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Abstract: A run for increasing the integration of renewable energy sources in the electricity network
has been seen in recent years because of the big concern about environmental issues and pollution
from controllable power units. This paper aims to give a general overview of the concept of ramp
rate limitation and its principal applications in the literature regarding the field of control strategies,
which deal with smoothing the wind power output. Wind power is one of the most-used renewable
energy sources, and the objective of limiting the ramp rate of the power output is to produce more
stable power. The studies of ramp rate limitation applied in wind power production deal with the
definition and detection of this phenomenon in the real data, the methodologies used to forecast
it, its application for managing grids and microgrids, the different actions aimed at physically
implementing the restriction, and some of the grid code requirements used in different nations.
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1. Introduction

Renewable energy resources represent a valid alternative to the conventional power
generation with the aim of increasing global welfare and decreasing pollution and global
warming [1]. The goal of reducing the emission of greenhouse gases is a current concern
that has led to the necessity of using alternative energy sources to decrease the atmospheric
pollution and all the issues related to it [2-4]. Wind energy is one of the most-used
renewable energy sources, but it is characterized by a variable and intermittent nature,
which causes problems when connected to a grid, damaging its reliability and stability [5].
Wind power tends to be unsteady because of the continuous wind speed fluctuations
over time [6]. The use of this renewable source has increased greatly in the last few
decades. The installed capacity of wind power generation in the Electric Reliability Council
of Texas (ERCOT) passed from 2 GW in 2006 to 16 GW in 2015 [7]. There are many
variability-mitigating market rules for wind power production. Among them, we can find
the economic curtailment, curtailment to provide a power reserve, or using an energy
storage system [8]. In this perspective, the concept of the ramp rate limit is inserted. There
is not a unique ramp rate definition in the literature [9]. In general, a ramp event consists
of a strong and rapid variation in power, and usually, it can be measured in MW /min or
MW /hour. It represents the slope at which power changes, and it can be positive (ramp-up
event where the power increases from one time step to the next one) or negative (ramp-
down event where the power decreases) [10,11]. When a ramp-up event is limited, the
wind power plant produces less power compared to its possibility, and the difference can
be stored in a storage system. Conversely, when a ramp-down event is limited, we need a
greater amount of power to keep the power profile slope softer. In this case, an additional
power source or storage system is strongly needed because they are controllable resources
used to supply or store the energy required [12]. The characteristics of the power storage
system are also important because it has to provide a fast response to be able to supply
or store the right amount of power in a short-term period. In the literature, the choice
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of a battery can be guided by different aspects, such as capacity, maximum power, life,
operating temperature, cost, environmental impact, and efficiency [13].

In [10], the ramp event is considered a critical event because it can be dangerous in
terms of the cost associated with an incorrect management and potential damage and
deserves particular attention. Moreover, it can be classified according to its magnitude,
duration, and ramp intensity, and in the literature, several works performed binary classi-
fication in this phenomenon through an indicator function, which can be equal to 1 or 0,
depending whether or not a threshold is exceeded. The criterion is based on the variation
in power between two time steps, and it is indicated as a percentage of the capacity of
the wind turbine. In the literature, the time intervals in which the variation occurs cover
a wide range, and they can last from 5 min [14] to 6 h [15]. Relevant attention is also
addressed to the forecasting of these chaotic events. An example of a method used to
forecast a ramp event is given by numerical weather prediction (NWP) models based on
the fact that large ramp events are caused by large-scale meteorological processes. These
events were classified into horizontal and vertical atmospheric processes in [16], and their
characteristics (such as cold or warm front) can give us information about the type of ramp
event (ramp-up or ramp-down event) [17].

The geographical distribution of these events depends on the level of wind power pen-
etration that characterizes the territory. North America with the Electric Reliability Council
of Texas (ERCOT) and Bonneville Power Administration (BPA), the Iberian Peninsula in
Europe, and Australia are the areas most studied in this field.

