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The question of whether material stiffness enhances cell adhesion and clustering is still open to
debate. Results from the literature are seemingly contradictory, with some reports illustrating that
adhesion increases with surface stiffness and others suggesting that the performance of a system of
cells is curbedbyhigh values of elasticity. To address the role of elasticity as a regulator in neuronal cell
adhesion and clustering, we investigated the topological characteristics of networks of neurons on
polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55–2.65MPa
range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface
decreases. Notably, the small-world coefficient – a topologicalmeasure of networks – also decreases.
Numerical simulations and functional multi-calcium imaging experiments further indicated that the
activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are
supported by amathematicalmodel, that explains adhesion and clustering of cells on softmaterials as
a function of few parameters - including the Young’s modulus and roughness of the material. Overall,
results indicate that – in the considered elasticity interval – increasing the compliance of a material
improves adhesion, improves clustering, and enhances communication of neurons.

The biological functions of tissues and organs depend on the way cells
interact with each other, send and receive signals, and exchange
information1–4. The trafficking of electrochemical, mechanical or bio-
logical signals is influenced, in turn, by the layout and configuration of
elements in a system: the efficiency of an organ is determined less by the
characteristics of individual cells and more by the fact that a great many
of these cells interact in systems with non-trivial topological
properties5–12.

Materials and interfaces are tools through which one can guide the
organizationof several different cells into systemswith somekindof internal
organization and structure13–16. Cells on a material surface sense—through
transmembrane receptors—a variety of physicochemical, geometrical, and
biological cues in response to which they regulate their functions, including
adhesion, proliferation, and migration13,17–19. The balance between cell-
surface and cell-cell interaction forces20–26 can influence the collective

motion of cells, their cooperation, the development and evolution of multi-
cellular structures. For those involved in the design of biomaterials and
scaffolds for tissue engineering and in-vitro-medicine applications is thus
relevant understanding how the characteristics of a substrate influence cell
behavior.

The relationship between the geometryof a surface at thenanoscale and
cell behavior has been examined in a variety of studies27–36. Some of these
have illustrated that surface roughness in the 20–40nm interval optimizes
cell adhesion on silicon37–39, mesoporous silicon40–42 and zinc-oxide nano-
wire surfaces43. Possibly more important than pure adhesion, the same
reports have highlighted that neurons on surfacesmodified at the nanoscale
assemble in networks with high clustering and short path lengths, and
enhanced computational efficiency—compared to neurons uniformly dis-
tributed on a flat support, such as flat silicon or conventional Petri-dishes.
While these and other similar reports have focused on the role of
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topographyon theprocess of cell adhesion andclusteringona surface—they
have, however, disregarded the mechanical characteristics of the substrate.

Other works have examined how substrate stiffness influences cell
adhesion, cell migration and locomotion, and the formation of tissues and
organs. Results of these studies are seemingly contradictory. While some
works indicate that adhesion, clustering, and migration of cells is enhanced
on stiff substrates44–47, others—conversely—indicate that on soft substrates
cells merge to form tissue-like structures48. In a recently published paper49,
Janmey and coworkers found that—contrary to the common belief that
compliant surfaces are typically non-permissive for migration—cells from
embryonic tissue dynamically decrease their stiffness in response to sub-
strate stiffening thus triggering collective cell migration. Further to this end,
in a comprehensive review of how the mechanical characteristics of the
brain change following neuro-degenerative disorders50, Hall and colleagues
recalled that retinal ganglion cell axons develop in the direction of softer
brain tissue. In the same review, it is also recalled that adult-born neurons
mature more slowly in the aged brain - that is stiffer than the young -
suggesting that the speed of neuronal maturation is related to the com-
pliance of the neurogenic niche.

Notice though that these previous works have used different types of
cells, such as fibroblasts46, mammary epithelial cells47, kidney epithelial
cells45, from different tissues, and these cells are highly differentiated, which
may require a unique microenvironment for proliferation. Thus, the dif-
ferent behavior of cells (in terms of adhesion, proliferation, migration, dif-
ferentiation) observed by different groups on soft or hard surfaces, may be
ascribed to several factors other than stiffness, including the chemical
structure of the material, cell type, the experimental or environmental
conditions of the measurements.

In addition, notice that the cited, existing body of literature focused
on relatively soft materials with elasticity in the 2kPa to 65kPa range. A
highly cited review and a ref. 51 for those working in the field of bio-
materials and regenerative medicine maintains that—in this elasticity
range—while it is generally true that increasing substrate stiffness cor-
relates with increasing cell differentiation, there are many exceptions,
and the stiffness optimum for differentiation and other behaviors varies
significantly from cell to cell. Further to this end, in another seminal
work52, it is reported that epithelial cells on soft gels (with E∼ 1kPa)
show diffuse and dynamic adhesion complexes; in contrast, stiff gels

(with E~100kPa) show cells with stable focal adhesions. In the same
work, it is recalled that, in the low kPa range, soft deformable substrates
enhance neurite branching. Thus, again, the lack of consensus on
whether material stiffness enhances or undermines cell activity is, most
likely, credited to the heterogeneity of conditions under which the great
many of these studies have been performed.

Few studies have explored cell-surface interactions for relatively harder
materials—with values of elasticity in the low MPa range. In ref. 53 it is
illustrated that osteogenic differentiation and mineralisation by embryonic
stem cells is enhanced on substrates higher Young’s modulus (>2.3MPa)—
when compared to softer substrates with E in the 0.04–1.9 MPa range. In
another study54, it is shown that polyurethane films with high values of
Young’smodulus (higher than approximately 4MPa) enhance the adhesive
capacity of NIH 3T3 fibroblasts and Wharton’s jelly mesenchymal stem
cells. The article presented in ref. 55 investigated how the properties of
substrates influence the fate of stem cells. Researchers cultivated individual
human epidermal stem cells on surfaces of polydimethylsiloxane (PDMS)
and polyacrylamide (PAAm) hydrogels, varying in stiffness from 0.1kPa to
2.3 MPa, with collagen coating attached covalently. They observed that the
stiffness of PDMS did not affect cell spreading and differentiation. Con-
versely, on low-stiffness PAAm (0.5kPa), cells failed to form stable focal
adhesions anddifferentiated.Humanmesenchymal stemcell differentiation
was similarly independent of PDMSstiffness butwas influenced byPAAm’s
elastic modulus. Analysis of dextran penetration revealed that less stiff
PAAm substrates were more porous; suggesting that surface roughness can
play a role during adhesion.

Ourworkfits into this long-standing series of previous studies.The aim
of this research is elucidating how substrate elasticity—in the low
0.55–2.65 MPa range—influences neuronal growth, networking, and
activity. To do this, we fabricated soft PDMS surfaces by replica molding
techniques (Fig. 1a, b)—that were used as a substrate for neuronal cell
culture and grow (Fig. 1c). Neuronal cells were then examined at 24, 48, 72,
96h from culture by fluorescence microscopy and also by functional multi
calcium imaging (fMCI) (Fig. 1d). Fluorescence images of cells were pro-
cessed using image analysis, network analysis, and information theory
algorithms (Fig. 1e, f). Results of the analysis indicate that—in the con-
sidered elasticity range—adhesion and connectivity of neuronal cells are
optimized for small values of elasticity of the substrate.

