tool to model volatility in financial crises [21].
Therefore, we apply it to the four mentioned indexes, WTI, BRENT, SXEV, and ERIX,
to analyze the effect of the COVID-19 on their volatility prediction. To this extent, we
study the period from September 2019 until January 2021 and divide it into six subperiods
according to different stages of the virus spreading.

Moreover, we investigate the potential variability of the price leadership as a conse-
quence of the COVID-19 spread. To this end, we applied a multivariate Markov model by
implementing the Mixture Transition Distribution model (MTD) to analyze the time series
of returns. The multivariate Markov model, introduced by Reference [23] for categorical
data, has been recently implemented in the analysis of financial time series. D’Amico and
De Blasis [24] proposed a multivariate stochastic dividend discount model based on the
MTD model, while De Blasis [25] applied the same model to the analysis of price discovery
in financial markets. MTD model by Reference [26] is mainly used to reduce the number of
parameters to obtain a more parsimonious model. We used MTD to investigate the price
leadership amongst the four indices in the six periods related to virus spreading.

Then, the contribution of the paper is twofold: from one side, we investigate the
performance of DCC-GARCH in predicting the volatility during financial crises and, for the
first time, during a period of negative oil prices; the second contribution is given by the
use of price leadership share to assess the effect of the pandemic spread to the linkages
between the series in terms of prices.

The paper is organized as follows: in Section 2, we give descriptive statistics of
the database used in this work and a description of the DCC-GARCH model and Price
Leadership methodology. In Section 3, we show the results obtained by the application of
the two models, followed by some discussion in Section 4. Finally, we give conclusions
and some outlooks.

2. Data And Methodology
2.1. Data

The data for the analysis are collected from the Thomson Reuters Refinitiv Datascope
database. The sample includes two different price series for crude oil, i.e., the West Texas
Intermediate crude oil futures contract (WTI) and the Brent crude oil futures contract
(BRENT), and two market indexes, namely the STOXX Europe 600 oil & gas index (SXEV)
and the European renewable energy index (ERIX). The WTI futures contract is traded on
the New York Mercanticle Exchange (NYMEX), and it is often considered a benchmark in
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oil pricing along with the Brent crude oil, which refers to the oil extracted from the North
Sea of Northwest Europe and whose futures contracts are traded on the Intercontinental
Exchange (ICE). Both futures contracts are traded in U.S. dollars, and their full price series
are created through the Thomson Reuters rolling feature, which uses, for each month,
the active contract that is closer to maturity.

On the stock market side, we selected two indexes that are related to the energy
market and which can affect and be affected by the oil market. The STOXX Europe 600
oil & gas index (SXEV) is a market capitalization weighted index comprising the top 20
European companies operating in the oil & gas sector, e.g., Total, Royal Dutch Shell, BP and
others. It includes also a few companies operating in the renewable energy sector. However,
their weight within the index is only around 10%. Thus, we can consider the SXEV index
as strictly related to the oil market. On the contrary, the European renewable energy
index (ERIX) tracks the performance of European companies operating in the following
areas: biofuels, geothermal, marine, solar, water, and wind. Similarly to the SXEV index,
the weighting scheme of the ERIX index is based on the companies’ market capitalization.
Both indexes series are total return indexes and retrieved in U.S. dollars to make their
prices comparable to the crude oil ones.

The sample period is from 1 September 2019 to 31 December 2020 to include a reference
period before the COVID-19 pandemic spread. The sample includes transactions data
sampled at 1-min frequency between 8:00 a.m. and 4:50 p.m. London time. The day time
range is chosen according to the availability of the index data which coincides with the
opening hours of the main European stock markets, during which all four time series are
open for trading. It is worth to mention that the WTI futures contract operates on a 23 h
basis. Therefore, the selection of the sample is not affected by the U.S. market closures.
Weekends, holidays, and half trading days in any of the considered markets are excluded
from the sample.