The main objective of this paper is to provide an overview of the different fields of
study which deal with the ramp rate limitation applied to stabilize wind power output. This
control strategy is largely used and has been changed over time thanks to the improvement
of technologies, such as the performance of storage systems. The structure of the paper is
divided into fours sections. In Section 2, the ramp rate definition and the main methods
to forecast it are provided. Section 3 describes the most important control strategies used
to implement this kind of limitation. Section 4 provides an actualization of the ramp rate
limitation in terms of managing an interconnected network with a high penetration of
renewable energy sources. The discussion and the conclusions are presented in Section 5.

2. Ramp Rate Definition and Its Forecast

This section deals with the ramp rate definition and the different methods used in the
literature to detect and forecast this phenomenon.

2.1. Ramp Rate Definition

Many studies attempt to give a definition of the ramp rate according to its duration,
rate, and magnitude. Generally, the power ramp is a huge power change in a short time
horizon [18]. The authors in [19] consider a ramp rate event with an increase in wind power
greater than 50% of the maximum capacity of the wind farm within a horizon time smaller
than 4 h. In [20], we can find the definition of the ramp event magnitude, which considers
all the ramp events with an increase or decrease of power larger than 30% of the capacity
of the wind farm as significant, and this is determined with the following equation:

|Pt+At_Pt| >szlr (1)

where P; is the wind power output at time ¢, Py 5, is the wind power output after a fixed
time duration Ay, and P, is a cut-off level (a threshold). Furthermore, the authors in [20]
also considered the magnitude A; of the initial and final points of the time interval where
the ramp change rate occurs and consider that a ramp event occurs when the ratio between
the absolute value of the difference between the powers referring to two moments A; are
farfrom each other and A; is greater than the threshold power value. This is shown in the
following equation:

|Peat — P

AT > Piresholds )
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where Py, 001014 represents the maximum change rate power. For example, in [21], we have
the ramp rate when the change in power is greater than 50% of the wind plant capacity in
an interval of time equal to 4 h. We find the same equations in [22].

As follows, it is possible to see the formula used in [5] to modify the wind power
output according to a chosen ramp rate limitation.

ce(t—1)+1lim ife(t) >e(t—1)+lim
ce(t) =4q ce(t—1)—lim ife(t) <e(t—1)—Ilim ©)]
e(t) otherwise

where e(t) is the limitless power output, ce(t) is the power output, which is modified
according to a limitation, and lim represents the ramp rate limitation chosen, and it is
equal to

lim

_ Maximum Installed Ramp Capacity - Allowed Ramp Percentage @
B 100 '

In Figure 1, it is possible to see the different profiles of wind production without
limitation and production with a ramp rate limitation of 5% in a system with the rated
power equal to 2 MW. We also highlight the amount of energy that has to be stored in the
battery in green in the case of a ramp-up limitation, and the quantity that the battery has to
provide to comply with a ramp-down limitation in red.
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Figure 1. Ramp rate limitation of 5% in wind power output with a rated capacity of 2 MW.

This figure was obtained considering hourly wind speed data from the year 2008
referring to a location in Sardinia with geographical coordinates of 39.5 N latitude and
8.75 E longitude [23]. Once having obtained the wind speed data, we obtain the wind
power production from a power curve referring to a wind turbine, which produces power
for a wind speed higher than or equal to 4 m/s following a parabolic trend, and it has a
constant production equal to its rated power (2 MW) between 13 m/s and 25 m/s. The
analytic form of the power curve is shown in the system of Equation (5) in Section 3.2.

What is clear is that the ramp rate definition is strongly affected by the wind char-
acteristics presented in the location under study and by the ramp rate threshold chosen.
Establishing the duration of a ramp event is fundamental to properly compute the second
step of a typical treatment, which is usually involved in forecasting it to avoid potential
damage effects. Very often, works such as [24] choose a definition of the ramp rate to refer
to and base the study on it by defining only the time interval.
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2.2. Forecasting of Wind Power Ramp Events

The stability of the grid operation is one of the most important issues caused by ramp
events, and the harmful effects can be smoothed using different ramp forecasting methods.
We can find an example of what can cause a rapid and huge drop of wind power that was
not correctly predicted in the strong power imbalance event and the consequent cut out of
almost 1.2 GW of power in Texas in 2008 [9,25].