Fig. 1 | Experimental set-up. Using micromachin-
ing and replica molding techniques, we fabricated
soft PDMS substrates for cell culture and growth.
The elasticity of the substrates was varied in the
0:55� 2:65MPa interval (a). After detachment
from the originating template (b) PDMS surfaces
were incubated with primary neuronal cells (c) and
placed on the stage of a fluorescence microscopy for
investigation and analysis (d). Fluorescence images
of cells were processed using networks science,
topology analysis, and information theory techni-
ques (e). For each considered value of elasticity, we
determined the topological attributes of neuronal
cell networks forming on the substrates over time,
made and estimate of the amount of information
exchanged in the net, and measured cell activity (f).
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Results
Generating soft PDMS substrates
Using replica molding techniques described in the methods, we generated
soft discoidal PDMS substrates with a diameter of 1cm and a thickness of
2mm. The substrates were fabricated by mixing SYLGARD 184 elastomer
(polymeric base, liquid) and curing agent material (polymerizing agent,
solidphase) indifferent proportions ρ thatwere varied between7:1 and18:1.
The higher the content of polymeric base in solution, the larger the com-
pliance of the resulting devices.We performedmechanical characterization
tests to evaluate how the stiffness of the substrates correlates to the pro-
portion between reagents in solution. After convenient sample preparation,
PDMS specimens were characterized under uniaxial tensile loading using a
universal testing machine (see themethods, the Supplementary Note 1 and
Supplementary Fig. 1.1). In the tests, we used a loading rate of 1mN/s—a
sufficiently small value to ensure linearity. Other parameters of the tests are
reported in the Supplementary Table 1. Resulting stress-strain relationships
were processed (Supplementary Fig. 1.2,1.3) to derive the corresponding
Young’s modulus E for each of the considered samples (Fig. 2a). Results

illustrate that the smaller the proportion of the polymeric base in solution,
the higher the Young’s modulus of the PDMS substrate. E increases from
about E~0.5MPa for p = 18:1 to E~2.5MPa for ρ = 7:1. However, the E-ρ
relationship is not linear, and for low (ρ < 7) and high (ρ >18) values of ρ the
elasticity of PDMS reaches a steady state value. For this chemical for-
mulation of PDMS, the elasticity of devices resulting from polymerization
cannot be arbitrarily small or large. The bestfit of the experimental data is an
inverse logistic function of the form

E ¼ Eo �
Eo � E1
ρ=ρh
� �n � 1

ð1Þ

where Eo (E1) is the lower (upper) bound of E, ρh is the full width at half
maximum (FWHM) of the fitting curve, and n is a model parameter
(Fig. 2a). We calculated a r2 statistics to examine whether the model tem-
plate is consistent with the experimental data in the considered range of
elasticity.Values of r2 close to 1 (r2 ¼ 0:998) indicate that the predictions of
the model match the observed values with high accuracy. For the data

Fig. 2 | Characterization of soft PDMS substrates. PDMS surfaces were
mechanically characterized using conventional elongation tests (a) and micro-
indentation techniques (b) to find the elasticity of the substrate as a function of the
ratio of liquid PDMSphase to the binding agent r: the larger the value of r, the smaller
the value of elasticity. While results from the elongation test and micro-indentation
of samples are consistent, however the latter overestimates the values of elasticity of a
factor of 1:3 (c). Using laser interferometry, we measured the topography of PDMS
surface represented here in the form of a linear and 2D density plot (d) and of a 3D
plot (e). The average (Ra) and root mean square (Rrms) values of roughness were
determined from morphological data. Values of Ra greater than 0 (Ra∼ 20nm)

evidence that at the nanoscale the PDMS surface is not flat (f). For different surface-
preparations the values of Ra deviate marginally from the central value Ra∼ 20nm
(g). Contact angle (CA) measurements of samples indicate the PDMS surface is
moderately hydrophilic with values ofCA<80°for all considered PDMS/curing agent
ratios and values of elasticity E<2:65MPa (h). Data in Fig. 2f are quantitatively
described by awhisker box plot, where the lower and upper boundary corresponds to
the 25% and 75% quartiles of the distribution, while the central band marks the
median value (sample size∼ 50). Data in Fig. 2g are represented bymean ± standard
deviation (sample size¼10).
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considered in this study, we found that Eo ¼ 0:538MPa, E1 ¼ 2:809MPa,
ρh ¼ 10:55 and n ¼ 5:847.

Additional micro-indentation testing of samples was performed to
assess the reliability ofmechanical sample characterization (Fig. 2b).Micro-
indentation testing enables to estimate the mechanical characteristics of a
sample by examining the impression left from the indenter in the sample
material at the microscale (methods and Supplementary Note 1). Upon
sample characterization, we found that values of elasticity predicted by
micro-indentation and tensile loading tests are within 25% of each other
(Fig. 2c). Results of the analysis are in line with previous reported studies56

that indicate that micro-indentation techniques can possibly overestimate
the value of the Young’s modulus due to plasticity effects.

Measuring PDMS surface characteristics
We used optical laser interferometry (methods) to measure the surface
nanotopography of soft PDMS substrates. The surface profile measured
over a regionof 50 μm× 50 μm is reported inFig. 2d as a 2Ddensity plot and
in Fig. 2e as 3D plot for a sample device with ρ ¼ 10 and E ¼ 1:88MPa. In
the considered sampling area, surfaceheight varies from0nm (low) to about
100 nm (high). One-dimensional scans along arbitrary directions were then
isolated and independently analyzed to determine the average (Ra) and root
square mean (Rrsm) values of roughness of the sample. Distributions of
roughness values are described by the box and whisker plots reported in
Fig. 2f, where the lower and upper boundary corresponds to the 25% and
75% quartiles of the distributions, while the central bandmarks the median
value. Results of this descriptive statistics indicate that themean values of Ra
and Rrsm for the considered sample are Rah i∼ 20nm and Rrmsh i∼ 25nm.
As expected, values of Rrsm are systematically higher than Ra. Since values
of Rrsm can be estimated from the Ra variable through simple values
rescaling, in the followingof the paperwewill use the sole average roughness
Ra to describe the morphology of sample surfaces. We measured surface
topography of soft PDMS samples as a function of stiffness. Values of Ra are
reported in the plot of Fig. 2g for 6 different sample configurations. Results
indicate that for a sample stiffness varying between 0:88MPa (ρ ¼ 15) and
2:65MPa (ρ ¼ 7) the variation of surface roughness is negligible, with a
mean value of Rah i∼ 20:16nm and a small variations around the mean
σ Rað Þ∼ 1nm. Thus, in the considered elasticity interval the topography of
soft PDMSsubstrates seems tobe independent on sample preparation and is
considered constant in the following of the paper.

Notably, the morphology of PDMS surfaces measured by Scanning
Electron Microscopy (SEM) is consistent with the values of surface
roughness determined by optical laser interferometry. SEM analysis was
performed on PDMS sample surfaces with values of elasticity varying from
0.55 to 2.65 MPa (Supplementary Note 2). In all considered cases, surface
profile measured by SEM is never perfectly flat (Supplementary Fig. 2.1).
Instead, it always exhibits some spatial variability—consonant with the
morphology measurement performed by quantitative interferometry
analysis.

The characteristics of sample surfaces of being rough, with values of
roughness in the 10� 20nm range, can be accountable for the peculiar
behavior of cells – that on soft PDMS substrates cluster into defined groups
more markedly compared to harder substrates. The possible mechanisms
and hypothesis underlying a similar behavior are explained in the following
of the paper and in a separate supporting information.

The profile of PDMS surfaces was further processed. Morphological
data of sample surfaces were Fourier transformed and the results of the
transformation circularly averaged. The corresponding power spectrum
(PS) density function (Supplementary Note 3 and Supplementary Fig. 3.1)
describes in a logarithmic scale the change of information density of the
sample surfaceper change of scale38. From the slopebof thePS, one can thus
determine the fractal dimension of sample surfaces asDf ¼ b� 8ð Þ=2. For
this configurationDf ∼ 2:4: strictly larger than the Euclidean dimension of
bi-dimensional surface D ¼ 2.

The wetting characteristics of the soft PDMS substrates were deter-
mined bymeasuring the contact angle ϑ of a drop of water deposited on the

sample surface (methods). Measured values of ϑ vary between 67°
(E ¼ 0:77MPa) and 76° (E ¼ 2:41MPa), substrates are thus moderately
hydrophilic (Fig. 2h). The corresponding average surface energydensitywas
thendetermined using the Young–Dupree equation as γ∼ 96mJ=m2 with a
variation smaller than 6%.