To visualize and understand the effect of the the COVID-19 pandemic, we divide the
full period of analysis into subperiods following the main reported pandemic events made
available by The Guardian [27] and the American Journal of Managed Care website [28].
Therefore, we define six subperiods, with the first one just before the COVID-19 pandemic,
up to 31 December 2019, and the others distributed over the year 2020. We identify an
initial Chinese spread at the beginning of the year up to the WHO’s declaration of the
world pandemic, followed by a worldwide spread lasting up to the beginning of the
summer. Then, a summer reopening period which faced a more relaxed atmosphere almost
everywhere in Europe. Starting with the autumn, we can identify a second spread of the
virus and, finally, the vaccine period with the announcement of the Pfizer results.

Figure 1 shows the four price series for the selected period split by subperiods. It is
evident that prices started dropping as soon as the news of the new Chinese virus started
spreading all over the world, with the exception of the ERIX index. Moreover, with the
worldwide explosion of the COVID-19 pandemic around March and April 2020, after the
WHO’s declaration of the world pandemic on 11 March 2020. All prices faced a relevant
drop. In particular, the WTI prices became negative on 21 April 2020. Besides, both oil
prices, as well as the oil & gas index (SXEV), were not able to fully recover the previous
price levels. They faced a quite stable summer reopening, followed by other smaller
plunges during the second pandemic wave in autumn 2020. Nonetheless, it is important to
notice that the renewable index (ERIX) kept its upward trend, with some instability around
the announcement of the pandemic and during the second spread, while the entire oil
market struggled.
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Figure 1. Price series in U.S. dollars of the four contracts from 1 September 2019 to 31 December 2020.
Transactions are sampled at 1-min frequency from 8:00 a.m. to 4:50 p.m. London time.

For a better understanding of the oil and renewable energy markets during the COVID-
19 pandemic, in Table 1, we report the summary statistics of the 1-min percentage returns
for the full period and for the six subperiods. The statistics clearly evidence that the
average returns of the oil and the SXEV contracts became negative starting with the
Chinese spread and that, during the worldwide spread, there were excessive extreme
returns with high variability for the two crude oil contracts, followed by the two indexes.
However, the average figures turned positive starting with the summer reopening.

Table 1 shows also a high variability in the return series across the periods suggesting
a possible volatility clustering. In fact, analyzing the daily volatility, computed as standard
deviation of the 1-min returns, reported in Figure 2, and its average by period shown in
Table 2, it is clear that between the Chinese and the worldwide spread the oil market faced
a huge increase in volatility, that is less noticeable in the ERIX series. To enhance readability
and comparability, the y-axis maximum values of the charts in Figure 2 have been limited
to the same fixed value. Therefore, some outliers of the WTI series fall outside of the visible
area. In this setting, we notice a smaller variability in the ERIX index which seems less
affected by the COVID-19 events. On the contrary, the two oil contracts appear to be highly
unstable around the pandemic spread.
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Table 1. Summary statistics of the 1-min percentage returns for the four contracts from 1 September
2019 to 31 December 2020, time range from 8:00 a.m. to 4:50 p.m. London time. The four contracts
are the West Texas Intermediate crude oil futures contract (WTI), the Brent crude oil futures contract
(BRENT), the STOXX Europe 600 oil & gas index (SXEV), and the European renewable energy
index (ERIX).

WTI BRENT SXEV ERIX
Period

Full dataset
Obs: 172250

mean −0.0001 −0.0001 −0.0001 0.0002
std 0.5167 0.0964 0.0752 0.0604
min −102.0825 −7.5968 −4.4378 −3.7572
max 83.2909 9.2275 2.4850 2.7950
skew −42.5313 2.8789 −2.0482 −1.2964
kurt 18,424.3171 779.9667 179.6896 170.1605

Before COVID-19
Obs: 41870
01/09/2019–31/12/2019

mean 0.0001 0.0002 0.0001 0.0000
std 0.0545 0.0533 0.0335 0.0385
min −1.3276 −1.3291 −0.3874 −1.8567
max 0.9375 0.8087 0.4583 1.5288
skew −0.7698 −0.9137 −0.0603 −1.5519
kurt 32.8249 30.1682 11.4476 282.9432