These methods usually are composed by wind speed or wind power forecasts and
ramp detection. In the first part, parametric and non-parametric are the two main methods
used to model the wind power curve. The former uses linear or polynomial functions
to fit the power curve; the latter needs historical data to create data mining algorithms
to obtain a power curve similar to the one from the real data. We can find physical
models that use physical characteristics, such as meteorological or topological conditions,
mathematical statistical models that consider the relation between historical wind power
data and forecasting, such as neural networks and auto-regression and moving average
(ARMA) models, and machine learning algorithms such as the artificial neural network
(ANN), recurrent neural network (RNN), and extreme learning machine (ELM) [26-28].
Recently, a non-parametric approach based on indexed semi-Markov processes proved to
be efficient to predict wind power at different time scales [29]. The ramp detection consists
of two steps: the definition of the ramp and the implementation of algorithms to detect
ramp events [22,30].

The study performed in [31] is interesting, where the authors aimed to forecast the
probability of exceeding a power threshold adapting the conditional autoregressive logit
(CARL) model previously studied in [32] to model the probability of wind power change
overcoming a threshold. They used hourly wind power data of four wind farm on Crete
(Greece), where the value of each hour is the average of six wind power readings recorded
at the previous hour, and they considered six thresholds (0.3, —0.2, —0.1, 0.1, 0.2, and 0.3).
They developed three new (CARL) models, namely conditional autoregressive multinomial
logit (CARML) models. The first aims to estimate the probabilities of exceeding different
thresholds by maximizing the likelihood of an expression based on a categorical distribu-
tion, which is a generalization of the Bernoulli distribution for a random variable with
more than two possible outcomes. In the second one, they considered the spatial modeling
using a bi-variate Bernoulli distribution to calculate the probability of a ramp rate event
in different locations. With the last model, they estimated the model parameters for fours
months, and they performed the probability forecast for the next month. They continued
the procedure moving forward by one month. They were interested in forecasting from
one to two steps ahead from the multi-step-ahead CARML model. The results show that
both predictions are very promising compared to other models.

A different approach is proposed in [30], where a hybrid forecasting model based on
a semi-supervised generative adversarial network (GAN) was implemented to forecast
wind power and ramp events. The GAN is a class of machine learning frameworks able
to deduce the potential statistical distribution of the wind power time series. The merger
of the semi-supervised regression with the GAN framework succeeds in decoding the
nonlinear behaviors of the wind power data and improving the generated sample quality
and decreasing the errors in the forecasting. More specifically, a signal decomposition
techniques, variational mode decomposition, was used to divide wind power data into
different sub-series with intrinsic mode functions that differ in frequency. Then, the GAN
model was applied to generate virtual wind power data with the aim of finding the
distribution characteristics of the wind power data. Finally, a GAN discriminative model
was used to extract nonlinear features present in the data, and a semi-supervised regression
was applied to predict the wind power for the next horizon time. The parameters of the
GAN were updated through an alternative training process to minimize the errors of the
predictions. The ramp event were divided into five categories according to the nature of
the change (up or down event, small or large event, and no ramp event). The authors
compared this method with a classical neural network algorithm, deep learning algorithm,
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and statistical method, showing that it performs better according to different evaluation
metrics (MAE, RMSE, and MAPE).

The authors in [33] considered wind data from three different wind farms in Hubei,
which are characterized by different capacities. First of all, they used a swinging door
algorithm (SDA) to identify the ramp segments. Then, they used a dynamic programming
method to identify the ramp trend. Finally, they proposed a new improved dynamic
swinging door algorithm (ImDSDA) with dynamic programming, which represents a com-
bination of the SDA and sliding window (SW) algorithm and aims to solve the problem
regarding the detection of ramp events and to obtain the optimal door width. This is a
two-stage method characterized by high operability. The first stage contains the segment de-
tection and classification. The second stage contains ramp event identification and segment
combination. The results show that the this methodology improves the detection accuracy.