Since the non-specific energy of adhesion γ determines the extent of
adhesion of cells on a surface, the findings of our study that γ is approxi-
mately constant suggests that the chemical properties of samples are not
relevant to the conclusions of the research - and that the effects of stiffness
and surface chemistry can be conveniently decoupled. However, to dissect
even further whether the interaction between neuronal cells and the PDMS
materialmaydepend on other factors other than stiffness - we examined the
chemical structure and composition of PDMS surfaces, and the interaction
between PDMS and poly-d-lysine by Raman spectroscopy (Supplementary
Fig. 4.1-4.5) and Energy Dispersive X-Ray Analysis (EDAX) (Supplemen-
tary Table 2). Results of these additional test campaigns—reported and
conveniently commented in a separate SupplementaryNote 4 - illustrate the
polymeric-base/curing-agent ratio affects significantly material stiffness,
and less significantly the chemical structure of samples. Thus, the results of
this characterization seem to indicate that neuronal cell adhesion and
clustering observed in this study, are significantly influenced by stiffness,
while other factors, like chemical structure, are less relevant.

Adhesion of neuronal cells on soft PDMS substrates
Soft PDMS samples were used as substrates for neuronal cell culture. Pri-
mary neuronal cells were incubated for aminimum of 24h and amaximum
of 96h on sample surfaces with values of PDMS to curing agent ratio
ρ ¼ 7 : 1, ρ ¼ 10 : 1, ρ ¼ 14 : 1, ρ ¼ 18 : 1, corresponding to values of
elasticity E∼ 2:65MPa, E∼ 1:88MPa, E∼ 1MPa, E∼ 0:55MPa, respec-
tively. Polystyrene rigidflat surfaceswith aYoung’smodulus ofE∼ 3:4GPa
were used as a control. At the end of the incubation period, cells were fixed,
stainedwithDAPI (the nucleus) and imaged usingfluorescencemicroscopy
as described in themethods. The resultingfluorescence images illustrate that
the number and network characteristics of neurons on PDMS substrates
exhibit a very high sensitivity to substrate stiffness. In the considered range
of stiffness (0:55� 2:65MPa), the lower the value of stiffness the higher the
number of neurons adhering on the substrates. For sake of illustration,
Fig. 3a comparesfluorescent imagesof cell-nuclei taken24h fromseedingon
soft (E ¼ 0:55MPa, left) and rigid (E ¼ 1:88MPa, right) PDMS surfaces.
Examples of fluorescent images of cells on PDMS with different values of
elasticity, are reported in a separate Supplementary Note 5. Specifically, the
Supplementary Fig. 5.1 reports examples of cell nuclei 24 h from seeding on
surfaces with elasticity varying from 0.55 to 2.65 MPa. The Supplementary
Fig. 5.2 is a compilation of cell-nuclei images taken after a 24 h incubation
period on a E ¼ 0:55MPa substrate. Similarly, Supplementary Fig. 5.3–5.5
report cell nuclei image-sets taken24h fromseedingonPDMSsurfaceswith
value of elasticity ranging from 1 to 2.65MPa.

Images of cells on the substrates at different values of elasticity and
incubation time were processed using image analysis algorithms. For each
configuration, cell-centers were identified and counted. More than 30
images were analysed per incubation time (t) and value of elasticity (E).
Results of the analysis are reported in Fig. 3b–h.

After 24h from incubation, the number of neurons (N)firmly adhering
on a region of interest of 975× 750 μm on the substrate isN ¼ 570 ± 55 for
E ¼ 0:55MPa. On surfaces with value of elasticity E ¼ 1MPa, N increases
to N ¼ 719 ± 79. For values of stiffness greater than 1MPa the number of
cells on a region of interest steadily decreaseswithE, beingN ¼ 544 ± 22 for
E ¼ 1:88MPa and N ¼ 434 ± 32 for E ¼ 2:65MPa (Fig. 3b). For these
data, the relationship betweenN and E can be approximated by a linear law
of the type N ¼ Eo � βE, where Eo ¼ 706, β ¼ 92MPa�1, and the values
of E are expressed in MPa (Fig. 3c). Thus, at 24h and in the considered
interval of values of the Young’s modulus, the number of neuronal cells on
soft PDMS surfaces decreases with E with a rate of 92 cells per MPa. The
same analysis, performed at 48, 72, 96 h from incubation, reveals a similar
decreasing trendof cell densitywith elasticity. For these times of the analysis:
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β ¼ 142MPa�1 (48 h, Fig. 3d), β ¼ 100MPa�1 (72 h, Fig. 3e), β ¼
202MPa�1 (96 h, Fig. 3f). Values ofN as a function of elasticity reported for
all considered times in the same diagram (Fig. 3g) provide an overall view of
results.

While the N � E relationship is not perfectly linear, however in the
considered elaticity interval thenumber of neurons overalldecreaseswith the
Young’smodulus. For all the timepointsof theanalysis,N is alwayshigheron
softer (E∼ 0:55MPa) than on harder (E∼ 2:65MPa) surfaces. In the 0:55�
2:65MPa range, the associationbetweenN andE ismoderate to strong– and
never weak – as evidenced by values of r-squared of r2 ∼ 0:64 for t ¼ 24 h,
r2 ∼ 0:51 for t ¼ 48 h, r2 ∼ 0:69 for t ¼ 72 h, r2 ∼ 0:54 for t ¼ 96 h.

Values of cell density reported as a function of time (t) for different
substrate-stiffness characteristics (Fig. 3h) illustrates the correlationbetween
N and t. For surfaceswith elasticityE ¼ 0:55MPa,N varies fromN ∼ 570 to
N ∼ 412 in the 24h� 96h interval. For E ¼ 1MPa and in the same interval
of time, N increases from N ∼ 718 (24h) to N ∼ 917 (96h). The number of
cells decreases fromN ∼ 543 (24h) toN ∼ 418 (96h) forE ¼ 1:88MPa; and
from N ∼ 433 to N ∼ 174 for PDMS surfaces with E ¼ 2:65MPa. For
comparison, the number of neuronal cells cultured on standard polystyrene

petri dish, used as a control, varies in the 1610� 2100 cells interval (Fig. 3h).
The better adhesion performance of Petri dishes can be justified by the fact
that these substrates are normally treated for improving cell attachment,
while for these analyses PDMS substrates were not.

Best fit of experimental data with a linear model indicates that the rate
of change of the number of cells is approximately �3cells=day for E ¼
0:55MPa (r2 ¼ 0:88), less than ∼ 1cells=day for E ¼ 1MPa (r2 ¼ 0:84). It
is about �4cells=day for E ¼ 1:88MPa (r2 ¼ 0:82) and E ¼ 2:65MPa
(r2 ¼ 0:94). The rate of change of N with time is vanishingly small, con-
sistent with the notion that primary neurons in culture do not proliferate.

Notably, values ofN fluctuate for all substrate preparations between 72
and 96 h: data in Fig. 3 show a substantial decrease in the number of cells at
72 hours followed by an increase at 96 hours. The observed variation might
depend on statistical fluctuations in the experiment and themeasurements.
Notice though the same variation from a lower (at 72 h) to a higher (at 96 h)
number of cells - is observed in the control, i.e. substrates with theoretically
infinite elasticity. Thus, the oscillation ofNmeasured for all substrate types
may simply reflect an initial unbalanced distribution of cells during cell
seeding.

