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A B S T R A C T

Nowadays, increasing longevity associated with declining cerebral nervous system functions, suggests the need
for continued development of new imaging contrast mechanisms to support the differential diagnosis of age-
related decline.

In our previous papers, we developed a new imaging contrast metrics derived from anomalous diffusion signal
representation and obtained from diffusion-weighted (DW) data collected by varying diffusion gradient strengths.
Recently, we highlighted that the new metrics, named γ-metrics, depended on the local inhomogeneity due to
differences in magnetic susceptibility between tissues and diffusion compartments in young healthy subjects, thus
providing information about myelin orientation and iron content within cerebral regions. The major structural
modifications occurring in brain aging are myelinated fibers damage in nerve fibers and iron accumulation in gray
matter nuclei. Therefore, we investigated the potential of γ-metrics in relation to other conventional diffusion
metrics such as DTI, DKI and NODDI in detecting age-related structural changes in white matter (WM) and
subcortical gray matter (scGM). DW-images were acquired in 32 healthy subjects, adults and elderly (age range
20–77 years) using 3.0T and 12 b-values up to 5000 s/mm2. Association between diffusion metrics and subjects’
age was assessed using linear regression. A decline in mean γ (Mγ) in the scGM and a complementary increase in
radial γ (γ?) in frontal WM, genu of corpus callosum and anterior corona radiata with advancing age were found.
We suggested that the increase in γ? might reflect declined myelin density, and Mγ decrease might mirror iron
accumulation. An increase in D// and a decrease in the orientation dispersion index (ODI) were associated with
axonal loss in the pyramidal tracts, while their inverted trends within the thalamus were thought to be linked to
reduced architectural complexity of nerve fibers. γ-metrics together with conventional diffusion-metrics can more
comprehensively characterize the complex mechanisms underlining age-related changes than conventional
diffusion techniques alone.

1. Introduction

The human brain undergoes regional-specific structural and physio-
logical changes during lifespan, which are reflected in a decline in
cognitive abilities that become less and less efficient with aging (Lockhart

et al., 2014). Axonal damage and disintegration, loss of neuronal cells,
myelin degradation and iron accumulation (Draganski et al., 2011; Xu
et al., 2008; Ashraf et al., 2018) are the main age-related modifications
that inexorably occur in the aging brain. With increasing life expectancy
in developed countries, there is a great need to establish efficient
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protocols for the early diagnosis of cerebral decline that can support the
development of new drugs and new therapies for both normal and
pathological aging.

In the last decades, magnetic resonance diffusion imaging (MRI)
techniques and in particular diffusion tensor imaging (DTI) studies
(Basser et al., 1994) have contributed to the neuroscience of normal
ageing and to characterizing changes in morphology and tissues that
occur with advancing age. From the fourth decade of life, DTI metrics
highlighted a decline in fractional anisotropy (FA) and a complementary
increase in mean diffusivity (MD) in cerebral white matter (WM) due to
aging (Salat et al., 2005). This behavior of the DTI parameters reflects
loss of WM fibers and of their directionality and a reduction in axonal
diameters (Bartzokis et al., 2012; Callaghan et al., 2014). On the other
hand, DTI investigations into cerebral gray matter (GM) as a function of
subjects’ age, showed less clear patterns (Rathi et al., 2014; Salminen
et al., 2016), whereas T1, T2 and T2* weighted imaging and
susceptibility-based imaging studies highlighted GM atrophy together
with an increase in iron content in specific GM regions (Pfefferbaum
et al., 2010; Haacke et al., 2010; Daugherty and Raz, 2015; Pirpamer
et al., 2016). DTI parameters quantify the diffusive properties of bulk
water poorly interacting with the complex structure of the neural tissue,
so DTI metrics have a limited sensitivity and specificity in the detection of
early microstructural changes in WM and GM. Moreover, the evaluation
of early physiological modification due to different iron content in vivo is
challenging and still requires further investigation (Pfefferbaum et al.,
2010). As a consequence, in the last few years, several methods have
been developed to increase the potential ability of MRI diffusion tech-
niques in detecting rearrangement of WM and its modification due to
normal and pathological aging, each with its strengths and weaknesses
(Jelescu and Budde, 2017). Two complementary approaches have
emerged for extracting information on the tissue microstructure
exploiting the biological water diffusion signal: signal representation and
biophysical tissue modeling (Jelescu and Budde, 2017; Novikov et al.,
2018). On the one hand, signal representation or “statistical models”
such as DTI and diffusion kurtosis imaging (DKI) quantify parameters
deriving from statistical mechanics without assumptions about the un-
derlying tissue, but they lack specificity, and provide only an indirect
characterization of the microstructure (Kiselev, 2017). On the other
hand, biophysical tissue models such as neurite orientation distribution
and density imaging (NODDI) require schematic-geometric assumptions
about the underlying tissues. Therefore, even if such models can poten-
tially provide greater specificity and interpretation of biologically rele-
vant parameters, the results are dramatically dependent on the initial
geometric assumptions that in general may not well describe the main
components of tissue microstructures, especially their changes due to
pathologies (Novikov et al., 2018). Since DKI is sensitive to water mol-
ecules which interact more with the cerebral microstructures than those
of bulk water considered in DTI, Kurtosis techniques have been used to
study healthy aging as an extension of DTI as these techniques are more
sensitive to microstructural changes (Coutu et al., 2014; Gong et al.,
2014; L€att et al., 2013).

In parallel, several strategies have been developed to quantify the
differences in magnetic susceptibility (Δχ) in brain tissues that poten-
tially offer the possibility to measure the presence of heavy metals, such
as iron in GM and WM, and to highlight the directionality, the micro-
architecture and the chemical arrangement of the neural tissues. As an
example, quantitative susceptibility mapping (QSM) allows the calcula-
tion of bulk magnetic susceptibility distribution of tissues in vivo from
gradient echo (GRE) magnetic resonance phase images (Langkammer
et al., 2012) while susceptibility tensor imaging (STI) quantifies the
amount of Δχ anisotropy (Liu, 2010). However, in order to compute the
susceptibility tensor, it is necessary to acquire the signal along at least six
different orientations of the sample with respect to the static magnetic
field (B0) (Liu, 2010). This is an intrinsic limitation of STI imaging, since
subject rotation during acquisition is hardly practicable in clinical
applications.

Recently, we showed the potential of the new γ-metrics derived from
anomalous diffusion (AD) signal representation in highlighting Δχ in
myelin orientation and iron contents within selected regions of WM and
subcortical GM (scGM), respectively (Caporale et al., 2017). Because the
pseudo-superdiffusion γ parameter depends on the local Δχ at the
interface between different tissues and on the distribution and dimension
of the diffusion compartments, the γ-metrics could be useful for
extracting information complementary to that of the DTI in normal aging
studies of the human brain.