In [22], a wind power prediction was obtained in two steps: wind power prediction
and ramp detection. In this case, the non-parametric approach was used to build the
prediction model and a Markov-switching auto-regression (MSAR) model was used to
correct the prediction residual. The MSAR model represents a combination of AR models
(which obtain the predictability of the data) and the Markov model (which obtain the
randomness of the data thanks to the transition probability of the Markov chain), builds a
residual correction model, and incorporates a random residual. At the end, an improved
swinging door algorithm proposed in [34] was used to see the linear segment thanks to
it being possible to find the ramp event according to the ramp definitions. The authors
considered the 15 min wind data of a wind farm located in China. It was shown that this
method performs better than the primary model and ARMA model.

A new statistical approach was proposed in [20], where a practical metric based on
real data was used to evaluate the forecasting performance of ramp events. The authors
calculated the hourly average of wind power and the ramp rate for each month and
evaluated the seasonal standard ramp rate values as the input in the algorithm used to
predict ramp events. Subsequently, the error metrics were used to evaluate the algorithm,
such as BIAS, MAE, NMAE, and SDofAE.

It is also important to correctly choose the prediction time scale, called the time window
in [35], which can negatively influence the accuracy of predicting ramps. In this work, the
authors focused on optimizing the time window size in order to minimize non-ramp data
in the chosen window, and the data analysis that they implemented consisted of extracting
the ramp events, selecting the input variables and parameters, and solving the optimization
problem through a genetic algorithm (GA) because of the nonlinearity of the objective
function [35]. In Table 1, we summarize the different categories and methods of ramp rate
predictions according to [10,30].

The indirect method is more easily applicable because it does not require ramp rate
data, as opposed to the direct method, which can only be applied by having already adhered
to a ramp rate limitation policy. Nevertheless, we recommend implementing the ramp rate
forecasting through an optimal mixture of the direct and indirect methods. However, this
strategy needs real ramp event data, which are hardly available to researchers, but not to
wind farm operators.

The different methods used depend strictly on the skills and means that researchers
and practitioners have in their possession. The mathematical statistical methods gener-
ally need few resources to be applied as they are based on the analysis of the historical
wind power series. Nevertheless, the required skills are advanced. This typology can be
improved by adding information from physical methods in the form of covariates. The
availability of information necessary to implement the physical methods could be limited
to meteorological centers or to the installation of specific meteorological stations near the
wind farm. Another relevant aspect in this regard is the time scale of the data provided.
Finally, the availability of important computational resources could allow the support of
machine learning methods frequently used in the last decade.
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Table 1. Ramp rate prediction categories and methods.

Categories
Indirect forecasting methods: the wind Direct forecasting methods: historical
power is forecast, and subsequently, ramp ramp events are directly used to obtain
events are detected parameters to forecast ramp events
Methods Explanation Examples of Models
Relation between meteorological
Physical methods and environmental characteristics =~ Numerical weather prediction systems

and wind power

Mathematical statistical methods

Statistical methods built on lin-
ear and nonlinear functions used
to model historical wind power
time series

Auto-regressive integrated moving
average model, auto-regressive model,
Gaussian process

Machine learning algorithms

Support vector machine, extreme
Computational algorithms to fore- learning machine, neuron-fuzzy network,
cast wind energy artificial neural network, genetic
algorithm, particle swarm optimization

Increasing importance on ramp rate prediction has been placed in the literature because
of the extreme rapidity of this type of event, which does not allow an adequate response
of control systems. From this, we have the need of creating ever-more precise forecasting
models, which represents the most effective way of dealing with ramp rate events [24].
For this aspect, help could be given by creating a model that takes into account both the
historical data available and the production data of already existing wind farms as close as
possible to the area of interest. This could help to better understand the nature of the local
wind speed.

3. Ramp Rate Limitation Control Strategies

In this section, we present the following two main branches of strategies used to
control the ramp rate:

*  Using a storage system to supply or store the needed power.
¢  Controlling the turbine blade pitch and rotor inertia.

3.1. Ramp Limitation Using a Battery Storage System

Many studies deal with the use of a battery storage system to limit and smooth
the wind power fluctuation focusing on what type of battery and which size to choose.
Obviously, the storage system should be as big as possible to maximize the smoothing of
the ramp events. At the same time, the operator wants to minimize the cost, which means
minimizing the capacity and the maximum power of the storage system. This is a trade-off
that leads to finding the best combination between cost and storage characteristics through
a multi-objective optimization approach [36].