Fig. 3 | Soft PDMS surfaces as substrates for neuronal cell growth.Neuronal cells
were plated on soft PDMS surfaces and followed over time. At fixed times, growth
was stopped, cells immobilized and examined by fluorescence microscopy. Image
shows how cell number and layout is affected by substrate elasticity: cell-growth is
hampered on substrates with larger values of elasticity (1:88MPa, rigth) compared to
substrates with smaller ones (0.55 MPa, left) (a). The number of neuronal cells N
measured on substrates 24 h from incubation illustrates that N shows a nearly
inverse relationship with E in the 0:55� 2:65MPa interval (b). The negative

correlation between N and E is exhibited for all considered times of incubation – 24
(c) 48 (d) 72 (e) and 96 h (f). Diagrams illustrate how the number of cells varies as a
function of substrate elasticity (time) for all the times of the analysis (substrate
elasticity) (g, h). Data in Fig. 3b–f are represented by mean ± standard deviation
(sample size∼ 50 for each data point). Data in Fig. 3g, h are quantitatively described
by a whisker box plot, where the lower and upper boundary corresponds to the 25%
and 75% quartiles of the distribution, while the central bandmarks themedian value
(sample size∼ 50 for each data point).
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Small-world characteristics of neuronal cell networks on PDMS
surfaces
We used networks analysis to examine how cells cluster together as a
function of the mechanical characteristics of the surfaces. Fluorescent
images of cells on PDMS substrates (Fig. 4a), were processed (Fig. 4b) using
image analysis algorithms recalled in themethods of the paper. This allowed
extraction of features such as the coordinates of the centers of the cells
(Fig. 4c), that were in turn connected to generate neuronal cell-networks
(Fig. 4d).Anetwork ismathematical representation of elements in a space: it
provides information on how elements are connected and on how they
interact57. A comprehensive collection of graphs derived from fluorescent
images of cells on PDMS surfaces at different values of elasticity, is reported

in a separate SupplementaryNote 6. SupplementaryFig. from6.1–6.5 report
examples of networks determined from neuronal cells imaged 48h from
culture for values of substrate elasticity ranging in the 0:55� 2:65MPa
interval.

In this study, cells were connected using a mixed distance and density
rule (methods). We advanced the hypothesis that cells of the system are
linked either if they are placed at a relatively short distance from each other
or if they exhibit high local density and high distance from other cells with
higher density—typical of cluster centers58.

Once that cell-networks were deduced for each sample, we calculated
their topological characteristics, including the small-world coefficient (SW).
A network is small-world (SW>1) if it exhibits shorter paths and higher

Fig. 4 | Networks of neuronal cells on soft PDMS surfaces. Visual examination of
fluorescence images of neuronal cells suggests that surface stiffness can influence
cell-clustering (a). We used image-analysis algorithms and networks-science to
examine quantitatively the topological characteristics of cell-networks on the sub-
strates. Fluorescence images of cells were gray-scale converted (b) and processed to
extract cell-centers (c). Then, cell-centers were linked using the Waxman algorithm
and a density-based rule (d). The small world coefficient (SW, a topological measure
of networks) of neuronal-cell graphs as a function of surface elasticity, determined

24 h from culture – the diagram suggests that the ability of cells to form structured
networks decreases with E (e). The small world coefficient of neuronal-cell graphs as
a function of time for a fixed value of the Young’s modulus E ¼ 2:65MPa (f).
Correlation between the SW coefficient of neuronal cell networks forming on a
substrate and the substrate elasticity, for different values of culture time: 24, 48, 72,
96 h (g). Correlation between the SW coefficient and time, for different values of
substrate elasticity: 0:55, 1, 1:88, 2:65MPa (h). Data in Fig. 4e–h are represented by
mean ± standard deviation (sample size∼ 50 for each data point).
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clustering than an equivalent randomgraphwith the samenumber of nodes
and links, forwhichSW ¼ 159–61. The small-world coefficient is ameasureof
the shape and performance of a network—networks with SW>1 are mor-
phologically structured to transport information efficiently62,63.

Network analysis of cell-graphs indicates that the small-world coeffi-
cient of neuronal cell networks decreases with substrate stiffness in the
0:5� 2:65MPa interval. This is especially evident 48h from culture
(Fig. 4e). At this time of measurement, the value of SW transitions from
SW ¼ 1:95 ± 0:26 for E ¼ 0:55MPa to SW ¼ 0:34± 0:12, for
E ¼ 2:65MPa. For intermediate values of elasticity: SW ¼ 1:57 ± 0:33 for
E ¼ 1MPa, and SW ¼ 2:26 ± 0:179 for E ¼ 1:88MPa. In this range of
elasticity, SW varies with E as SW ¼ 2:42� 0:59E.

We observe that the small-world coefficient of cell networks dropswith
E also at 24, 72, 96 h from culture, although the variation may be somehow
less pronounced (Fig. 4g). 24h from seeding, SWdecreases with E following
the linear law SW ¼ 1:18� 0:04E. After 72h and 96h of incubation, we
found that relationshipbetweenSWandE is approximatedby the functions:
SW ¼ 0:59� 0:05E (72h) and SW ¼ 0:71� 0:05E (96h). For compar-
ison, the small-world coefficient of on neuronal cell networks on poly-
styrene, used as a control, is SW∼ 1 for all the considered time intervals.

The dependence of SW on time is explained by the diagrams in Fig. 4f
and h. For cells cultured on 2:65MPa rigid surface, we found that SW
decreases smoothly with time, moving from an initial value SW∼ 1 mea-
sured at 24h, to a steady state value SW∼ 0:44 reached at 96h (Fig. 4f).
Results from surfaces with other values of elasticity show the same trend
(Fig. 4h). For 0:55MPa soft surface, the small-world-ness of neuronal
networks shifts from SW∼ 1:3 measured at 24h to SW∼ 0:42 at 96h. For
surfaces with E ¼ 1MPa and E ¼ 1:88MPa, best fit of experimental data
with a linear model yields a rate of variation of SW with time of β ¼
0:12 day�1 for 1MPa and β ¼ 0:22 day�1 for E ¼ 1:88MPa.

Neuronal cell networks were determined for a value of connection
probability—a parameter in the wiring model—of p ¼ 0:92 (methods). To
demonstrate that results are robust against variations of the model para-
meters and that the SW � E dependence is an underlying characteristic of
neuronal cells, we performed additional analysis where p was smoothly
varied in the 0:84� 0:96 range.

Results of the analysis, reported in a separate Supplementary Note 7,
illustrate that the values of SW decrease with E for all the considered
probabilities p (Supplementary Fig. 7.2, 7.4)—with the exception of p ¼
0:96 at 24 h (Supplementary Fig. 7.1), and p ¼ 0:86, p ¼ 0:88 and p ¼ 0:96
(Supplementary Fig. 7.3) at 72 h from culture. Thus results of this extended
simulation campaign mostly support the findings of this section.

Results of this section need to be commented even further. In this
study—the topological characteristics of neuronal networks have been
determined starting from the positions of the nuclei on the surface—that
have been then elaborated through convenient wiring models. However,
this represents just an estimate of how cells connect. A similar model
based on cell-cell-distance and cell-density, may explain less neuronal cell
connectivity and more cell-condensation and clustering. To generate
more reliable neuronal cell networks and provide a consolidated reference
against which results of the work can be verified, we performed additional
analysis. In place of examining cell-nuclei, we analyzed neuronal
branching from green fluorescent images of cells, in which actin filaments
were labelled using green fluorescent staining phalloidin conjugate
(Supplementary Figs. 8.1–8.3). Since actin filaments are expressed in
subcellular structures suchas growthcones or dendritic spines, they can be
used to dissect neurite outgrowth or synapse physiology. Results of this
independent analysis (reported in a separate Supplementary Note 8)
illustrate that the small-world coefficient of neuronal cell graphs decreases
linearly with the Young’s modulus as SW ¼ 1:98� 0:62E (Supplemen-
tary Fig. 8.4). In contrast, the relationship found by wiring models of cell
nuclei is (at 48 h from culture) SW ¼ 2:42� 0:59E. The very close
resemblance between linear model fits obtained using different proce-
dures indicates that the main findings of this research study based on a
mixed distance and density rule wiring model of cells – are accurate.

Specifically, that the small-world characteristics of neuronal networks are
hindered by surface stiffness in the low MPa range.

Statistical analysis of results
Analysis of variance (ANOVA)wasused to examinewhether thedifferences
between SW means measured on substrates with varying elasticity are sta-
tistically significant. For samples measured 24 h from analysis, ANOVA
results indicate that networks cultured on surfaces with Young’s modulus
E ¼ 0:55MPa exhibit a SW coefficient that is a different from the control
(E ! 1, SW ¼ 1) at a significance level α= 0.01 (Fig. 5a). The same test
indicates that the differences between the E ¼ 1:88MPa group and the
control are significant at a level α ¼ 0:05 (Bonferrroni post hoc test con-
ducted on the whole dataset).