Chinese spread

Obs: 24910
01/01/2020–10/03/2020

mean −0.0007 −0.0007 −0.0016 0.0002
std 0.0845 0.0804 0.0725 0.0555
min −1.0919 −1.4157 −4.4378 −2.3398
max 1.8138 1.6868 1.5918 1.4196
skew 0.5385 −0.0268 −20.5752 −3.3521
kurt 29.3838 31.0702 1204.6331 199.2002

Worldwide spread

Obs: 38690
11/03/2020–25/06/2020

mean −0.0007 −0.0007 0.0000 −0.0005
std 1.0833 0.1673 0.1187 0.0876
min −102.0825 −7.5968 −1.5095 −1.5770
max 83.2909 9.2275 2.4850 1.5260
skew −20.5485 2.5072 0.6524 −0.0496
kurt 4244.3328 379.5144 18.5669 21.1941

Summer reopening

Obs: 31800
26/06/2020–21/09/2020

mean 0.0001 0.0000 −0.0004 0.0005
std 0.0622 0.0563 0.0584 0.0481
min −0.8001 −0.6795 −0.5547 −0.6053
max 1.0206 0.4540 0.4982 0.5568
skew 0.0066 −0.0971 −0.0057 −0.0422
kurt 8.1460 4.6936 4.5363 9.3955

Second spread

Obs: 17490
22/09/2020–08/11/2020

mean 0.0003 0.0002 0.0001 0.0010
std 0.0726 0.0676 0.0645 0.0611
min −0.8661 −0.7144 −0.8050 −3.7572
max 0.6104 0.4884 0.9364 1.1464
skew −0.1302 −0.0582 0.2196 −12.7377
kurt 6.9856 4.3737 7.9225 830.9181

Vaccines
Obs: 17490
09/11/2020–31/12/2020

mean 0.0009 0.0009 0.0016 0.0006
std 0.0637 0.0573 0.0634 0.0555
min −2.7700 −1.0395 −0.5734 −0.6306
max 0.7251 0.6735 0.9992 2.7950
skew −4.6746 −0.3737 0.4145 7.1639
kurt 213.7327 15.1881 11.2031 374.2154
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Figure 2. Daily volatility series of the four contracts from 1 September 2019 to 31 December 2020,
computed as standard deviation of 1-min returns from 8:00 a.m. to 4:50 p.m. London time.

Table 2. Average daily volatility by period.

WTI BRENT SXEV ERIX

Before COVID-19 0.053 0.051 0.033 0.036
Chinese spread 0.072 0.069 0.051 0.047
Worldwide spread 0.286 0.140 0.110 0.081
Summer reopening 0.061 0.055 0.058 0.047
Second spread 0.071 0.066 0.063 0.056
Vaccines 0.060 0.055 0.060 0.051

Moreover, Table 3 reports a high volatility correlation between the Brent crude oil and
the two indexes and between the SXEV and the ERIX index.

Table 3. Correlation daily volatility computed as standard deviation of 1-min returns.

WTI BRENT SXEV ERIX

WTI 1.000000 0.495386 0.161341 0.089098
BRENT 0.495386 1.000000 0.665709 0.515934
SXEV 0.161341 0.665709 1.000000 0.876430
ERIX 0.089098 0.515934 0.876430 1.000000

The evidence of volatility clustering, along with the high correlations, suggests that
the application of the multivariate DCC-GARCH model from Engle [16] could be a good
candidate to predict the oil market volatility.

To this extent, we perform some summary statistics and diagnostic tests on the daily
percentage log return of the four time series, as reported in Table 4. From Panel A of the
table, the average return clearly appears close to zero for all series, and their distribu-
tions show fat tails, as denoted by the high levels of kurtosis. However, the probability
plots in Figure 3 highlight that only a few extreme observations deviate from the normal
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distribution. Therefore, the use of the normal distribution in the model appears to be a
good approximation. The Augmented Dickey-Fuller test confirms that all returns series
are stationary.