The inability to use the battery because it does not have enough space to store all the
surplus of power or to supply the right quantity of power to comply with a ramp rate
limitation could mean receiving a penalty [5,8]. As follows, a graphic power smoothing
algorithm, which is thought of as a modification of the one used in [36], is shown in
Figure 2.
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Figure 2. Graphic power smoothing algorithm.

In this case, we added the penalty concept in red, often applied to penalize the wind
farm that does not respect the imposed limitation [5,8]. An example of the penalty system is
givenin [8]. The frequency regulation market in ERCOT is divided into “regulation up” and
“regulation down””’ prices, and in this study, the penalties for not respecting the ramp-up
and ramp-down limits were varied between 0.25- and 5-times the down-regulation price
and up-regulation price, respectively.

In Table 2, the main energy storage systems and their advantages and disadvantages
are shown.

Table 2. The main energy storage systems with their principal advantages and disadvantages [13,37—40].

Type Advantages Disadvantages
. High efficiency, short response time, fast High cost, limited long-term
Super capacitor L . .
charging time, high energy density energy storage
Hydrogen-based Few env1ronmenjca'l impacts, High capltal' cost, 1'0\./\7 storage
moderate efficiency conversion efficiency
Long life Of.15_2(.) years, high pe.ak power Very high capital cost, high rate of
capacity without overheating, . .
Flywheel . e . . discharge in the range of
insensitivity to depth of discharge, rapid o
o 55-100% per day
response, very good energy efficiency
High power density, low-cost materials,
Battery high rated pulsg power capa‘tTlhty, fas.t High capital cost, high temperature
response, long life span, effectiveness in
small-scale applications
Superconducting High efficiency, short response time Fuel for maintenance at very low

temperature, short-term energy storage

Compressed air

High power capacity, low capital cost,

quick startup, moderate energy efficiency Heat lost for long storage time

Among the types listed in Table 2, the battery (usually indicated with the acronym
battery energy storage system (BESS)) is the most popular one due to the small area
occupied for installation and its easy implementation. However, their application presents
also some problems, such as the need to have a large capacity to cover the wind power
fluctuations and the consequent increase of the capital and maintenance costs. In the field of
wind power production, for this type of storage system, the most-used technologies are the
lead-acid battery characterized by a low investment, easy installation, short lifetime, high
maintenance, and poor performance at normal temperature, the nickel-based battery with
a long lifetime, low maintenance, higher cost, and high self-discharge rate, and the sodium-
sulfur battery with a high efficiency, good power density, high life cycle, considerable
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power density, thermal management, and low freeze-thaw durability [39]. The important
characteristics that a storage system should have for this kind of application are high
energy efficiency and fast response [39]. For example, in [8], a NaS battery was used to
implement different market policies such as ramp-up and ramp-down limitation. This
choice is driven by the fact that this battery has a relatively established storage technology
and a power-to-energy ratio suitable for ramp rate limitation. Furthermore, these batteries
are modular and can be scaled based on the wind plant’s size. In the literature, several
studies have investigated the best energy storage system to be coupled with a wind farm.
In [36], the authors investigated the capacity of a battery storage system (BSS) to mitigate
the ramp rate fluctuations depending on the storage capacity, the power rating, and the
threshold chosen. In particular, they compared two different storage technologies and led a
technical and economic analysis with a multi-objective optimization strategy to obtain the
optimal balance between costs and abatement capacity in a realistic scenario considering
maximum ramp rates equal to 5%, 7.5%, and 10%. The storage parameters, the power
output from the wind turbine, and the maximum ramp rate represent the input of the
model, and a black-box optimization problem was solved through a direct search algorithm
implemented in MATLAB.