48 h from culture, Bonferrroni post hoc test indicates that the differ-
ences among sample means and the control are statistically significant for
each considered value of elasticity at a significance level α = 0.01. 72 h from
culture, the small-world ness of networks on PDMS surfaces diverges in all
cases from the control at a significance level α ¼ 0:01. After 96 h from the
beginning of experiment, substrates on which cells are different from the
control have values of elasticity E ¼ 0:55MPa and E ¼
2:65MPa (α ¼ 0:01).

Estimating the amount information exchanged in neuronal cell
networks
Since networks-analysis results indicate that surface elasticity influences the
topology of neuronal cell graphs, we performed further research to examine
whether the shape of networks (SW) affects in turn the ability of networks to
exchange signals.

We used simulations (methods) to determine how information is
transported inneuronal-cell networks as a functionof substratepreparation.
We followed the propagation of an electrical disturbance applied to a node
of a system of neurons. Because of the stimulus, the node is subjected to a
progressive increase of the potential across itsmembrane.When the value of
themembrane potential exceeds a threshold, the neuron generates an action
potential that is transported downstream the network, stimulating other
neurons of the grid. The sequence of action potentials measured in corre-
spondence of individual nodes of the network represents a signal. The
information content of these signals—proportional to the rate and fre-
quency of neuronal firing64. can be decoded using information theory
approaches65–67 and is measured in bits. Here, we first simulated the infor-
mation transported in networks of neurons (Fig. 5b, c) and, secondly,
determined the total information as the sum of individual pieces of infor-
mation processed by nodes of the network.Wedetermined the value of total
information in neuronal-networks cultured on soft PDMS substrates with
values of elasticity falling in the 0:55� 2:65MPa interval. The networks of
neuronal cells were built from images taken 24h from incubation. To assure
statistical significance, we performed more than 10 simulations per neu-
ronal network. Results of the analysis (Fig. 5d) illustrate that the average
value of information is I0:55 ¼ 4:6 ± 0:38bits for cells adhering on a surface
with Young’s modulus E ¼ 0:55MPa. The value of information plunges to
I1 ¼ 3:8 ± 0:47bits for cells on a surface with E ¼ 1MPa. For values of
elasticity moving from E ¼ 1:88MPa to E ¼ 2:65MPa, the information
transported in networks of neuronal cells decreases from I1:88 ¼ 3:5 ± 0:3
to I2:65 ¼ 3:3 ± 0:38bits. In the considered elasticity interval, the more rigid
the PDMS substrates the less efficient the neuronal cell network developing
on those surfaces.

Measuring spontaneous neuronal cell activity
We used fMCI (functional Multi Calcium Imaging) techniques to measure
the spontaneous activity of neuronal cells in networks cultured on PDMS
surfaces with varying compliance. Samples were prepared following the
protocols reported in refs. 39,43 and themethods.Then, substrateswith sub-
confluent clusters of neuronal cells were imaged at DIV 15 using a fluor-
escent upright microscope. In each cell body, we recorded the intensity of
fluorescence over time,F tð Þ, anddetermined the variationoffluorescence as

https://doi.org/10.1038/s42003-024-06329-9 Article

Communications Biology |           (2024) 7:617 7



ΔF=Fo, where ΔF ¼ F � Fo and Fo is the baseline
68. The action potentials

released in the system were determined as the onsets of individual Ca2þ

transients68,69. Figure 6a and b are fluorescence images of neuronal cells
acquired at consecutive intervals showing how electric signals pass through
the network. For networks cultured on substrates with 3 different values of
elasticity - 0.55, 1 and 2:65MPa - we registered the signal over time on
several different sites (neurons) of cell-networks. Figure 6c shows the
intensity of fluorescence measured over 6 separate neurons in neuronal
networks cultured on PDMS surfaces with 0.55, 1 and 2:65MPa Young’s
modulus. For all tracked neurons, fluorescence signals were registered for
200s and baseline corrected. Diagrams in Fig. 6c illustrate that the number
and density of peaks and the neural activity vary with the elasticity of the
substrate - the larger the Young’s modulus, the less the abundance of peaks
in each dataset. We then converted these analog signals into binary time
series of 0/1 digits, where 1 (0) denotes the presence (absence) of activity. In
this analog-to-digital conversion we used δF ¼ 0:5 as cut-off value. The
raster-plot representation of these discrete spiking events enables direct
visualization of neuronal cell activity as a function of the surface char-
acteristics and allows quantification of cell performance (Fig. 6d). For each

dataset acquired on substrates with 0.55, 1 and 2:65MPa value of Young’s
modulus, we calculated the frequency of peaks as the number of peaks
measured in a time interval, divided the length of the interval. Results of the
analysis are reported in the diagram in Fig. 6e. The average firing frequency
measured in the networks of neuronal cells is f 0:55 ¼ 12:8 ± 3:6,
f 1 ¼ 8:4 ± 2:2, f 2:65 ¼ 2:0 ± 0:45 spikes/s for substrates with Young’s
moduli of 0.55, 1, and 2:65MPa, respectively. Moving from E∼ 0:55 to
E∼ 2:65MPa, neuronal cell frequency decreases of more than 6 times,
indicating that – in the considered elasticity range – neuronal cell activity
improves on substrates with higher compliance.

Ruling out the role of PDMS leakage in determining cell-behavior
To examine whether results of the work and the peculiar cell behavior that
we observed are ascribable to toxicity effects of uncured PDMS material
rather than to elasticity, we have performed an additional test campaign.
The campaign was aimed at characterizing the leakage of PDMS into DI
water at different times and under different temperatures and was carried
out using both Raman spectroscopy and energy dispersive X-ray spectro-
scopy (EDX) techniques (Supplementary Fig. 9.1). PDMS substrates,

Fig. 5 | Statistical analysis and simulations. We
used analysis of Variance (ANOVA) test to compare
the small-world-ness of networks formed on dif-
ferent surfaces. Multiple-comparison post hoc
Bonferroni test (a series of t-tests performed on each
pair of groups corrected by the number of groups)
indicates which samples means are significantly
different from the control, i.e. random neuronal-
networks cultured on rigid surfaces with SW ¼ 1. In
the diagram, sample-means that are different at
some significance level α, are marked by a bar. If α is
less than 0:05, it is flagged with 1 star (*). If α is less
than 0:01, it is flagged with 2 stars (**) (a). We used
information theory to estimate the amount of
information transported in networks of neuronal
cells. We built connected graphs from fluorescence
images of cells on the substrates (b) and examined
how an initial disturbance propagates in those net-
works - resulting space and time patterns of signals
were used to estimate the information processed
over time in each node (c). Results of this theoretical
analysis: total information I elaborated in neuronal
cell graphs cultured on soft PDMS surfaces, as a
function of surface elasticity (d). Data in Fig. 5a and
d are represented bymean ± standard deviation. The
sample size for data reported in Fig. 5d is 10.
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molded into cylindrical shapeswith a diameter of 2cm and a height of 0:5cm
using varying ratios of the liquid PDMS to curing agent ratio (ρ:1, ρ ¼ 7, 10,
13, 15, 18), were submerged in 200 μl of water to assess their stability. The
testing was conducted at two different temperatures: 37 °C, to mimic cell
culture conditions, and 60 °C, to accelerate the leaching process. Addi-
tionally, the substrates were incubated for a time varying from 24 h (a short
incubation period) to 108 h (a long incubation period). To analyze any
products that may have been released following the long-standing exposi-
tion of PDMS towater, a drop fromeach solutionwas placed in duplicate on
a CaF2 slide and on a CaF2 slide coated with a sputtered gold layer for
Raman analysis, and on a clean standard SEM pin stub for EDX analysis,
thenallowed to dry. Sampleswere subsequently examinedusing aRenishaw
inVia Raman microscope equipped with a 50× objective of a Leica micro-
scope, and by a FESEM ULTRA-PLUS equipped with an SE2 detector.