Starting from the representation of the diffusion weighted (DW)
signal in terms of fractional derivatives (Lin, 2015, 2016, 2018), we
quantified the γ parameters using the signal, S(b), obtained with a pulse
field gradient (PFG) sequence collected by changing diffusion gradient
(gdiff) strength at a constant value of the diffusion time Δ. In this
framework, DW signal must be fitted to the stretched exponential func-
tion: SðbÞ ¼ Sð0Þexpð�ðbDÞγÞ (Magin et al., 2008; De Santis et al., 2011;
Hall and Barrick, 2012; Ingo et al., 2014). In the context of the transient
anomalous diffusion theory, based on the Continuous time random walk
(CTRW) (Metzler and Klafter, 2000), the γ parameter extracted by fitting
the above function to DW data, quantifies superdiffusion processes.
Clearly, there is no superdiffusion of water in brain tissues, but the signal
representation that we use to quantify γ reflects the additional effect of
the magnetization phasing and dephasing due to internal gradients (gint)
generated by Δχ at the interface between different tissues. As explained
in our previous papers describing in vitro and ex vivo experiments to
validate the γ-metrics (Palombo et al. 2011, 2012; Capuani et al., 2013),
an ensemble of spins in a voxel can contribute to a further decrease in the
DW signal attenuation, when gint and gdiff are in the same order of
magnitude; other spins (that can be located in a voxel far from the first
ones) can acquire a phase that will help to increase the signal. Due to
indistinguishable spins associated with water molecules, this scenario
mimics a super-diffusion regime where water molecules seem to perform
longer jumps because their signal disappear in one spot, while appearing
instantaneously in another spot. For this reason, we named γ the
pseudo-superdiffusion parameter of transient anomalous diffusion. The
adjective “transient” means that over a sufficiently long time, diffusion
asymptotically becomes normal (or Gaussian) showing a finite asymp-
totic diffusion value (percolation limit). In this paper, the potential of
γ-metrics in detecting WM and scGM changes due to aging is shown
regardless of the debate concerning the existence of transient anomalous
diffusion in brain tissues (Nicholson, 2015; Saxton, 2008; Destainville
et al., 2008), as this issue is outside the scope of this study. Towards this
goal, γ-metric results inWM and scGMwere compared to DTI parameters,
mean kurtosis (MK) derived from DKI metrics (Jensen et al., 2005) and
NODDI derived parameters (Zhang et al., 2012). Association between
diffusion metrics and subjects’ age was assessed via linear regression. We
tested the hypothesis whereby γ-metrics are sensitive to physiological
and structural variations that occur in the human brain during aging,
such as iron deposition and myelin degradation.

2. Materials and methods

2.1. Studied population

A total of 35 volunteers took part in this study after providing
informed written consent in compliance with the national laws and with
the local ethics committee guidelines. None in the cohort had a history of
stroke, head injuries, medical illness or diagnosis of neurological and
psychiatric disorders. Of the 35 volunteers, 32 were retained for this
study, 19 men and 13 women (age range 20–77 years, Mean� SD¼ 43.7
� 18.2y). One of the volunteers was excluded due to the presence of brain
abnormalities. The other two subjects were discarded because of
incomplete data acquisitions and substantial bulk motion.
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2.2. Data acquisition

All volunteers underwent MRI examination using a 3.0T Siemens
Magnetom Allegra (Siemens Medical Solutions, Erlangen, Germany)
equipped with a circularly polarized transmit-receive coil. The maximum
gradient strength was 40mT/mwith a maximum slew rate of 400 T/m/s.
The sameMRI protocol was applied to all subjects, including whole-brain
T1-weighted images and Diffusion-Weighted Spin Echo-Echo Planar
Imaging (DW SE-EPI). Care was taken to center each subject's head in the
head coil and to restrain subject's motion with cushions andmedical tape.

Diffusion experiments were performed with the following parame-
ters: TR/TE¼ 6400/107ms; Δ/δ¼ 107/35ms; bandwidth¼ 1860Hz/
px; matrix size¼ 128 � 128, number of axial slices¼ 32; in-plane reso-
lution¼ 1.8 � 1.8mm2; slice thickness¼ 3mm; number of averaged
scans NS¼ 2. The diffusion-encoding gradients were applied along 15
non-collinear directions spanning the entire sphere to minimize the effect
of cross-terms between the diffusion gradients and the imaging gradients
in the estimation of diffusion parameters (Kingsley, 2006). The set of 15
diffusion directions was chosen among the optimized schemes suggested
by Landman et al. being one of the possible minimum potential energy
partitions of the scheme of 30 directions proposed by Jones et al., based
on the electrostatic repulsion algorithm (Landman et al., 2007; Jones
et al., 1999). By varying the gradient strength g, 11 different b-values
were acquired (b¼ 200, 400, 600, 800, 1000, 1500, 2000, 2500, 3000,
4000, 5000 s/mm2), plus the b0 image with no diffusion weighting, with
an anterior-posterior phase encoding direction for all the scans. The

acquisition time for the entire diffusion protocol was approximately
37min per subject.

2.3. Data analysis

Fig. 1 illustrates the main steps of the image processing pipeline used
in this study. After the raw data quality check, all diffusion images were
pre-processed to correct for noise effects, Gibbs ringing artifacts, eddy
currents and subject's movements. DTI, DKI, NODDI and γ-imaging
representative functions (see paragraph 2.4) were fitted to different
subsets of the diffusion data. A population-based template was con-
structed, and all images were co-registered to this template. The analysis
was finally carried out using both a ROI-based and a voxel-wise based
approach.

2.3.1. Pre-processing
All diffusion images were first visually inspected to check for data

quality. Datasets with considerable bulk motion artifacts were discarded.
To reduce the noise effect on the diffusion parameter estimation, the

MRtrix3 dwidenoise tool (Copyright ©2016 New York University, Uni-
versity of Antwerp, https://github.com/MRtrix3/mrtrix3) was applied as
the first step of the preprocessing (Tournier et al., 2012; Veraart et al.,
2016a, 2016b). Then, the Gibbs ringing correction framework of Kellner
et al. (2016) was applied for EPI distortion correction. Finally, the image
distortions induced by head motion and eddy currents were corrected
using the FSL eddy tool (FMRIB Software Library v5.0, FMRIB, Oxford,

Fig. 1. Pipeline of the data processing: the main steps carried
out to analyze the diffusion weighted images are schemati-
cally summarized. a) Brief description of the subjects' cohort
and acquisition protocol. b) The collected data were then
corrected for random noise effects, Gibbs ringing artifacts,
movements and eddy current induced artifacts. c) Different
subsets of the data were used to obtain the different diffusion
metrics. d) The DT-eigenvalues were used to obtain a popu-
lation specific template; all the other metrics were then pro-
jected onto this template. Associations between subjects' age
and diffusion metrics were assessed averaging over regions of
interest (ROIs) or voxel-wise.
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UK) (Yamada et al., 2014; Andresson and Sotiropoulos, 2016).

2.4. Diffusion metrics generation

Different subsets of the pre-processed data were used to compute DTI,
DKI, NOODI and γ-imaging diffusion metrics.

2.4.1. DTI and DKI
The cumulant expansion of the log-transformed diffusion weighted

signal in powers of b is the most widespread signal representation. By
truncating the expansion at the second order in b, the following
expression in tensorial form can be obtained (Basser et al., 1994; Jensen
et al., 2005):

ln
Sðb; gÞ
S0

¼ �b
X3
i;j¼1

gigjDij þ 1
6
b2

 X3
i¼1

Dii

3

! X3
i;j;k;l¼1

gigjglgkWijkl (1)

Here g is the direction of the applied diffusion weighting, D is the rank-2
diffusion tensor and W is the rank-3 kurtosis tensor. For moderate b-
values, the above expression can be truncated at the first order, recov-
ering the conventional diffusion tensor imaging (DTI) (Basser et al.,
1994).

In this study, DTI analysis was performed via FSL dtifit tool, consid-
ering the b-shells between b¼ 200 and b¼ 1500 s/mm2 (i.e. 6 b-values).
The dtifit routine returns MD and FA maps together with the three
diffusion tensor eigenvalues (λ1, λ2, λ3, with λ1 > λ2 > λ3) and eigen-
vectors (V1, V2, V3), which define the DTI reference frame (DTI-rf) voxel-
wise. The axial (D//) and radial (D⊥), diffusivities were computed as
follows: D//¼ λ1, D⊥¼(λ2þλ3)/2.

By fitting equation (1) to the logarithm of the signal, having acquired
at least 21 measures distributed over two b-shells, it is possible to
reconstruct the kurtosis tensorW (Jensen et al., 2005). Diffusion kurtosis
imaging (DKI) is a clinically feasible extension of DTI at higher b-values
that probes restricted water diffusion in tissues providing information
about the tissue complexity.

In this work, we used the b-shells up to the b¼ 2500 s/mm2 to get
mean kurtosis (MK) weighted maps. In order to obtain these maps we
used the dki_lls method from the md-dmri software (https://github.com/
markus-nilsson/md-dmri/tree/master/methods). After obtaining the W
tensor components, MK was calculated voxel-wise as the average of W
elements across the sphere, in a fast and robust way (Hansen et al., 2013).