The minimum storage size to respect the ramp rate limitation was investigated in [41]
through an optimization problem implemented in Python and solved using Gurobi. Fur-
thermore, Reference [1] focused on the optimal energy storage system size problem for
ramp rate control. This study developed a novel representative day selection technique
to select the days on which the optimal operation was based to elect the best size. The
procedure was divided into two steps. In the first step, called pre-processing, the data were
manipulated to be converted into a one-minute scale and sent to the second step (data
clustering), where a set of representative days was chosen. To measure the performance
of the selected days in the estimation of the battery size, a ramp rate violation penalty
was applied.

Due to the direct proportionality between cost and capacity, it is fundamental to inves-
tigate control strategies that aim to optimize the operations of the BESS. Some examples of
these methods are listed as follows [39]:

*  Wind power filtering such as a low-pass filter, in which the higher elements of the
frequency are blocked and the BESS has to store/supply the difference between the
power value before and after the filter.

¢  Charging/discharging dispatch, in which a control system manages the battery op-
erations to obtain the required power to smooth the wind power production. In this
context, we find the model predictive control framework.

*  Optimization with wind speed prediction, where the predictions are used to improve
the control of the BESS.

A penalty can be charged to the wind farm for not respecting the ramp rate limi-
tations [8]. The recent study [5] proposed a new method in which different ramp rate
limitations were implemented in a hypothetical wind turbine connected to a battery located
in Sardinia. The 10-year data of hourly wind speed were considered, and the battery must
provide or supply the quantity of energy needed to comply with the limitation imposed. If
the state-of-charge of the battery is not able to do this, the wind farm receives a penalty [42].
The battery operations of charge and discharge are modeled as a discrete-time homoge-
neous Markov chain in which a state space composed by the following three states is
considered: +1 for a charge event, —1 for a discharge event, and 0 for the unchanged con-
dition. The aim of this work is to simulate the state-of-charge over time and, consequently,
calculate the amount of penalty that the wind farm receives during a given period.

This control strategy is the most used because of its fast response against rapid
ramp events. Its applicability is directly connected with the design of increasingly better-
performing and less-expensive batteries. Improving the ramp rate forecast can lead to the
use of simpler and less-expensive storage system thanks to the possibility of setting the



Energies 2022, 15, 5850

9of 15

battery conditions (such as its state-of-charge) at the most appropriate state to best respond
to the ramp event.

3.2. Ramp Limitation Using Physical Techniques

In this subsection, the main control techniques consisting of directly controlling the
wind turbine are presented and explained. In Figure 3, it is possible to see the main
components of a generic wind turbine.

Figure 3. Main components of a wind turbine.

It is also important to remember that the power production of a wind turbine is
regulated by a power curve. An example is proposed as follows [5].

0 for U(t) < Uei,
()} .
wr( = { Py for va<elt) <oy 5
P for v <0(t) < veo,
0 for 'U(t) > Uco,

where v, is the cut-out wind speed, v,; is the cut-in wind speed, v(t) is the wind speed
at time ¢, and v, and P, are the rated power and the rated wind speed. The wind power
production strongly increases with the increase of wind speeds greater than v.; until v,
is reached and the turbine has a constant production (P;). In this way, we can define four
different areas in which the power production is differently ruled (in some studies, the
authors identify five areas [43,44].

The use of a storage system is not the only approach to cope with the ramp rate of
the wind power production [45]. There are several ways to control a wind turbine. One
way is represented by the generator torque control, where the controller fixes the generator
torque in order to accelerate or decelerate the turbine with the aim of finding the optimal
operation point while minimizing the loads [43].

Other less-expensive control techniques consist of controlling the turbine blade pitch
and the rotor inertia, but they require advanced control systems and are not suitable for
quick responses [46]. In the literature, these two methods of control are called active power
control (APC) strategies, and they form two categories: the pitch-angle-regulation-based
control (PAC) and the rotor-speed-regulation-based control (RSC) [47]. The pitch control
consists of adjusting the blades by rotating them in order to control the aerodynamic
efficiency. In this way, it is guaranteed that the right fraction of the current wind power
production is exploited and the maximum rotational speed is not overcome [39]. Formerly,
the turbines were controlled passively by means of the aerodynamic characteristics of the
blades (an example is passive stall control), but this methodology was not very efficient.
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Modern wind turbines have active pitch control with electrical or hydraulic actuators [43,48].
The second category consists of smoothing the wind power output by using the large
inertia inherent in the wind rotor [47,49,50]. In general, it is possible to have two types of
wind turbine generators: constant-speed wind turbines and variable-speed wind turbines.
The wind farm can control the frequency using inertia response methods and primary
frequency response methods. The first one consists of using the wind farm droop controller
and storing its rotational energy in the rotor, and this is possible by controlling the pitch
angle [51].