Results of the analysis, reported in a separate Supplementary Note 9,
collectively indicate that the leakage of PDMS may be less relevant than the
mechanical properties of substrates in determining cell behavior, for reasons
that canbe summarized as follows: (i)TheRamansignal of PDMS traces is, in
any case, vanishingly small (Supplementary Fig. 9.2, 9.3), and could be
detected only through SERS effects (Supplementary Fig. 9.4). This indicates
that leakage of PDMS is negligible. (ii) The variation of Raman signal asso-
ciated to Si-C stretching is small for varying values of ρ, that in turn indicates
that the liquid-base:curing-agent ratio influences only moderately leakage
(Supplementary Figs. 9.5, 9.6). (iii) EDXanalysis of samples illustrates that, in
a given amount of PDMS excess, the relative abundance of Silicon correlates
poorlywith ρ—similarly to other elements found in solution (Supplementary
Figs. 9.7–9.13). This indicates that, whenpresent, the effects of leakage cannot
explain the enhanced adhesion and enhanced clustering of neurons—that is
instead related to the inverse of ρ. (iv) Even assuming a significant release of Si
into water or the culture medium used for neurons, silicon, in the form of
silicon dioxide, or silicon-based nano- andmicro-particles, and particulate, is
generally considered to be biocompatible and not toxic to cells under many
conditions70,71. The biocompatibility of Si-based nano- and micro-scale
materials has been a focus of ongoing research efforts to understand the
factors affecting their interactions with biological systems. Considering all

this, we confidently rule out that leakage is responsible of the peculiar cell
behavior observed and reported in our work, either alone or combined with
other mechanisms or PDMS characteristics, such as elasticity.

Discussion and conclusions
Results of the study indicate that, in the low MPa range, increasing com-
plianceenhances the interactionofneuronal cellswith softmaterials - that in
turn translates into augmented adhesion, augmented clustering,
and improved cell activity. For substrates with a modulus of Young (E)
moving from 0.55 to about 2.5 MPa, the number of cells measured on a
region of interest of approximately 1mm2 decreases steadily at a rate of ~92
cells MPa-1 24 h from seeding. Cell-density falls evenmore steeply with E at
later adhesion stages – with a cell depletion rate as high as ~150 and ~200
cells MPa-1, 48 and 96 h from incubation. In the same elasticity range, the
small world coefficient – a measure of how efficiently cells form structured
graphs with high clustering and short paths – also decreases. For networks
measured 48 h from seeding, SW transitions from SW~2 (E = 0.55MPa) to
SW~0.3 (E = 2.65 MPa). The increased ability of cells to form clustered
networks at low values of elasticity has, as a result, an increased potential of
those networks to process information – as evidenced by computer simu-
lations and functional multicalcium experiments. With the first predicting
information in low-elasticity substrates (E = 0.55 MPa) some 1.5 times
higher than in high-elasticity supports (E = 2.65 MPa) - and the latter
illustrating that the activity of neurons on soft substrates is 6 times higher
than on rigid surfaces. Here, we assume that neuronal activity is encoded by
the number of action potentials in the time interval. To put results into
context, in experiments where we examined how surface nanotopography
modulates neuronal cell interaction39,43, we found that in the 0-40 nm range
the small-world-ness of neuronal networks increases by a factor of ~3, the
simulated information by a factor of ~2.6, and neuronal activity of ~4 times.
Thus in the considereddimensional intervals, themechanical properties of a
material are as important as material’s morphology in regulating the
behavior of neuronal cells.

Results of the study are counterintuitive. They illustrate that cell
adhesion, cell clustering, and activity, are optimized on materials with low

Fig. 6 | Measuring neuronal-cell activity.We used fMCI (functional multicalcium
imaging) to measure the activity of neuronal cells on soft PDMS substrates. In the
technique, calcium ions within neuronal cell networks are selectively targeted with a
fluorescent compound - its transients (a, b) are then associated to the generation and
release of action potentials in the system. Intensity of calcium-related fluorescence vs

time measured at 6 different sites (neurons) of neuronal networks cultured on
substrates with decreasing values of elasticity: 0:55, 1 and 2:65 MPa (c). Raster-plot
of fluorescence intensity signals shown in c, d. Density of peaks of the fluorescence-
intensity signals measured in neuronal-networks as a function of substrate elasticity
(e). Data in Fig. 6e are represented by mean ± standard deviation (sample size = 12).
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elasticity, contrary to the consolidated hypothesis that stiffness improves
adhesion. But soft-material enhanced cell-adhesionmay indeed be the case.
In support to the experiments, we have developed a simple theoretical
scheme that explains experimental data. Consider the scheme in Fig. 7a and
Supplementary Fig. 10.1. The interplay between the cell and the surface is
mediated by cell-adhesionmolecules (CAMs)with chemical potential c, and
by non-specific interaction forces described by a surface energy-density of
adhesion γns. Such that the overall specific energyof adhesion isγ ¼ cþ γns.
With Johnson,Kendall andRoberts72, cells pushon the substrate exerting an
adhesive force F = 3/2 π Rγ, where R is the local radius of curvature, and γ

coincides with the work of adhesion at the equilibrium (Fig. 7b). The radius
of curvature can be determined as

R xð Þ ¼ 1þ dy
dx

� �2
 !3=2

=
d2y

dx2

����
���� ð2Þ

where yðxÞ is theprofile topography functionof thepositionon the substrate
x. Since the surface is notflat, i.e. y is not constant (Supplementary Fig. 10.2),
the radius of curvature is discontinuous with values that oscillate between

Fig. 7 | Understanding the mechanisms of cell adhesion and clustering on soft
materials. Schematics of the process of adhesion of a cell to rough soft materials (a).
The adhesion of a cell to a surface is mediated by cell-adhesion molecules and steric
interactions with a specific energy of adhesion γ. Following the Johnson, Kendall and
Roberts model, cell-membrane adhesive forces (FJKR) depend on γ and the radius of
curvature (χ) of the substrate (b). Since PDMSmaterial is a non-flat surface, χ is not
uniform on the substrate (c). As a result, following adhesion PDMS surface is loaded

with non-uniform forces distributed irregularly on the surface (d). Nonuniform
forces deform unevenly the PDMS surface exacerbating the original roughness (e).
An increased value of roughness has, as a consequence, the increase of the overall
energy density of adhesion at the cell-surface interface (f). An enhanced adhesion
generates in turn, as a collateral effect, lateral forces in the system that perturb cell-
equilibrium and cause cell aggregation and clustering (g).
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zero and amaximum (Fig. 7c and Supplementary Fig. 10.3). As a result, also
the forces on the surface are irregular. Since the substrate is soft, it deforms
under external loads and – assuming it is discretized into n non-interacting
elements – points of the surface are displaced downward of a quantity
δy xð Þ ¼ y xð ÞFðxÞ= E Að Þ, whereA is the section of the element (Fig. 7d and
Supplementary Fig. 10.4). The final shape of the substrate is thus
yfin ¼ yin 1� FðxÞ=E A

� �
: for non-regular distributions of force and

sufficiently large γ, yfin may be also significantly different from yin (Fig. 7e).
This implies that, following cell-adhesion, substrate roughness increases
(Supplementary Fig. 10.5). However, previous models30 illustrated that
increasing roughnessmay cause an increase of the effective specific energy of
adhesion γeff (Fig. 7f) (γeff is the work of detachment of the cell from the
rough substrate). With Gentile23, the effective energy-density of adhesion is
related, in turn, to the lateral forces that act on cells during adhesion and that
can eventually enhance cell clustering and coalescence (Fig. 7g). Thus, in the
end, residual roughness on the substrate is responsible for the increased
adhesion and increased clustering of cells on soft materials (Supplementary
Fig. 10.6). In simulation in which rough PDMS surface of lateral size l ¼
10 μm and initial value of roughness Ra∼ 20nm was discretized into n ¼
100 elements, we found that for a cell-surface binding energy density of
γ ¼ 10�5J=m2, the value of roughness shifts to about Ra∼ 30nm
(Esubstrate ¼ 1MPa). As a result, the intensity of lateral forces on cells moves
from ∼3nN to about ∼ 5nN (Ecell ¼ 10kPa,membrane thickness¼ 10nm)
– that for a sufficiently high density of cells may mark the transition from
non-clustered to clustered systems. Details of the model are reported in a
separate Supplementary Note 10.