2.4.2. NODDI
The NODDI model function (Zhang et al., 2012) was fitted to all the

b-shells up to b¼ 2500 s/mm2, using the toolbox available online
(https://www.nitrc.org/projects/noddi_toolbox). NODDI is a biophysical
tissue model for DW data that aims to infer specific information about the
tissue micro-structure. The normalized total diffusion signal, A, is
expressed as the sum of contributions from different comportments:

A ¼ �1� νfw
�½ð1� νinÞAen þ νinAin� þ νfwAfw ; (2)

where Ain and νin represent the intra-neurite normalized signal and vol-
ume fraction, Aen is the extra-neurite normalized signal and Afw and νfw
represent the normalized signal and volume fraction of the compartment
modeling isotropic free-water contributions to the signal (such as cere-
brospinal fluid). Fitting NODDI to DW-data makes it possible to obtain an
estimate of νin and νfw, with values comprised between 0 and 1. More-
over, NODDI quantifies the so-called orientation dispersion index (ODI)
that attempts to estimate the orientation dispersion of the neurites within
each voxel. ODI values run from 0, referring to an isotropically oriented
distribution, to 1, referring to a perfectly coherent bundle of fibers.

2.4.3. γ-imaging
Several theoretical models have been proposed to describe anomalous

diffusion phenomena, such as the (CTRW) model (Metzler and Klafter,

2000), the fractional motion (FM) model and others (Metzler et al.,
2014). The adaptation of these models to MRI diffusion experiments,
permits fitting of experimental DW data to functions containing stretched
exponentials and other derived parameters (Magin et al., 2008; Zhou
et al., 2010; Ingo et al., 2014; Caporale et al., 2017; Yu et al., 2018;
Karaman and Zhou, 2018). Unfortunately, different authors have
assigned different nomenclatures to indicate the same parameter, fueling
the confusion that characterizes the literature of anomalous diffusion
methods in MRI.

Recently, two anomalous diffusion parameters were introduced in
NMR: α and γ. α quantifies sub-diffusive processes and it is measured by
varying diffusion time Δ in a pulse field gradient (PFG) MRI sequence.
Conversely, γ quantifies super-diffusive processes characterized by a
divergence of the jump length variance, and it is measured by varying
gradient strengths g in a PFG sequence at a fixed value of Δ (Palombo
et al., 2011; Capuani et al., 2013). In the present work, we performed
diffusion experiments by varying g at a fixed value of Δ. Therefore,
super-diffusive processes were quantified. Clearly, no real super-diffusive
processes of water in biological tissues exist, but “pseudo-superdiffusion”
processes mainly due to a local background gradient derived from Δχ at
the interface between different diffusion compartments and to the
different diffusion lengths with which the water molecules diffuse in
several compartments.

As the diffusion weighted NMR signal is proportional to the Fourier
transform (FT) of the motion propagator (MP), for investigating pseudo-
superdiffusive processes it is possible to use the following function
(Metzler and Klafter, 2000) as FT of the anomalous diffusion MP:

Wðq; tÞ ’ exp
�
–K2γj2πqj2γΔ

�
(3)

where K2γ is a generalized diffusion constant, whose units are (ms�1)2γ,
q¼ 1/(2π)Γgδ is the wave vector, and 0< γ< 1. For a fixed value ofΔ, the
stretched exponential form of signal attenuation as a function of b value
can easily be derived from (3). Indeed, by replacing j2Δqj2γ¼ bγ/Δγ in
(3), the following relations can be obtained:

SðbÞ
Sð0Þ ’ exp

�
K2γ

Δðγ�1Þb
γ
�

¼ exp
�
D ρ2ðγ–1Þ

Δðγ�1Þ bγ
�

¼ exp
�
–

�
Deffb

�γ� (4)

where D is the diffusion coefficient, ρ2(γ – 1) and Δ(γ – 1) are fractional
order space and time constants that preserve units, and Deff is a gener-
alized effective diffusion constant.

In this study, all the b-shells were used for γ-imaging analysis. To
obtain the γ metrics, a custom-made Matlab script (MATLAB R2016b)
was used. Specifically, the approach described by Caporale et al. (2017),
was used in which the reference frame of the tensor representing the
transient anomalous diffusion was assumed to coincide with that of the
DTI (DTI-rf) (De Santis et al., 2011; Caporale et al., 2017). The choice of
projecting the stretched γ-exponents along the axes of DTI-rf assumes
that, to a first approximation, anomalous and normal (i.e. Gaussian)
diffusion share the same rotationally invariant reference frame (De Santis
et al., 2011). The resulting signal representation showing transient
anomalous pseudo-superdiffusion is written as:

SðbÞj
Sð0Þ ¼ e

�
P3
i¼1

AiðbðVi � gjÞÞγi
(5)

Here j denotes the diffusion direction defined by the gradient vector gj; i
indicates each of the 3 main axes with respect to a diffusive motion along
a generic direction which may be decomposed; γi and Ai are, respectively,
the anomalous diffusion exponents and the generalized diffusion co-
efficients estimated along the direction identified by the eigenvector Vi in
the DTI-rf.

The estimated γ-exponents γ1; γ2; γ3 (with γ1 > γ2 > γ3) are adi-
mensional parameters that take values from 0 to 1. γi equal to 1 indicates
a normal Gaussian diffusion, while values of γi < 1 indicate a departure
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from Gaussian diffusion. The following γ-metrics were finally computed:
axial-γ (γ== ¼ γ1), radial-γ (γ⊥ ¼ γ2þγ3

2 ), mean-γ (Mγ ¼ γ1þγ2þγ3
3 ),

γ-anisotropy (γA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½ðγ1�Mγ Þ2þðγ2�Mγ Þ2þðγ3�Mγ Þ2 �

2ðγ12þγ22þγ32Þ

r
). Specifically, γ//repre-

sents the projection of the anomalous exponent in the direction described
by the first eigenvector V1 of the Gaussian diffusion tensor, whereas γ⊥ is
derived by an average of the other two orthogonal projections (De Santis
et al., 2011).

2.5. Post-processing

2.5.1. Image registration
A registration pipeline similar to that proposed by Timmers et al.

(Timmers et al., 2016) was used. Briefly, a population-specific template
was obtained with DTI-TK software (available on http://www.nitrc.org/
projects/dtitk). The algorithm applies a deformable registration to the
DTI-derived eigenvalues and improves the registration outcome

Fig. 2. WM atlas description to illustrate the multi-level ROI-based approach used to analyze and display the results. a) the global WM atlas is defined by the skeleton
obtained with the skeletonize command of FSL using a threshold of 0.4. b) In the first level of the subdivision the core tracts are obtained from the intersection between
the WM skeleton, the JHU atlas, while the cortical regional termination zones (RTZs) are obtained from the intersection between the WM skeleton and the Harvard-
Oxford cortical atlas. c) In the second level of the subdivision, the core tracts and cortical RTZs are further divided into sub-regions according to the atlas nomen-
clatures; 29 sub-regions for the core tracts and 4 for the cortical RTZs were identified. Only those regions are reported that share at least one association between
diffusion metrics and aging.
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compared to analogous algorithms based on FAmaps (Zhang et al., 2006;
Keihaninejad et al., 2013; Wang et al., 2011). The resulting normalized
images were used to compute the standard FA,MD, D// and D?maps with
a higher resolution compared to the original maps (voxel
size¼ 1�1�1mm3).

The TBSS tool of FSL (Smith et al., 2006) was used to obtain a mean
FA skeleton for the WM tracts common to all subjects in the normalized
space. The threshold limit value of this skeleton was set to 0.4 in order to
reduce the bias due to cross subject variability of the WM tracts. Finally,
the participant-specific transformation fields, obtained during the
tensor-based transformation, were used to normalize all the other
diffusion metrics used in this study as specified by Timmers et al. in
supplementary methods (Timmers et al., 2016).