Most of these techniques act directly on the setting of the wind turbine and usually
provide a slower response compared with the one provided by a storage system. It is
our suggestion that, also in this case, the decision on which control strategy can be used
depends on the characteristics of the wind and the ramp events that affect the location
under study. For example, ramp events that last hours could be reasonably managed
through physical techniques. Conversely, if the duration of the ramp events is of the order
of minutes, it might be better to use a battery with a fast response.

4. Challenges in an Interconnected Network and Code Requirements

This section presents the issues that the wind power caused in the managing of an
electrical network. Furthermore, some examples of the code requirements are given to
show how the ramp rate limitation is regulated.

4.1. Ramp Rate Limitation in the Grid and Microgrid

Electricity systems are currently facing a change due to the desire to reduce carbon
dioxide emissions. They are turning into decentralized power grids to increase the penetra-
tion of distributed energy resources. The role of microgrids is also crucial, which help in
the managing of renewable sources and increase their integration [52-56].

Wind power fluctuations are an important issue also for the management of grids and
microgrids, where they cause a change in grid frequency and voltage swing, resulting in
instability problems that need voltage control [20,57,58]. In particular, the ratio between
reactive power and voltages is reduced, and this fact is accentuated when a rapid change
in power occurs [59,60]. Because of this, ramp rate limitations have been introduced by
some power utilities to have a more stable power output from RESs [45]. The stochastic
nature of the renewable energy sources makes this phenomenon impossible to avoid and
difficult to predict with a high level of accuracy. This last aspect was investigated in [31]
using autoregressive logit models. In [61], the software OptiWind was used to predict the
wind speed in a model predictive control (MPC) framework with the aim of obtaining
the optimal wind power dispatch. The objective function of the wind farm consists of
minimizing the operation cost, which is the sum of the profit lost led by the cutting off of
the wind power, the operation cost of the battery, and the penalty cost due to the violation
of a ramp rate limitation equal to 5 MW /10 min.

In [11], the authors studied a methodology to estimate the available reaction time for
microgrids facing ramp events caused by renewable energy sources and load changes. The
reaction time is the time needed to react to such an event before the system protection
mechanisms intervene. This happens when the frequency overcomes its bounds. The
rotational velocity of the generators determines the frequency. In a grid/microgrid, the
cause of a ramp rate event is not only associated with the wind power variation, but also
with the contribution of all the other renewable energy sources connected to the grid and
their unified contribution. The authors provided an analytical framework considering
the balance between ramp rates and control devices as a function of the inertia of the
rotating generators.

A complex problem was solved in [62], where a supercapacitor energy storage system
was associated with a 1 MW tidal turbine in an islanded microgrid of Ushant in France to
smooth the power fluctuations and keep the state-of-charge in a fixed interval. A methodol-
ogy was applied to minimize the storage system size and respect a maximum power ramp
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rate AP, /AT = £5kW/s, and an original smart power management strategy was applied
to manage the energy storage system. The whole tidal energy conversion system was
modeled through the energetic macroscopic representation and was controlled through the
inversion-based control principle. The authors considered the system constraints and the
power balance of the microgrid and gave an original simulation-based algorithm to find the
optimum between power flow management and storage system size. The principal steps
of the algorithm consists of initializing the parameters of the storage system and turbine,
loading the hydroelectric power, and fixing the power integration constraint +5 kW/s,
starting with an iteration equal to 1 with a required number of modules decided based on
the characteristics of this elementary module, applying an original regulation strategy of
the state-of-charge to maintain it in a range where it can be properly used to smooth the
fluctuations. With the fifth step, a reference power, which feeds the microgrid, is found,
and the difference between the hydroelectric power and the reference power represents
the power that has to be provided or stored in the storage system. The state-of-charge is
updated at each time step, and the algorithm obtains the maximal and minimal state-of-
charge values. The iteration continues until the convergence condition is reached. The
authors showed that the association of a storage system with a capacity of 2 kwh with
a 1 MW turbine succeeds in totally respecting the system constraints and optimizes the
energy production, even in a scenario referring to power production and fluctuations from
a tidal turbine.