Table 4. Summary statistics and diagnostic tests of the daily percentage log returns. ADF: Augmented
Dickey-Fuller unit root test; LM: Lagrange multiplier test statistic for ARCH effect; LB: Ljung-Box
test of autocorrelation. The sample includes 325 daily observations.

WTI BRENT SXEV ERIX

Panel A: summary statistics (returns in %)

mean −0.0532 −0.0480 −0.0539 0.1002
std 3.0212 2.1115 2.1455 1.4463
min −28.5979 −15.9417 −16.8673 −9.1300
max 15.2176 11.5714 10.1787 4.6155
skew −2.7681 −0.9060 −1.7426 −0.9769
kurt 30.3941 12.6321 16.5461 5.1810

Panel B: returns diagnostics

ADF −8.561 *** −18.506 *** −6.859 *** −6.953 ***
LM lag 1 100.513 *** 52.324 *** 2.532 26.523 ***
LM lag 2 104.585 *** 60.992 *** 4.530 26.527 ***
LM lag 3 104.263 *** 62.262 *** 46.043 *** 26.509 ***

Panel C: squared returns diagnostics

LB lag 1 101.744 *** 52.954 *** 2.563 26.829 ***
LB lag 2 116.732 *** 52.991 *** 5.018 * 28.240 ***
LB lag 3 117.808 *** 53.007 *** 50.329 *** 28.240 ***

Panel D: absolute returns diagnostics

LB lag 1 121.734 *** 51.150 *** 37.802 *** 27.021 ***
LB lag 2 171.196 *** 54.647 *** 63.006 *** 37.223 ***
LB lag 3 184.032 *** 55.471 *** 108.108 *** 37.992 ***

*** p < 0.01, ** p < 0.05, * p < 0.1.

Modeling the return series requires the choice of a model for the mean. Analyzing
the autocorrelation functions shown in Figure 4, there is evidence of the absence of serial
correlation, with the only exception of the SXEV series. Therefore, considering that the
multivariate model requires the same configuration for all series and that the average
returns are almost zero, the use of a constant model for the mean of returns should suffice
to reflect the characteristics of the selected series.

(a) Probability plot: WTI (b) Probability plot: BRENT
Figure 3. Cont.
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(c) Probability plot: SXEV (d) Probability plot: ERIX

Figure 3. Probability plots of the daily percentage log returns of the four indexes.

Figure 4. Autocorrelation function for the daily percentage log returns.

Moreover, the Lagrange Multiplier (LM) test from Engle [4] shows evidences of
volatility clustering, as anticipated by the analysis of the daily standard deviation of
intraday returns. The only exception is the SXEV series, for which we cannot reject the null
hypothesis when analyzing the first two lags. However, the overall rejection of the null
hypothesis of the absence of autocorrelation in the squared residuals permits us to model
the volatility using the GARCH specification. In addition, we perform the Ljung-Box [29]
test of autocorrelation on the squared and absolute returns (Panels C and D), which further
confirms that the daily log return processes have a strong nonlinear dependence.
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2.2. Methodology: DCC-GARCH

The price volatility analysis is performed using the DCC-GARCH, a class of multi-
variate GARCH estimator introduced by Engle [16] as a generalization of the constant
conditional correlation estimator by Bollerslev [30].

Following the assumption of the constant mean as describe in the data section, we
model the log returns of each series, i with the following equation:

ri,t = µi + ei,t, (1)

where µi is the constant mean, and ei,t is a zero mean white noise process.
The Dynamic Conditional Correlation model proposes a time-varying variance-covariance

matrix with the following form:
Ht = DtRtDt, (2)

where Dt is the diagonal matrix of the standard deviations of the demeaned returns, and Rt
is their conditional correlation matrix, such that the demeaned returns follow a multivariate
normal distribution, et ∼ N (0, Ht).

The full DCC model, in its scalar form, can be formulated as:

D2
t = diag{ωi}+ diag{κi} ◦ et−1e′t−1 + diag{λi} ◦ D2

t−1,

εt = D−1
t et,

Rt = Q∗−1
t Qt Q∗−1

t

Qt = (1− α− β)Q̄ + α(εt−1ε′t−1) + βQt−1,

(3)

where ◦ is the Hadamard product, εt is the vector of the standardized errors, and Q∗t is the
diagonal matrix with the square root of the diagonal elements of Qt.