2.5.2. ROI based analysis
Analysis of the correlation between diffusion metrics and subjects’

age was performed on a region of interest (ROI) basis using a hierarchical
approach in order to better understand the spatial patterns of aging
(Simmonds et al., 2014; Chang et al., 2015). The age-related modifica-
tions were calculated separately for WM ROIs and sub-cortical GM
(scGM) ROIs.

As regards WM, the global trajectories were first obtained averaging
the different metrics along all the voxels belonging to the WM skeleton.
Subsequently, two groups of WM regions were selected. Following the
nomenclature proposed by Simmonds et al., the “core tracts” were
selected as the intersection of the WM skeleton and the JHU-DTI81 atlas
(Mori et al., 2008). The “cortical regional termination zones” (RTZs)
were defined as the intersection of the cortical GM regions derived from
the Harvard-Oxford (HO) atlas in FSL and the WM skeleton. The two
groups of WM tracts were further partitioned in sub-tracts. The core
tracts were divided using the JHU's own parcellation (http://www.loni.
usc.edu/ICBM/Downloads/Downloads_DTI-81.shtml). The cortical
RTZs were divided into frontal, sensory-motor, parietal and occipital
tracts. All the above steps are summarized in Fig. 2.

Regarding the scGM ROI analysis, the HO subcortical atlas was used
to identify the different structures. To avoid partial volume effects each
element from the atlas was eroded via the “-ero” routine of fslmaths in
FSL, using a spherical filter with a 2mm radius. Because of the limited
field of view in the axial direction, only the inner structures of the
subcortical GMwere retained for the analysis. The caudate, the thalamus,
the putamen and the pallidum were considered in the study. In addition,
a global trajectory was obtained from the average of all voxels belonging
to the examined regions.

The average of each diffusion metrics was then calculated for each
ROI. The association between the resulting values and the subjects’ age
was assessed via linear regression using the free software R (R Core Team
2014 http://www.R-project.org/). Also, the shared variance between
any two metrics was assessed for the global trajectories. Correlation was
considered statistically significant when the derived p-value was � 0.05
after correcting for family-wise error (pfwe � 0.05), i.e. multiplying p by
the number of regions considered in the group under analysis. p-value �
0.05 without controlling for family-wise error (p� 0.05) were also re-
ported for comparison with relevant regions highlighted in previous
studies (Billet et al., 2015; Kodiweera et al., 2016).

2.5.3. Voxel-wise analysis
To test the effect of aging on the diffusion metrics voxel-wise, per-

mutation-based statistics was carried out on both the WM and scGM. All
diffusion metric maps were performed with the WM skeleton and the
scGM eroded mask, respectively. FSL's randomize command was used
with 5000 permutations to generate the statistic maps. The Threshold-
Free Cluster Enhancement (TFCE) option was used to correct p-values
for family wise errors (pfwe � 0.05).

3. Results

3.1. ROI analysis

To display the results, we used a figure format like the one used by
(Billiet et al., 2015). For each ROI and each diffusion metrics we reported
the correlation coefficient when p 0.05. Red-yellow colors stood for
positive correlation, while blue-cyan colors stood for negative correla-
tion. The regions, where a linear correlation with a family-wise error
corrected p-value was found significant (pfwe< 0.05), were highlighted in
bold and by boxes with dashed contours. Fig. 3 shows the results for WM
ROIs (at the top) and scGM (at the bottom), whereas Fig. 4 shows plots of
different diffusion metrics vs subjects’ age in different regions of WM and
scGM.

3.1.1. Results in WM
D// and FA were the only parameters of DTI metrics that showed

significant correlation with aging, exhibiting mostly a negative associa-
tion. D// tended to decrease with aging in the cerebral peduncle (CER),
while FA presented a decrease in frontal WM. Regarding the parameters
obtained using higher b-shells, MK showed a negative association, while
ODI and νfw of NODDI positively correlated with aging. νin showed weak

Fig. 3. ROI-based results obtained using the multi-level ROI-based analysis in
white matter (WM), at the top, and subcortical gray matter (scGM), at the
bottom. The colored cells indicate the regions where a correlation between a
diffusion parameter and age was found (p 0.05). Warm colors indicate positive
correlation, while cold colors indicate negative correlation. Regions showing a
significant correlation after correction for family-wise errors are highlighted in
bold and by boxes with dashed contours.
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negative trends within the genu of corpus callosum (GCC) and the left
anterior corona radiata (CR_A (l)) but a positive trend in the left fornix
stria terminalis (FOR_C (l)).

All γ metrics showed at least one significant correlation. γ//, γ? and
Mγ generally increased although γ// andMγ showed a decrease in the left
retrolenticular part of the internal capsule (IC_R (l)) and right sagittal
striatum (SS (r)). On the other hand, γA generally decreased with
advancing age (see Figs. 3 and 4).

As regard the global WM atlas, ODI and MK were the only parameters
showing a significant trend. The MK decrease seemed to be driven by a
decrease within the cortical RTZs rather than in the core tracts. In
particular, the tracts close to the frontal lobe showed the greatest number
of significant differences. FA and MK decreased while ODI, γ? and Mγ
increased. MK decreased also in the tracts close to the sensory-motor lobe
along with a parallel increase in γ//. No general trends related to core
tracts were observed, however several region-specific trends were
recognized within the parcellation. On average, the regions showing the
strongest correlation were the left and right sides of the CER. Here, a
simultaneous decrease in D// and increase in ODI were observed. Also, a

significantly decreased anisotropy in γ was observed. The same pattern of
decreased axial diffusivity and increased ODI applied also to both sides of
the internal capsule (IC_P), although not statistically significant.
γ-derived parameters showed a rather strong correlation within the GCC
and (CR_A (l)). Among these metrics, γ? seemed to be the driving one
inducing an increase in Mγ and a decrease in γA. A positive association
was found in the left external capsule between νfw and age. As regards
MK, several negative trends were observed within the core tracts, but
none of them were strong enough to be considered significant.

3.1.2. Results in subcortical GM
Besides a few cases, a complete inversion of age-related trends was

observed for all the parameters in the sub-cortical regions (Fig. 3): D?,
MD, ODI, γ//, γ? and Mγ showed a decrease, whereas FA, νin, νfw, γA
showed an increase with age. D// showed a positive and negative asso-
ciation with age in the thalamus and in the putamen, respectively. The
putamen was with no doubt the region showing the most widespread and
strongest correlation with diffusion derived parameters (i.e. all apart
from ODI). The thalamus showed a pattern similar to that of the CER, but

Fig. 4. Plots of different diffusion metrics vs age in different regions of WM and scGM. Box a shows the trends in WM: the frontal part of the cortical RTZs, the left
cerebral peduncle (CER (l)) and the genu of corpus callosum (GCC) are reported. Box b shows the trends in scGM. The trends within the putamen and the thalamus are
reported. On the top-right panel the markers and colors identifying the different parameters. Solid lines are reported where a statistical significance was found (pfwe <
0.05.) The shaded area represents the confidence interval of 95%.
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inverted, i.e. increased D// and decreased ODI. Finally, the caudate
showed a parallel increase in νin and νfw with aging.

3.2. Voxel-wise analysis

The results of the voxel-wise approach were coherent with those
found using the ROI-based approach. Regional differences in WM are
displayed in Fig. 5. D// and ODI showed mono-lateral differences in the
left cerebral peduncle and in the left posterior limb of the internal
capsule. This result might highlight a possible associated variation of D//
and ODI (Billiet et al., 2015). A general increase in Mγ and γ? vs age was
also highlighted (Fig. 5). The effects were widespread in the left frontal
area, including the left corona radiata and part of the genu of corpus
callosum. In accordance with the results found in the ROI-based analysis,
νin showed a significant increase within the right external capsule. No
significant association between MK and age was found in the WM
voxel-wise analysis.