In this study, we employed established techniques for collecting and
culturing primary hippocampal neurons73. Although this approach might
yield a mix of neurons and glial cells, previous research indicates that the
presence of glial cells is significantly less critical than that of neurons39,74,75.
To demonstrate that glial cells constitute a minor fraction of the total cell
population on the substrate surfaces, we conducted further experiments
(Supplementary Note 11). After 15 days from seeding, we captured and
analyzed fluorescence images of hippocampal cells cultured on traditional
flat surfaces. We stained cell nuclei with DAPI, which indiscriminately
marks both neuronal and glial cells, alongside selective staining with anti-
NeuN antibodies that target neuron nuclei specifically. This dual-staining
approach allowed us to assess the colocalization of all cultured cell nuclei
with those of neurons. We quantified colocalization through metrics, such
as the Pearson correlation coefficient (Pc ¼ 0:66) and Manders colocali-
zation coefficients76,77 (M1 ¼ 0:965) and (M2 ¼ 0:74), which reveal the
extent of signal overlapbetweenthe two channels (SupplementaryFig. 11.1).
Our findings, withM1 indicating a high overlap between neuronal cells and
the total cell population and M2 showing that approximately 75% of the
cells identified byDAPI staining are neurons, align with literature reporting
that neurons account for 65% to 80% of cells in themousehippocampus78,79.
Thus, our analysis confirms that neurons predominantly occupy the cul-
tured surfaces. Significantly, these observations were made after 15 days in
vitro, a period considerably longer than that used in this study for network
characterization (i.e., up to 4 days), highlighting the predominantly neu-
ronalmakeup of the cultures even as glial cells are known to proliferate over
time. This evidence strongly supports our conclusion that the data and
insights derived from this study predominantly reflect neuronal activity.
Additionally, much of our research relies on functional multi-calcium
imaging (fMCI) experiments, which inherently focus on neuronal activity
and are unaffected by glial or other non-neuronal cells. The outcomes of
these fMCI experiments, demonstrating a correlation between neuronal
activity and substrate compliance, corroborate our observations of neuron
adhesion and clustering onPDMS.They reinforce ourfinding that substrate
elasticity inversely affects neuronal performance within the lowMPa range.

This research demonstrates that adjusting the stiffness of materials
could be a valuable strategy for creating more effective substrates for bio-
logical applications. The computational model presented here offers crucial
insights for selecting the appropriate physical parameters for specific uses.
For example, substrate properties like stiffness and roughness can be

customized for having, in one case, substrates with a higher propensity in
favoring homogeneously spread and firmly adhered cells (low connectivity)
in the caseof biological systemsnot requiring theprocessingof large amount
of information. In another case, such parameters can be optimized for the
realization of more complex and highly interconnected biological systems,
as for a brain-like tissue, or even for providing the suitable architecture for
artificial organs. It’s important to note that the studied parameters are not
directly tied to the substrates’ chemical composition or structure. Yet, they
significantly influence neuronal cell organization and clustering. This sug-
gests that a material’s stiffness and geometric properties might be as crucial
as its surface chemistry in directing cell behavior. Therefore, the design and
creation of materials for tissue engineering, regenerative medicine, and
experimental models for neuro-degeneration studies should consider a
combination of mechanical, chemical, and geometric characteristics. These
factors collectively impact essential qualities of biomaterials like bio-
compatibility, biodegradability, and overall performance.

Methods
Fabrication of soft PDMS surfaces
Soft polydimethylsiloxane (PDMS) substrates were produced using replica
molding techniques. A template of empty discs was obtained by micro-
machining polymethyl methacrylate (PMMA). Each disc had a diameter
and thickness of 1cm and 2mm, respectively. Then, a solution of liquid
PDMS and curing/solidifying agent (SYLGARD™ 184 Silicone Elastomer
Kit, Dow Corning) was poured into a baker, gently stirred, and put under
vacuum for approximately 30 minutes to enable degasification and remove
unwanted bubbles. Then, the solution was poured into the template, placed
in an oven and cured at 80°C for 60 minutes. After cooling, samples were
carefully peeled from the template. All samples were inspected by naked eye
and optical microscopy for detecting possible defects and, once passed the
quality check, stored in a Petri dish for future use. The pre-polymer (pp) and
the curing agent (ca) were mixed using a ratio r ¼ pp : ca varying between
7 : 1 and 18 : 1. The larger the amount of pre-polymer in solution, the
smaller the stiffness of the resulting substrates.

Mechanical characterization of PDMS surfaces
Mechanical characterization of the PDMS was carried out by both tensile
and nano-indentation tests. While the tensile test has the advantage of
providing highly reliable results, independent from the shape and the
dimensions of the specimen, nano-indentation test is non- or semi-
destructive, and does not require specific specimen preparation.

Tensile tests were carried out following themethods reported in ref. 80
and recapitulated in a separate Supplementary Note 1. Specimens, in the
form of strips with a cross-section of 5mm × 2mm, were tested by the
universal testing machineMTSmodel Criterion 42, equipped with the load
cell LSB.102. The load was applied bymanual vice-action grips. All samples
were tested in displacement controlmode by setting the speedof themoving
cross-head to 2mm=min. Images of samples under load were acquired by a
Prosilica ATV-GT2450 camera. Then, the VIC-2D software (Correlated
Solutions)was used to evaluate the in-planedisplacement components from
the acquired images.We used digital image correlation (DIC) algorithms to
determine the strain field as a gradient of the displacement field in a
selected ROI.

Nano-indentation tests were performed following the methods
reported in80,81. PDMS samples were placed under the tip of a nano-
indentation machine (Anthon-Parr instrumented hardness station). The
penetration depth and the load were then registered for each sample. The
Young’s modulus was then determined from the slope of the unloading
curve at the early stage of the process (Supplementary Note 1).

Measuring topography of PDMS surfaces
We acquired topographical images of soft PDMS surfaces using a Trib-
ometer MFT-5000 with an integrated 3D profilometer from Rtec. The
profilometer, equipped with 50× and 100× objectives, operated in non-
contact/confocalmode to generate 3D interferometric profiles of the surface
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under white light illumination as illustrated, as for an example, in ref. 82.
Surface topography images were acquired by performing vertical z-axis
scans of the samples, using a scan length of XX. During each scan, the step-
size and frame-rate of acquisition were set as 2:5nm and 7frames=s,
respectively. Resulting images had a size of 1280 (width) × 960 (height)
pixels, and a pixel size of ∼ 78nm. For each sample, the total imaged area
was then of ∼100 × ∼ 75 microns. For each PDMS-curing agent ratio and
sample stiffness, we performed at least 5 differentmeasurements. Themean
(Ra) and rootmean square (Rrms) values of roughness were then evaluated
as Ra ¼ R SA jzðx; yÞj=SA and Rrms ¼ ðR SAz2ðx; yÞ=SAÞ1=2, respectively,
where z is the sample height, x and y are the spatial coordinates in the plane
of the measurement, and SA is the sampling area.

Determining the fractal dimension of PDMS surfaces
The height profiles of PDMS surfaces were processed using the methods
reported in38 and recapitulated in a separate Supplementary Note 12.