The first line in Equation (3) represents the variance equation of the univariate GARCH
models, while, in the last line, there is the updating equation of the conditional correlation
following a variance targeting approach with Q̄ being the unconditional covariance matrix
of the standardized errors estimated as Q̄ = 1

T ∑T
t=1 εtε

T
t .

To ensure stationarity with the variance targeting approach and that the matrices Qt
are always positive definite, the following conditions apply:

α, β ≥ 0, α + β < 1. (4)

The estimation of the parameters, ωi, κi, λi, α, and β, is performed with the 2-stage
approach from Engle [16] maximizing the following log-likelihood function:

L = −1
2

T

∑
t=1

(
nlog(2π) + log|Ht|+ e′tH−1

t et

)
. (5)

2.3. Methodology: Price Leadership Share

The analysis of the correlation of the returns and their lagged values reported in
Table 5 shows a strong relation among the four series, as well as when we consider the
lagged correlation in the second part of the table.

This high correlations suggest a potential dependence among the price series, which
can be investigated following the approach proposed by De Blasis [25]. The author analyzes
the price leadership in the gold market introducing a new measure beased on the Mixture
Transition Distribution (MTD) model by Raftery [26] and extended to a multivariate setting
by Ching et al. [23].

A sequence of Γ = {1, 2, . . . , γ} random variables, {Sα
t }t≥0 with α ∈ Γ, taking values

in the set M = {1, . . . , m}, is called a multivariate Markov Chain when it satisfies the
following multivariate Markov Property:
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Pr[S(α)
t+1 = j|(S(1)

t = i(1)t , S(1)
t−1 = i(1)t−1, . . . , S(1)

0 = i(1)0 ), . . . ,

(S(γ)
t = i(γ)t , S(γ)

t−1 = i(γ)t−1, . . . , S(γ)
0 = i(γ)0 )] = (6)

Pr(S(α)
t+1 = j|S(1)

t = i(1)t , . . . , S(γ)
t = i(γ)t ),

which states that, for every series α ∈ Γ, the probability of being in state j depends on the
state i1, . . . , iγ occupied by all the available series one time step before.

To model the multivariate Markov chain without incurring in the problem of the high
number of parameters to estimate, we can apply the MTD model, and the probability
distribution of series α at time t + 1 can be written as

A(α)(t + 1) =
γ

∑
β=1

A(β)(t) · λβ,α · P(β,α), (7)

where Aα(t) := [A(α)
1 , . . . , A(α)

m ] and A(α)
i (t) := Pr(S(α)

t = i) and P(β,α) are the transition
probability matrices containing the probabilities of moving from state i in series β to state j
in series α. These transition probability matrices are subject to the following conditions:

0 ≤ pi,j ≤ 1,
m

∑
j=1

pi,j = 1, (8)

where pi,j is an element of P(β,α).
This determination in (7) permits to estimate only γ2 transition probability matrices

P(β,α) and one additional matrix containing γ2 weights:

Series β
Series α 1 2 . . . γ


1 λ1,1 λ2,1 . . . λγ,1
2 λ1,2 λ2,2 . . . λγ,2
...

...
...

. . .
...

γ λ1,γ λ2,γ . . . λγ,γ

, (9)

which contains the portion of weights that each series β has on the series α and that is
subject to the following conditions

γ

∑
β=1

λβ,α = 1, λβ,α ≥ 0. (10)

From the weight matrix, we can define a vector of price leadership share (PLS) as

PLS =

[
∑γ

α=1 λ∗1,α

∑γ
α=1 ∑γ

β=1 λ∗β,α
, . . . ,

∑γ
α=1 λ∗γ,α

∑γ
α=1 ∑γ

β=1 λ∗β,α

]
, (11)

where

λ∗β,α =

{
λβ,α if β 6= α

0 if β = α
. (12)

The PLS can help understanding which price series has the leadership over the full set
of price series. The transition probabilities can be estimated through the standard Markov
chain estimator and the weights can be estimated maximizing its log-likelihood function,
as in De Blasis [25].
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Table 5. Returns and lagged returns correlation.