Fig. 6 shows the trends of the conventional DTI-parameters and
NODDI-parameters in scGM. In the putamen, a decrease in MD together
with an increase in FA, νin and νfw were observed. νin increased also in the
caudate, while an increase in νfw was observed in the posterior part of the
thalamus. ODI decreased in the thalamus with a spotty pattern. The
voxel-wise correlations of γ-derived metrics vs age in scGM are high-
lighted in Fig. 7. The strong increase inMγ and decrease in γA seemed to
be driven by a variation in γ?, rather than γ//.

3.3. Correlation between metrics

The squared values of linear cross-correlation coefficients calculated
between metrics both in total WM and total scGM are displayed in Fig. 8.
These values represent the amount of variance that each metrics shares
with the others, giving an estimate of how unique the information pro-
vided by each metrics is. As expected, the variance shared by parameters
derived from the same metrics was high. In WM, D? seemed to account
for most of the variability of FA and MD. νin shared a large portion of
variance with all the DTI parameters and specifically with MD and D?,
while ODI had a negative association with D//. MK shared a rather high
portion of variance with MD, FA, and D?. γ-derived parameters have a
rather small portion of variance shared with the other diffusion metrics.
The only exception is γ// that showed a stronger association with MD, FA
and MK.

The right side of Fig. 8 shows the results for scGM. The results
appeared to be clustered in a different way. MD and FA on the one hand
and Mγ and γA on the other, shared a large proportion of variance with
D? and γ?, respectively. ODI measure showed a negative correlation
only with D// and FA. All the metrics obtained using higher b-shell
seemed to share a larger portion of variance. In particular, νin and νfw
showed a much higher association with γ-metrics, compared to that
shown in WM.

Fig. 5. Results of the voxel-wise analysis of DTI-, NODDI- and γ-metrics corre-
lation with subjects' age in WM. The maps show the corrected p-value (1� p)
superimposed on the population specific FA template. The red-yellow colors
denote positive correlation, while the blue-cyan colors denote negative
correlation.

Fig. 6. Results of the voxel-wise analysis of correlation between DTI- and
NODDI-derived parameters and subjects' age in scGM. Here the results are
superimposed on MD population specific template. The red-yellow colors denote
a positive correlation, while the blue-cyan colors denote a negative correlation.
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4. Discussion

In this cross-sectional study we assessed the potential of a combined
use of γ-metrics and other more widespread diffusion MRI (dMRI) tech-
niques in detecting the microstructural and physiological changes due to
normal aging in WM and scGM of the human brain. Previous works
(Caporale et al., 2017) highlighted how γ-metrics may reflect in-
homogeneities due toΔχ among various tissues and compartments, being
potentially useful as an indirect measure of myelin integrity and iron
content. In this paper, the cohort of volunteers spanned from young
adults to elderly subjects. To analyze the different regions of the brain,
we used a hierarchical ROI-based approach in parallel with a
voxel-wise-based approach, both in WM and scGM. We found diversified
patterns of parameter modifications with advancing age, both in scGM
and WM, possibly indicating regional-specific aging processes. The re-
sults suggest that γ-metrics is complementary to DTI, DKI and NODDI,
highlighting changes not significantly detected by the other conventional
metrics.

4.1. Microstructural changes in white matter

The results of this study suggest that a combination of different dMRI-
derived techniques permits observation of microscopically different
aging patterns within the WM fibers.

The aging of WM fibers appears to be driven by two principal
mechanisms: the degradation of nerve fibers and the degeneracy of the
myelin (Peters, 2009; Peters and Kemper, 2012). On one hand, degen-
erating nerve fibers start to accumulate mixtures of organelles and neu-
rofilaments. These accumulations are often related to dystrophy of the
axons such as swelling. The degeneration process ends with the complete
disintegration of the axon. The extent of lost fibers, in some specific re-
gions of rhesus monkeys’ brains, has been quantified to be around 20% in
the genu of corpus callosum, 30% in the splenium of corpus callosum and
40% in the anterior commissure (Sandell and Peters, 2003; Bowley et al.,
2010). On the other hand, myelin undergoes segmental demyelination
that is often followed by remyelination and sometimes by myelin
decompaction. Remyelinated segments are thinner and shorter, while
decompaction is principally caused by splitting of myelin in the major
dense line (Peters, 2009; Peters and Kemper, 2012; Sandell and Peters,
2003; Bowley et al., 2010).

dMRI has been extensively used with the aim to track these micro-
scopic changes in vivo. A large number of cross-sectional studies (Pfef-
ferbaum et al., 2000; Abe et al., 2002; Salat et al., 2005; Sullivan et al.,
2010; Ardekani et al., 2007; Giorgio et al., 2010), but also longitudinal
studies (Barrick et al., 2010) reported an increase inMD and a decrease in
FA. Specifically, FA modifications seem to be mostly related to grater D?
rather than D// (Zhang et al., 2010; Bartzokis et al., 2012), suggesting
that the FA reductions are linked to myelin degradation and axonal loss.
However, some authors pointed out that care should be taken when
interpreting these results (Wheeler-Kingshott and Cercignani, 2009).

MK has been shown to decrease with aging (L€att et al., 2013; Gong
et al., 2014; Coutu et al., 2014) indicating a less complex organization of
tissues in elderly brains. However, Billet et al. (2015) reported con-
trasting results showing an increased MK with ageing. However, the
investigated age-range was narrower compared to the population studied
by the above-mentioned authors.

Few studies reported the association between NODDI parameters
and aging (Billet et al., 2015; Cox et al., 2016). νfw was observed to
decrease in both studies, while contradictory results were reported for
νin and ODI: Billet et al. reported an increase in both these parameters,
while Cox et al. reported a decrease in both cases. However, the two
studies dealt with different age ranges. In a study carried out on a cohort
of young to middle-aged adults, (Kodiweera et al., 2016) reported an
increase in ODI with aging and observed how this parameter was the
most sensitive to microstructural changes compared to DTI parameters.

In order to explain the overall trends of age-related microscopic

Fig. 7. Results of the voxel-wise analysis of correlation between γ-metrics and
subjects' age in scGM. The results are superimposed on MD population template.
The red-yellow colors denote a positive correlation, while the blue-cyan colors
denote a negative correlation.

Fig. 8. The shared variance between diffusion metrics is displayed separately for white matter (WM), on the left, and subcortical gray matter (scGM), on the right. The
higher the reported value, the higher the similarity of the information provided by the two metrics. Warm colors show positive correlation, cold colors represent
negative correlation. Significant correlation, corrected for family-wise errors, are highlighted in bold and by a box with dashed contours.
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changes, several neurodegenerative theories have been proposed in the
past years. For example, it has been established that age-related modi-
fications occur with frontal predominance (Abe et al., 2002; Salat et al.,
2005; Ardekani et al., 2007; Sullivan et al., 2010), thus an
anterior-posterior gradient of degeneration has been proposed (Sullivan
and Pfefferbaum, 2006). On the other hand, according to the retrogensis
theory, demyelination is the major driving mechanism of degeneration
and the late myelinating fibers are more affected than the early myeli-
nating ones (Stricker et al., 2009; Cox et al., 2016). Finally, the Wallerian
degeneration theory proposes that axonal degradation is the result of
injuries happening further from the degradation site (Damoiseaux et al.,
2009; Davis et al., 2009).

4.1.1. Is γ-imaging sensitive to myelin degradation?
In the past years, in vitro, ex vivo and in vivo experiments were per-

formed to investigate the features of the so called pseudo-superdiffusion γ
parameter (Palombo et al. 2011, 2012; Capuani et al., 2013; Caporale
et al., 2017). The experiments coherently showed that γ quantifies water
molecules diffusing with a wide distribution of diffusion lengths in het-
erogeneous and multi-scale tissues. The width of this set of diffusion
lengths is partially due to water diffusion compartmentalization, but also
to the inhomogeneity (or averaged internal gradients gint) coming from
local Δχ between compartments. In the human brain, Δχ arises from
differences in non-heme iron contents and iron-storage proteins and from
various degrees of myelin density and orientation with respect to B0. It
has been found that γ values decreased in parallel to Δχ-derived gint in-
crease (Palombo et al. 2011, 2012; Capuani et al., 2013; Caporale et al.,
2017). Moreover, by repeating the γ-imaging studies in the brain of
distinct groups of healthy subjects, using acquisitions obtained with a
different number of diffusion gradient directions, we found an excellent
agreement between the mean γ values representative of certain brain
regions (De Santis et al., 2011; GadElkarim et al., 2013; Caporale et al.,
2017).