Measuring surface contact angle
The wetting characteristics of the soft PDMS surfaces were determined
using an automatic contact angle meter (KSV CAM 101, KSV Instrumetns
LTD, Helsinki, Finland). One small drop (∼5 μl) of deionized water was
gently positioned on the surface, and the contact angle between the solid,
liquid, and air phases measured at room temperature 5s after drop casting.
For each substrate, the contact angle ϑ was averaged over 4 repeated mea-
surements. The energy of adhesion γ per unit area at the PDMS/water
interface was then determined as γ ¼ γla 1þ cos ϑð Þ, where
γla ∼ 72:8mJ=m2 is the surface tension between air and water.

Primary neuronal cultures on PDMS substrates
Soft PDMS substrates were individually placed in 12-multi-well plates
(Corning Incorporated) and sterilized under UV irradiation for 12 h. Poly-
D-lysine (PDL) (Sigma-Aldrich,Milan, Italy) was diluted in sterileH2O to a
final concentration of 1μg=ml and used to cover the substrates prior neu-
ronal cells culture. Substrateswere left in thePDLsolution overnight in a cell
culture incubator (37 °C, 5%CO2, 5% humidity). No treatment with oxygen
plasma was—remarkably—employed on PDMS surfaces before coating
with PDL. Notwithstanding, PDMS sample surfaces were moderately
hydrophilic with values of contact angle less than 80° for all considered
substrate preparations, as evidenced by measurements reported in Fig. 2h.
Neuronal cells were extracted from C57B/L6 mouse embryos brains at day
18 (E18) as described in previous works39,43. All procedures were carried out
in accordance with the guidelines established by the European Commu-
nities Council (Directive of November 24th, 1986) and approved by the
National Council on Health and Animal Care (authorization ID 227, prot.
4127, 25th March 2008). Pregnant females were deeply anesthetized with
CO2 and decapitated. Embryos were then removed, brains were extracted
and placed in coldHank’s Balanced Salts solution (HBSS). Upon removal of
the meninges, the hippocampus was dissected, incubated with 0:125%
trypsin for 15 min at 37 °C and dissociated. Neurons were plated on the
PDMSsubstrates in complete cell-culturemedium, supplementedwith 10%
fetal bovine serum (FBS, Invitrogen), 5% penicillin G (100 U/ml) and
streptomycin sulfate (100mg=ml) (Invitrogen). Then, neurons were incu-
bated at 37 °C in a humidified 5%CO2=air atmospherewith a density of 105

cells/ml. Neurons were incubated for different periods, 24, 48, 72, 96 hours
in vitro, to evaluate the effect of time on cell clustering. Neurons were plated
with the samedensity onPDL-coated rigid polystyrene substrates serving as
a control. Cells were sub-confluent throughout the duration of the
experiment.

Neuronal cells staining
After incubation, the cell culture medium was removed and the cells were
washed twice in PBS. Then, they were fixed with 4% PFA (paraformalde-
hyde) and incubated for 30 min at room temperature (RT). The cells were
washed twice PBS and made permeable with 0:05% triton (Invitrogen) for
5 min at RT. The nuclei of the cells were then stained with 100μl DAPI

(40, 6-Diamidino-2-phenylindole, Sigma Aldrich) solution for 10 min at
4 °C at dark. The actin filaments of the cells were labelled using 100μl of
green fluorescent staining phalloidin conjugate (cytopainted, from Abcam,
Italy), incubated with the cells for 15 min at 4 °C at dark. At the end of
staining, the DAPI and phalloidin conjugate solutions were removed and
each sample washed with PBS.

Neuronal cells imaging
At the end of the incubation period and after staining, cells adhering on the
substrates were imaged using a Nikon ECLIPSE Ti fluorescent microscope
using the methods reported in a separate Supplementary Note 13.

Image analysis
Fluorescent images of cells were imported inMatlab R2020b and converted
from RBG to gray scale format. The k-means algorithm was applied to
segment the images and select the sole region occupied by cells. The
k-means clustering algorithm partitions the originating images into k dif-
ferent segments42,83. The information content of the image was associated to
one of the segments and all the other segments were disregarded as back-
ground. The segment containing the information was shifted to black pixels
(binary 1), while the backgroundwas associated to white pixels (binary 0). k
depends upon the particular problem at study and, for the present config-
uration, it was set as k ¼ 8. After segmentation, a grid with a mesh size of
8× 8 pixels was applied to the images to determine the average intensity
color of eachmesh and associate this value to the probability of being a cell.
A threshold (80% of themaximumcolor intensity)was applied to define the
presence of a cell. The regionwas shrunk to a single pixel and associatedwith
a node, corresponding to the center of the cell.

Neuronal cells wiring
Once that the neuronal cell centers were determined, they were connected
using a mixed distance and density rule described elsewhere58,62 and
reported in a separate Supplementary Note 14.

Cell-networks analysis
Upon wiring, the information about the connections between cells was
stored in the adjacency matrix. The adjacency matrix Aij is a matrix with a
number of rows andcolumns equal to the numberof cellsmeasured for each
sample in a region of interest. The elements ofAij are such that ifAij ¼ 1ð0Þ
cell i and cell j are connected (disconnected). The adjacencymatrixwas then
used to calculate for each network the small world (SW) coefficient defined
as:

sw ¼ cc
ccrandom

�
cpl

cplrandom
ð3Þ

where cc is the mean clustering coefficient of the network averaged over all
the individual clustering coefficients calculated for each node as:

cci ¼ 2Ei=n n� 1ð Þ ð4Þ

InEq. (4),Ei is the numberof the existing connections about a node i,n
is the degree of the node, and n n� 1ð Þ=2 is the maximum number of
connections that can be established around the node57. Cpl is the char-
acteristic path length defined as the averaged shortest path length (spl)
among all the combinations of nodes in the network, taken two at the time57.
ccrandom and cplrandom are the clustering coefficient and characteristic path
lengthof anErdős–Rényi randomgraphwith the same size anddegreeof the
network under study. Thus, the small-world coefficient of a graph is larger
than one if that network has higher clustering and shorter paths than an
equivalent random graph with the same size.

Simulating information flows in neuronal cell networks
Networks of neuronal cells built after fluorescence images of cells were
stimulated with an external disturbance to understand how a different
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network topologyon soft PDMSsurfaces affects cell-signaling. Themodelof
propagation is described in a separate Supplementary Note 15.

Decoding information contained in the spike trains
The train of 0=1 bits recorded for each neuron over time can be decoded
using the method of information theory described in refs. 65–67. The
method involves partitioning the signal in finite sequences of time and
calculating how many times each sequence appears in the originating pat-
tern of 0=1 values. Results of the calculation are a distribution of frequencies
as a function of a specific state, PðsÞ. The Shannon information entropy
associated to PðsÞ is then H Sð Þ ¼ �PsPðsÞlog2PðsÞ, where S stands for
stimulus65.H is a quantitative estimate of the information carried by S. The
information transported in the network is thus I ¼ H S1

� �� H S2
� �

, where
S1 (S2) is a random (periodic) signal of time84.

Functional multicalcium imaging
Methods relative to the fMCI experiments are reported in a separate Sup-
plementary Note 16.

Statistics and reproducibility
Results in the main article and supplementary material are reported as
mean ± standard deviation. In determining the number and the topological
characteristics of neurons on soft surfaces (Figs. 3 and 4) we performed
3 sample repeats. Overall, for each considered value ofmaterial stiffness and
cell incubation time, we processed and analyzed 30 to 50 images. A mini-
mum sample size of 30 images was chosen to increase the confidence
interval of the population data set. Analysis of variance (ANOVA)was used
to examine whether the differences between SW means measured on sub-
strates with varying elasticity are statistically significant (Fig. 5). In per-
forming the test, the null hypothesis is that the means between pairs of
samples are equal. Everywhere in the text and the figures the difference
between two subsets of data is considered statistically significant if the
ANOVA test gives a significant level less than 0.05.

Data availability
All data underlying charts and diagrams reported in Figs. 2–6 are deposited
in the public data repository OSF under the name “Soft Neurons” (https://
doi.org/10.17605/OSF.IO/WV34G). Data supporting this study are avail-
ablewithin thepaper and the Supplementary Information.All other data are
available from the authors upon reasonable request.
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