WTI BRENT SXEV ERIX

WTI 1.000 0.495 0.161 0.089
BRENT 0.495 1.000 0.666 0.516
SXEV 0.161 0.666 1.000 0.876
ERIX 0.089 0.516 0.876 1.000

WTI L1 0.091 0.331 0.136 0.078
BRENT L1 0.141 0.635 0.589 0.499
SXEV L1 0.135 0.592 0.821 0.738
ERIX L1 0.117 0.481 0.749 0.732

3. Empirical Results
3.1. DCC-GARCH Analysis

The DCC-GARCH analysis is performed on the daily returns computed as open to
close returns. Results for the DCC-GARCH estimation are reported in Table 6. Panel
A shows the univariate GARCH(1,1) analysis for each series. The κ parameters, which
measure the response of the volatility to external shocks, are above 0.10 for all series,
implying that all contracts are responsive to market events. The WTI contract appears
to be more sensitive, showing a higher coefficient of 0.645. These ARCH coefficients
are significant for all series except for the SXEV index. This latter result was expected
from the analysis performed in the data section where the time series showed a reduced
significance in the ARCH tests, especially at the first two lags. On the contrary, the GARCH
coefficients λ are all significant, showing a high magnitude except for the WTI contract.
This result suggests that large changes in the volatility of the WTI series take a shorter time
to decay. Moreover, all series satisfy the mean-reverting condition, where 0 < κ + λ < 1.
Overall, there is evidence of the presence of conditional volatility in the daily data. Finally,
Panel B reports the results of the multivariate DCC-GARCH(1,1) model, which are highly
significant, thus showing the presence of the dynamic conditional correlation in the sample.

To assess the validity of the estimated parameters, we run a series of diagnostic tests
on the standardized residuals of the DCC-GARCH model. Panel C of Table 6 reports the
Ljung-Box statistics on the residuals and on the squared residuals. In all cases, we fail to
reject the null hypothesis of no autocorrelation in the standardized residuals, indicating
that the model is able to describe the conditional correlation of the four selected contracts.

To test wether the model is able to predict the volatility during the disrupting period
of the COVID-19 pandemic, we perform the out-of-sample analysis on a rolling window
basis. Specifically, the DCC-GARCH model is initially calibrated on the pre-COVID-19
period, i.e., 4-month period from 1 September to 31 December 2019. With the estimated
parameters, we predict the variance covariance matrix for the following day. Then, we
shift the 4-month window by one day and perform a new estimation of the DCC-GARCH
model parameters along with a new prediction. Finally, we repeat the procedure up to
31 December 2020. The predicted volatilities for the full year are then compared with
the computed daily volatilities based on the 1-min interval intraday returns. Figure 5
shows the prediction errors of the DCC-GARCH model for the five periods. As expected,
the worldwide spread period reveals the highest variability of prediction errors, with the
WTI series reaching a minimum value of−202.56 and a maximum value of 15.68. The effect
of the information flow about the pandemic is reflected on the predictability power of the
theoretical models. However, this effect is less evident on the renewable energy index,
which was less affected by the COVID-19 pandemic, as shown in the data analysis section.



Energies 2021, 14, 2608 12 of 17

Table 6. DCC-GARCH(1,1) parameters. Panel A reports the univariate GARCH parameters for each
series. Panel B reports the DCC-GARCH parameters for all four series. P-values in parentheses. LM:
Lagrange multiplier test statistic for ARCH effect; LB: Ljung-Box test of autocorrelation.