Our results showed a significant increase in γ? as a function of age in
frontal WM and more specifically in the genu of corpus callosum and
anterior corona radiata (Figs. 3 and 5). We suggest that these results
which are in agreement with our previous findings (Caporale et al.,
2017), might reflect an effective decrease in the thickness and integrity of
the myelin sheaths across the densely packed WM fibers. Indeed a
reduction of myelin would affect the gint between the myelinated axons
to which γ parameters are sensitive, in at least two ways: first, decreasing
the value of the magnetic susceptibility of axons compared to that of the
surrounding tissues and thus inducing a decreasedΔχ; second, inducing a
more prominent averaging effect of the diffusion on the inhomogeneities
induced by Δχ by increasing the space between the axons (Mitchell et al.,
2010; Di Pietro et al., 2014). The overall effect would thus be a decrease
in the magnitude of internal gradients gint with a consequent increase in
γ.

Our speculations may be supported by other studies using different
MRI techniques. For example, the decrease in magnetization transfer
(MT) is associated with loss of macromolecular content, typically myelin.
Two different studies (Dragansky et al., 2011; Callaghan et al., 2014)
using a quantitative MT approach to study brain aging, showed regional
patterns of decreased MT similar to those observed in our voxel-wise
analysis of M γ and γ?.

Neither kurtosis nor DTI, and NODDI metrics showed significant
correlations with age within the genu and the anterior corona radiata,
suggesting the complementarity of the γ metrics compared to the other
dMRI metrics in these regions.

4.1.2. ODI increase and D// associated to axonal loss
The present study also found a significant age-related decrease in

D//as well as an increase in ODI within the cerebral peduncle (CER),
bilaterally, on a ROI-based analysis. The same significant trends were
found in the voxel-based analysis within the left CER and left IC_P. Other
studies using a TBSS approach on DTI-derived maps reported similar

correlations of D//in the IC_P (Kawaguchi et al., 2010) and both in the
CER and the IC_P (Burzynska et al., 2010). In a study using both NODDI
and standard DTI metrics, (Billiet et al., 2015) reported a similar pattern
of decreased D//and an increased ODI with aging in these regions.
However, this decrease was not statistically significant.

This pattern of changes could reflect microscopic aging processes
different from those described in the previous section. However, in order
to form a hypothesis about the microscopic modifications causing these
parameter changes, it is useful to understand the anatomical composition
of the IC_P and the CER. These regions are mainly formed by three fiber
tracts: the corticospinal, the corticobulbar and the corticopontine. These
tracts are components of the projection fibers interconnecting cortical
areas with deep nuclei, brain stem, cerebellum and spinal cord. They
originate in the cerebral cortex and converge through the corona radiata
to form the IC_P in a tightly compact bundle, oriented in a superior-
inferior direction. Subsequently, the fibers enter the cerebral peduncle
and continue their ways toward different destinations (Jellison et al.,
2004). Supposing that the projection fibers are markedly affected by
aging, a lowered axial diffusivity may be explained by axonal degener-
ation processes. Indeed, the beginning of the degeneration is character-
ized by accumulation of organelles, such as lysosomes and mitochondria,
as well as an increase in neurofilament density within the axoplasm, thus
hindering water molecule diffusion along the axons (Peters, 2009; Peters
and Kemper, 2012). Furthermore, the axons undergo dystrophic changes
such as swelling and beading, which have been shown to induce a
reduction in D// (Budde and Frank, 2010; Palombo et al., 2017). The
space left empty by damaged fibers would thus be occupied by crossing
fibers less affected by aging, such as the fibers of the pontocerebellar tract
in the cerebral peduncle (Kamali et al., 2010) and those of the cortico-
thalamic tract in the IC_P (Axer and v Keyserlingk, 2000), thus contrib-
uting to a decrease in axial diffusivity and explaining the parallel increase
in orientation dispersion.

4.1.3. WM modifications in the context of neurodegenerative theories
The results obtained in the cortical RTZs as well as those obtained in

the genu of corpus callosum and the corona radiata are in line with the
hypothesis of posterior-anterior gradient of degeneration. The greatest
correlation between parameters and age was found near the frontal lobe
of the cortical RTZs. The decrease in FA, and MK in frontal WM as well as
the increase in ODI were coherent with previous studies and the com-
plementary increase in Mγ and γ? with aging well fit a scenario of
decreased microstructural complexity, driven by axonal loss and
demyelination.

The results obtained in the CER and the IC_P were coherent with the
Wallerian hypothesis suggesting that axonal degradation can contribute
to the overall degenerating age-related process.

Neither our results nor the interpretations that we proposed are in
open contradiction with the retrogenesis hypothesis. The genu is known
to myelinate later than other fibers, while the CER and the IC_P that are
early myelinating fibers (Kinney et al., 1988), undergo a degeneration
process different from demyelination.

4.2. Microstructural variations in subcortical gray matter

In scGM structures we observed a not uniform pattern of parametric
correlation with aging, possibly revealing regional-specific microscopic
modifications.

4.2.1. The putamen
From amicroscopic point of view, the putamen has a relatively simple

structure. It is composed by neurons with a thickly spherical arborization,
which is densely covered with dendritic spines (Yelnik, 2002). None-
theless, in this region we found the strongest association between pa-
rameters and age. All parameters correlated with age, apart from ODI:
MD, axial and radial diffusivity as well as Mγ, axial and radial γ
decreased, whereas all the other metrics increased. These results were in
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general agreement with those reported in literature. The increase in FA
associated with a decrease in MD has been reported (Bhagat and Beau-
lieu, 2004; Abe et al., 2008; Pfefferbaum et al., 2010; Xu et al., 2015).
Specifically, the increase in FA has been associated with a higher
decrease in D?, compared with a more preserved value of D// (Wang
et al., 2010). However, the microscopic changes that drive these
parameter modifications are still unclear. Some authors observed how
they could be related to the volume reduction of the striatum, with
concurrent gliosis and tissue compaction (Wang et al., 2010). Other au-
thors argued that iron deposition may significantly affect the measure-
ment of water diffusion in the brain (Pfefferbaum et al., 2010; Xu et al.,
2015). Indeed, it is well established that a progressive iron deposition
selectively affects scGM (Hallgren and Sourander, 1958; Schipper, 2004;
Acosta-Cabronero et al., 2016) and that the putamen presents the
strongest age-related increase (Acosta-Cabronero et al., 2016).

Our recent study of healthy young human brain (Caporale et al.,
2017) suggested that γ-metrics is sensitive to non-heme iron concentra-
tion, especially in sub-cortical GM. The results obtained in scGM reported
in the present study, are in good agreement with these previous findings.
Indeed, the marked negative trend ofMγ, γ// and γ? as a function of age in
the putamen may reflect an increasing effect of susceptibility in-
homogeneities due to age-related iron accumulation.

According to the literature, an age-related increase in MK within the
putamen has been found (Gong et al., 2014). Dependence of the DKI
derived metrics on the magnetic field inhomogeneities has already been
pointed out (Palombo et al., 2015), so it is likely that the correlation
found between the metrics derived by fitting data from the higher
b-shells and aging were influenced by the iron deposition. This was
corroborated also by the observation that the shared variance between
metrics changes when considering WM and scGM. Specifically, in the
latter case there was an increase in the variance shared by metrics ob-
tained from the higher b-shells, whereas there was a loss of shared
variance between DTI metrics and the others. γ metrics showed a higher
correlation with age compared to MK, this was likely due to the higher
b-values used. These metrics are likely to be more sensitive to iron
deposition. It remains to be understood to what extent these changes are
influenced by microscopic changes and to what extent they are caused by
local changes in the internal gradient. More studies are required to clarify
this issue.