An interesting study was performed in [63], where an active power management
scheme in a wind-solar AC microgrid was investigated. The aim was to limit the net output
power ramp rate through a computationally efficient variable kernel-width maximum cor-
rentropy criterion adaptive filtering methodology, using a battery-energy-storage-assisted
ramp rate limit control. In this case, the power ramp events in the microgrid are caused by
sudden and large variations of solar irradiation, wind speed, and local load demand.

4.2. Grid Code Requirements

The current high integration of renewable energy sources brings development and
change to regulations, standards, and requirements, which are technically and economically
justified and, in some case, are not clear. From this point of view, a global harmonization is
needed [64]. The Commission Regulation (EU) 2016/631 of 14 April 2016 [65] established
technical design and operational requirements to be connected to the electrical system.
There are several goals; among them, there is the necessity to facilitate Union-wide trade,
secure the system, and encourage the integration of renewable energy sources. To obtain
these goals, cooperation between the owners of the power generators and the system
operators is strongly needed. The power-generating modules are categorized according to
the voltage level of their connection point and their maximum capacity. For example, the
power-generation modules that have a connection point below 110 kV and a maximum
capacity threshold of 50 MW (Continental Europe) belong to the category called “type C”.
For this category, the power range referring to the maximum capacity is between 1.5% and
10%. In Denmark, the ramp rate should be between 20% and 1% of the maximum capacity
and always below 60 MW /min. In India, the limitation is 10% per minute for plants with a
capacity greater than 10 MW connected at >33 kV. The same requirements are applied for
electrical energy storage facilities [66]. In [67], the Puerto Rico Electric Power Authority
provides an overview of the minimum technical requirements that the companies must
respect to interconnect variable renewable generation to the electric grid. The requirements
refer to aspects dealing with the safety, costs, and performance of the system. The voltage
regulation system, the reactive power, the power factor requirements, the short-circuit ratio,
and the frequency response are only some of the limitations described. The ramp rate
control is also included, where a 10% of rated capacity limit on 1-min ramp rates for both
photovoltaic and wind generation is required. Other examples are given by EirGrid, which
limits positive ramp events up to 30 MW /min, or the transmission system operators in
Germany, which limit the ramp-up events at 10% of rated power per minute.
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It is evident that unique requirements and regulations do not exist. It would be
interesting to think about a general and uniform legislation that could make clearer which
rules and limitations need to be observed and could make the work of the manufacturing
sector easier, which could design control systems already set to certain limitations.

5. Conclusions

The ramp rate limitation is a control strategy that has been studied extensively over the
last few decades. The increasing use of renewable energy sources and, in particular, wind
has led to new problems connected to their management and connection to the standard
electrical network. From this necessity, the concept of the ramp rate limitation was born
with the aim of controlling the rapidity of the change in power production and avoiding
problems in terms of network safety and stability.

This paper presented a general overview of the different aspects involving the ramp
rate limitation for wind power plants in the literature. Three main study areas can be
pointed out, and they are listed as follows:

*  The definition and methods of forecasting the ramp rate events underlining the
difficulties existing in the literature in finding a homogeneous point of view. This
could be due to the fact that this is a relatively new topic and the characteristics of
ramp rate events are strongly connected to the characteristics of the wind properties,
which differ depending on the location.

*  The control strategies used to implement the limitation deal with the use of storage
systems or directly controlling the turbine and aim to minimize the costs and decrease
the waste of energy.

*  The contextualization and application of the ramp rate limitation in the current electri-
cal network with some of the requirements and rules followed in some nations.

The objectives of this paper were to provide a general idea of the ramp rate control
strategy to better understand this method and to give guidelines and research directions
for future works in a such a new and useful study area, underlining the interconnections
that exist among the different research aspects.
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