Panel A: Univariate GARCH parameters

WTI BRENT SXEV ERIX

µ 0.095 0.074 −0.032 0.177 ***
(0.372) (0.430) (0.670) (0.006)

ω 1.161 *** 0.114 0.358 0.310
(0.006) (0.221) (0.379) (0.347)

κ 0.645 ** 0.126 *** 0.483 0.252 **
(0.036) (0.005) (0.100) (0.033)

λ 0.283 ** 0.851 *** 0.516 * 0.601 **
(0.047) (0.000) (0.068) (0.023)

Panel B: DCC-GARCH parameters

α 0.050 ***
(0.000)

β 0.887 ***
(0.000)

Panel C: DCC-GARCH residuals diagnostic

WTI BRENT SXEV ERIX

LB 1.787 0.147 3.194 * 1.169
(0.181) (0.701) (0.074) (0.280)

LB (resid2) 0.996 0.698 0.038 0.917
(0.318) (0.404) (0.846) (0.338)

*** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 5. Time series of deviations between predicted volatilities through DCC-GARCH(1,1) model
and daily volatilities estimated as standard deviations of 1-min returns.
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Moreover, a smaller effect is recalled between the second wave and the vaccine period,
which both present a little instability in the overall market, as also reported in Figure 2
and in Table 7, which shows the root mean square error (RMSE) by period for the four
series. Again, the WTI predictability during the worldwide spread is the most affected,
followed by the BRENT one. It is also important to notice that the summer reopening
depicts a lower predictability (higher RMSE) than the second spread, but this is due to
the calibration window that overlaps the worldwide spread period. In addition, the SXEV
index shows a lower predictability during the Chinese spread.

Table 7. Prediction accuracy using RMSE by period.

WTI BRENT SXEV ERIX

Chinese spread 0.966618 0.914734 2.235645 0.552730
Worldwide spread 23.905959 2.445554 1.473740 0.804769
Summer reopening 0.868118 0.731535 0.354176 0.406645
Second spread 0.353359 0.322304 0.306062 0.582914
Vaccines 0.579485 0.447151 0.859321 0.622851

3.2. Price Leadership Analysis

To analyze the linkages between the series in terms of prices, we apply the price
leadership share model by De Blasis [25]. The model is computed at 1-min interval for the
six subperiods. To estimate the transition probability matrices and the λβ,α weights in (7),
we have to categorize the price returns into discrete states of the Markov chain. In general,
building a Markov chain with many states means having a model that better captures the
full dynamic of the system. However, the more states we include, the more parameters
we need to estimate. This means that the application would need a greater availability of
observations. To obtain a trade-off between a good representation of the system’s dynamics
and a sound estimation of the parameters, we model our multivariate Markov chain with
a three-state chain. The central state coincides with the zero return and the other states
include the positive and negative returns, respectively. To avoid transitions from one
state to another due to the small market microstructure noise, the central state includes
all returns within one standard deviation around the zero return. Moreover, it is worth to
mention that adding more states to the chain will only slightly affect the precision of the
estimation of the weights, and consequently, of the price leadership shares, as highlighted
in Reference [25].

Figure 6 reports the PLS values for the six periods. The first clear evidence is that
the ERIX index appears to be not so relevant in the price leadership, especially before the
pandemic spread, during the summer reopening, and the second spread. Nonetheless,
this result was expected if we consider the initial analysis in the data section. In fact,
the ERIX index price series in Figure 1 follows a completely different trend compared to
the other series, and the volatility of the ERIX in Figure 2 is much lower than the other
series. In addition, the two oil contracts and the SXEV index are more related with each
other, thus allowing for more spillover of price influence. However, it is worth to notice a
few increases of the price leadership share of the ERIX index during the toughest periods
of the pandemic, demonstrating a lower capacity of the other series to maintain a strong
leadership in prices.

Overall, the COVID-19 pandemic disrupted the price leadership relations. In fact,
before the pandemic, the price leadership share of the three oil related series appeared
to be leveled. An equilibrium in the PLS shows a reduced concentration of information,
therefore it is not possible to identify a clear leader. However, this situation flips during
the Chinese spread, with the SXEV index taking the leadership over the other contracts.
This reflects the huge drop that the two oil contracts faced during the pandemic spread,
especially for the WTI. A slight change is noticeable during the worldwide spread when
the BRENT contract shares the leadership with the SXEV index. Then, the WTI takes the
leading position position during the summer reopening and the second spread, to finally
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come back to an almost normal situation during the vaccine period, but with the inclusion
of the ERIX index in the share. The PLS values for the vaccine period are almost the same,
showing a lack of concentration of the price leadership.