4.2.2. The thalamus
The thalamus is the center through which patterns of nerve tracts

from cerebral cortex and subcortical and cerebellar regions connect.
From a cytoarchitectonical point of view, it is divided into numerous
nuclei, each of which reflects a different functional connection with the
cortex. Several studies have reported a generalized age-related volume
decrease (Raz et al., 2005; Cherubini et al., 2009; Hughes et al., 2012),
and it has been observed that some of the subregions undergo differential
shape changes with aging, including the anterior, the ventroanterior and
the dorsomedial nuclei (Hughes et al., 2012). DTI studies have reported
an increase in MD along with a non-significant decrease in FA using both
a ROI-based (Cherubini et al., 2009; Hughes et al., 2012; Gong et al.,
2014) and a voxel-based approach (Draganski et al., 2011). Also, Gong
et al. observed a decrease in MK (Gong et al., 2014), but there is no study
assessing the association between NODDI parameters and age within the
thalamus in the literature. Our results did not highlight MK correlation
with age, while they showed a decreased orientation dispersion using
both the ROI-based and the voxelwise-based approach as well as an
increased axial diffusivity only in the ROI-based approach. The voxelwise
results showed a bilateral pattern of ODI increase that is more accentu-
ated in the left thalamus. The most affected regions seemed to be the
ventro-lateral and ventro-anterior nuclei belonging to the so-called
lateral group as well as some nuclei of the medial group such as the
center median and parafascicular groups, as defined by Morel et al.
Microscopically these regions are characterized by a higher concentra-
tion of myelinated fibers (Morel et al., 1997; Danos et al., 2003). It has

been established that, with aging, the dendritic tree undergoes a pro-
gressive regression in GM, implying the reduction in number and length
of the branches and the decrease in the number of spines (Scheibel et al.,
1975; Nakamura et al., 1985; Dumitriu et al., 2010). In a recent study,
comparing histology derived parameters and NODDI derived parameters
on spinal cord lesions from patients with multiple sclerosis, it has been
shown that ODI well matched its histology counterpart and, furthermore,
that a lower ODI in the lesions was indicative of reduced neurite archi-
tecture complexity (Grussu et al., 2017). Thus, regression of the dendritic
tree combined with relatively unaffected thalamic fibers would cause
reduced neurite dispersion as well as increased axial diffusivity, since the
extra axonal water would be less hindered along the direction of the fi-
bers. Another possible explanation could be a selective degradation of
some fiber bundles.

4.3. Interpretation of the NODDI parameter modifications with aging

We found several associations between NODDI parameters and aging
in different brain regions. However, the interpretation of this correlation
could be tricky. A recent study showed that some NODDI constraints
seem to be invalid (Lampinen et al., 2017). This inconsistency does not
hinder the model from fitting the data, especially in WM and thus the
reported associations are thought to be reliable. However, the in-
terpretations of the parameters could be misleading. This should be
particularly true for the νin and νfw parameters, while ODI is supposed to
be negligibly affected (Zhang et al., 2012; Lampinen et al., 2017).

4.4. Methodological considerations

Although the studied cohort of subjects covered a broad age range,
the total number of volunteers recruited for the present study was smaller
compared to other studies focused on aging (Callaghan et al., 2014; Gong
et al., 2014; Billet et al., 2015; Cox et al., 2016; Kodiweera et al., 2016).
However, our findings related to DTI, NODDI andMKmetrics are broadly
in accordance with those presented in previous studies of larger cohorts
(Billet et al., 2015; Kodiweera et al., 2016; Gong et al., 2014).

In this study we assessed association between diffusion metrics and
aging using a simple linear regression. Other similar studies suggested
that age-related changes follow non-linear trajectories (Billet et al., 2015;
Cox et al., 2016). However strong deviations from linear trends have
been primarily observed in different age ranges such as in brain matu-
ration (Chang et al., 2015) or including elderly subjects (Cox et al.,
2016). Moreover, we found that linear regression well described the
trends observed in our data. Further studies involving more and older
subjects, (>60y) are needed to investigate higher order differences of
γ-metrics with age.

Inadequate signal to noise ratio (SNR) can bias diffusion parameter
estimation. To validate the reliability of the quantified metrics, we
investigated the SNR of our raw DW data as a function of the b-values in
WM and scGM (supplementary materials). We found that SNR was above
the critical value SNR¼ 3. This should ensure an unbiased quantification
of the diffusion metrics obtained using higher b-values (Caporale et al.,
2017, Jones et al., 2013).

Despite the quantification of γ-metrics requires the acquisition of
images with b values higher than those used to obtain DTI, DKI and
NODDI metrics, the γ-metrics maps seem to be characterized by a lower
contrast to noise ratio than the maps reconstructed with the other met-
rics. This could affect the accuracy and sensitivity of the technique.
However, it should be considered that γ-derived maps show a different
kind of information compared to that of conventional diffusion methods,
which apparently varies less across tissues.

This study suggests the ability of γ-metrics to detect age-related dif-
ferences due to changes in Δχ-driven inhomogeneities. Future studies
should corroborate the results of the present study, possibly using other
specific quantitative MRI techniques such as quantitative susceptibility
mapping (QSM) or magnetization transfer (MT) to compare our
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technique with the two most common techniques used for quantification
of iron deposition and myelin content.

The long scanning time required by the diffusion protocol used in this
study limits the amount of different acquisitions and it is one of the major
issues linked to the achievement of γ-weighted maps. Therefore, the use
of higher-performance scanners with parallel acquisition mode is
necessary to carry out this type of investigation involving multi-b-value
acquisitions. In supplementary materials, the results of a preliminary
study investigating the feasibility of using a down sampled protocol (with
a halved number of b-values and the same number of directions) have
been reported. Our preliminary results in supplementary materials
showed that a protocol with a higher number of b-acquisitions, such as
the one used in this study, helped to reduce the variability in the γ
extraction and in the bias introduced when using the DTI reference frame
approximation to extract the relevant γ-metrics according to (De Santis
et al., 2011). However, the results also showed that by using a reduced
number of acquisitions it is still possible to obtain a reliable quantifica-
tion of γ. Further studies are needed to obtain the best tradeoff between
an optimized protocol and reliable maps.

In this study we presented several associations between diffusion
metrics and age. These correlations don't necessarily imply a causal
relationship. It is possible that other factors, such as technical differences
between different metrics, alter the sensitivity or accuracy of the fitting
to the data. This could potentially mean that the differences in correla-
tions identified in the results are not necessarily related to the ability of
the techniques to identify different ageing mechanisms. Further studies
are necessary to confirm the conclusions of the present work.

5. Conclusion

In this study we used DTI, NODDI, MK and γ-metrics to assess phys-
iological (i.e. the iron content) and microstructural (myelin damage,
axonal disintegration, neuron cell loss) changes in cerebral WM and
scGM of middle- and older-aged subjects. We found that γ-metrics are
remarkably sensitive and provide more complementary information than
DTI-metrics, MK and NODDI in the detection of frontal changes in the
WM. The combined use of these techniques may also reveal different
patterns of age-related changes.

This study suggests that an increase in γ? values within WM may
reflect myelin degradation, and a decrease in Mγ within scGM, specif-
ically in the putamen, may reflect iron deposit accumulations. Changes in
D// and ODI could be indices of axon degradation in the pyramidal tract
while reflecting decreased architecture complexity within the thalamus.
This study demonstrates the added value of γ-metrics for assessing
microscopic brain alterations due to aging and providing independent
measurements that are complementary to the conventional diffusion
metrics. In conclusion, γ-metrics combined with other DW-derived met-
rics can more comprehensively characterize the complex mechanisms
underlining age-related changes than conventional diffusion techniques
alone.
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Supplementary materials 
 

1. SNR of diffusion data used to quantify the diffusion metrics 

 

Figure S1: The signal to noise ratio (SNR) of the raw diffusion-data as a function of the b-values. The 

SNR was calculated with the following formula: 𝑆𝑁𝑅 = (𝑚 𝜎⁄ )√4 − 𝜋 2⁄  (Dietrich, Olaf, et al.  Journal 

of Magnetic Resonance Imaging 26.2 (2007): 375-385). m is the mean value of the signal calculated 

within a foreground region of interest (ROI), σ is the background standard deviation and √4 − 𝜋 2⁄  is a 



correction factor to account for the Rayleigh distribution of the noise. 

We evaluated the SNR in two ROIs: the splenium, representative of highly packed white matter (WM) 

fibers in box a, and the thalamus, representative of subcortical gray matter (scGM) in box b. 

Here we report the results for two subjects, one young   (22 years) and one elderly (77 years). Each red 

asterisk denotes the SNR calculated within each acquisition. For each b-value, the 15 red asterisks are 

associated to acquisitions with different encoding directions. The black circles and black squares are the 

averaged SNR over the gradient directions. 

The horizontal black dashed lines in the plots indicate the inferior limit allowed for the reliability of DW 

data (SNR=3), according to Jones DK et al. (Jones DK et al., Neuroimage, 73 (2013): 239-254). 



 

Figure S2: Same as figure S1, but for to the diffusion dataset after de-noising (Veraart, J., Fieremans, 

E., and Novikov, D. S. (2016a). Diffusion mri noise mapping using random matrix theory. Magnetic 

resonance in medicine, 76(5):1582–1593.   . Here, the SNR was calculated as: 𝑆𝑁𝑅 = (𝑚 𝜎⁄ ). The 

correction factor √4 − 𝜋 2⁄  was discarded since after denoising the noise distribution approaches to a 

Gaussian distribution. The horizontal black dashed lines in the plots indicate the inferior limit allowed 

for the reliability of DW data (SNR=3), according to Jones DK et al. (Jones DK et al., Neuroimage, 73 

(2013): 239-254).  



 

2. Assessment of the effect of a down sampled acquisition protocol on 

the estimation of γ parameters 
 

These experiments are meant to test the effect of using a down sampled protocol on estimating γ derived 

parameters. Also, we used synthetic data to assess the effect on parameter estimation when the 

assumption that the diffusion tensor and gamma tensor didn’t shear the same system of reference. 

We generated data using three different subsets of parameters that are summarized in table 1. The data 

were generated using the same protocol that we used in our work, i.e. 11 b-values ranging from 200 to 

5000 s/mm^2. We referred to this protocol as P0 (table 2). 

In our analysis we considered five more protocols divided in two sets. The first set included three 

protocols P1, P2, and P3 with halved number of b-values compared to P0 and same number of directions 

(table 2). The second set included two protocols (A1 and A2) with only three b-values and same number 

of directions. 

 

We carried out three experiments, the first two using in silico data, while the third using in vivo data. In 

the first experiment we assessed the effect that noise has on the parameters estimation when fitting the 

signal obtained by a known set of parameters. To generate the signal, we used equation number (5) within 

the manuscript. We used three sets of parameters that are listed in table S1. 

In the second experiment, besides adding noise, we intentionally violated the hypothesis whereby DTI 

and γ-tensor share the same frame of reference. We thus evaluated the effect that this violation has on 

the parameter estimation.  

In the last experiment, using in vivo data from three subject of our cohort, we calculated the γ-metrics 

using the protocols P1, P2, P3 and assessed the error committed in the estimation of these γ-metrics 

compared to the “gold standard” obtained with the P0 protocol. 

 

  Effect of noise in the parameter estimation 
 

We generated the synthetic data and added gaussian noise in quadrature to the signal (so to obtain a SNR 

for the b_0 equal to 25). We considered 100 realizations for each set of parameters. We fitted the data 



using our model (equation (5)) using the down sampled datasets corresponding to each of the six 

protocols. 

Figure S3 shows the results for gamma values. Each column represents a different set of parameters. The 

black dashed line indicates the true value of each parameter. The markers and the bars are the mean and 

standard deviation obtained by averaging over the 100 realizations. All the protocols seem to return rather 

accurate estimates of the parameters, the differences lying principally in the precision. 

 

Figure S3: Results of the parameter estimation using different protocols. The columns represent 

different set of parameters with which the signal was generated. The black dashed indicates the 

true value of each parameter. The markers and the bars are the mean and standard deviation 

obtained by averaging over the 100 realizations. 

 

  Biases due to not shared system of reference 

  
We repeated the experiment 1), but this time fitting the data with a system of reference intentionally 

different from the one used to generate the data. This experiment aims to simulate a situation in which 



the system of reference of the diffusion tensor and that of the gamma tensor are not the same (see section 

2.4.3 within the manuscript). Figure S4 shows the results for this experiment: the quite reach P0 protocol 

still return a rather accurate estimate of the three parameters for all the three datasets. The parameter 

estimates made using the down sampled datasets are less accurate and return higher values of the 

parameters.  

 

Figure S4: Same as figure S3 but this time, besides the noise, a bias has been intentionally 

introduced to simulate the situation in which the system of reference of the diffusion 

tensor and that of the gamma tensor are not shared. 

 

  Effect on in vivo data 

 
 We considered three subjects picked from those used in our study (one young, one adult and one elderly). 

We fitted our stretched exponential function to three down sampled datasets corresponding to the P1 P2 

and P3 protocols and calculated the gamma metrics (mean γ (Mγ), γ anisotropy (γA), axial γ (γ//) and 

radial γ (γ|_)). 



By considering the values obtained by fitting the stretched exponential to the whole dataset as the gold 

standard, we computed the error committed by using each of the down sampled datasets in three regions 

of interest (posterior limb of the internal capsule -IC_P, frontal white matter -FWM, thalamus). Results 

are reported in the figure S5. In particular the protocol P1 seems to give the most faithful estimation of 

the gamma metrics, suggesting that the error committed by using less reach protocol is indeed practicable. 

 

 

Figure S5: The error committed when fitting the γ model to a down sampled set of diffusion data. The 

four boxes refer to the different γ-metrics. The error is evaluated only for the protocols belonging to the 

first set of protocols (i.e. P1, P2, P3) in three regions of interest (ROIs), representing different tissue 

kinds. The mean error is obtained as the average of the difference of the values using the P0 protocol 

and the down sampled protocols, in each voxel (e.g. the Mγ mean error of P1 in the PLIC is:  < MγP0 -

MγP1>PLIC, with <.> is the average of the voxels belonging to the PLIC ). 

 

 

 

 

 

 



Table S1: Three different Set of parameters were used to obtain synthetic data. They represent different 

conditions: set 1 is isotropic effective diffusivity and isotropic values of gamma. Set 2 is an anisotropic 

effective diffusivity, but with isotropic values of gamma. Set 3 is anisotropic values of effective 

diffusivity and gamma. The effective diffusivities are in 1e-3 (mm^γ)/ms. 

 
Deff1 Deff2 Deff3 γ1 γ2 γ3 

Set 1 1.0 1.0 1.0 0.7 0.7 0.7 

Set 2 1.2 1.0 0.8 0.7 0.7 0.7 

Set 3 1.2 1.0 0.8 0.8 0.7 0.6 

 

Table S2: The protocols used to study the effect of down sampling the data on the parameter estimation. 

P0 is the protocol used in our work. P1 P2, P3 have 5 b-values (instead of 11), distributed in different 

ways. A1 and A2 have 3 b-values. The b-values are in s/mm^2. All the protocols had the same number 

of directions in each b-shell (15). 

 
200 400 600 800 1000 1500 2000 2500 3000 4000 5000 

P0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

P1 - ✓ - ✓ - ✓ - ✓ - ✓ - 

P2 - - ✓ - ✓ - ✓ - ✓ - ✓ 

P3 - - - ✓ - ✓ - ✓ - ✓ ✓ 

A1 - - - ✓ - - - - ✓ - ✓ 

A2 - - - ✓ - - - - ✓ ✓ - 
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