Figure 6. Price Leadership Share by period.

4. Discussion

In this paper, we analyzed the effect of COVID-19 on the volatility spillover between
the oil market and two European indexes, an oil-related index and a renewable energies
index. We modeled the volatility interactions using the DCC-GARCH model, which has
been extensively used in the study of financial markets. In general, this multivariate
GARCH model has proven to help model the volatility in periods of financial stability,
but also during financial crises [21]. Indeed, there are many extensions and variations of the
DCC-GARCH model proposed in the current literature. All these models have proven to be
superior in modeling various aspects of the financial time series. However, the availability
of programming tools for such models is limited. Therefore, the DCC-GARCH remains a
preferred choice, especially for its simple two-stage estimation process.

Nonetheless, the COVID-19 presented a considerable disruption in financial markets
with the WTI crude oil showing negative prices for the first time. The current literature reports
a positive ability of DCC-GARCH to model the volatility linkages during the financial crisis.
However, it fails to test the predictability of the model. Ding and Vo [17] found volatility
interactions between the oil and foreign exchange markets only during the 2008 financial crisis.
On the contrary, they reported that both markets respond to shocks simultaneously when
the markets are relatively calm. Similarly, Brayek et al. [18] found the existence of an impact
between oil prices and exchange rates during the crisis, as well as Celik [21], who reported
the financial contagion during the subprime crisis. Moreover, Singhal and Ghosh [19] found
evidence of co-movements between crude oil and the Indian stock market.

Our results from the application of the DCC-GARCH model to two crude oil contracts
and two oil-related and renewable indexes during the extreme conditions of the COVID-19
pandemic confirm the evidence of volatility spillover between the time series. The param-
eters estimation of the model and the residual diagnostics clearly show the presence of
co-movements in these markets. Moreover, the price leadership share analysis reveals that
the disruption of the COVID-19 pandemic introduced a leadership identification crisis
among the series. It is evident from Figure 6 that the ERIX index, which was less affected
by the pandemic, was leading the price movements during the worldwide spread and
that these results were flipped going back to a calmer and normal period after the markets
absorbed the news of the virus. These findings from this innovative model are aligned
with and support the presence of the volatility spillover between the series.
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However, when assessing the accuracy of the predictability of the DCC-GARCH
model, the results show that the model fails its prediction in the period of higher instability,
i.e., the worldwide spread of the disease. On the contrary, the model appears to be quite
good during calmer periods, with some smaller instabilities over other periods with the
presence of COVID-19 related events.

These last findings highlight the necessity to carefully consider the model when
applying it to periods of great instability. Besides, it is important to elaborate on the causes
of this discrepancy in the results. Further studies might analyze whether the observation of
co-movements during unstable periods is due to real causes or it is due to a model design.

5. Conclusions

The COVID-19 pandemic has changed societies worldwide in many aspects. In this
work, we tried to understand the influences of virus spreading on oil and energy mar-
kets. More precisely, we investigated the behavior of volatility linkages between oil and
renewable energy firms by analyzing two crude oil futures prices, namely the West Texas
Intermediate crude oil futures contract (WTI) and the Brent crude oil futures contract
(BRENT), and two indices, namely the STOXX Europe 600 oil & gas index (SXEV) and
the European renewable energy index (ERIX). The period between September 2019 and
January 2021 was divided into 6 subgroups according to the pandemic stages. We found
that, during the worldwide spread (between March and July 2020), there has been a fast
growing in volatility for all energy firms. This phenomenon has been much stronger for
oil firms with respect to renewable energy firms. Furthermore, during the worldwide
spread, the ability to forecast volatility has decreased. Besides, we investigated the price
leadership share, showing that the COVID-19 pandemic disrupted the price leadership
relation amongst the four analyzed time series.
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