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Abstract: Sleep quality (SQ) is a crucial aspect of overall health. Poor sleep quality may cause
cognitive impairment, mood disturbances, and an increased risk of chronic diseases. Therefore,
assessing sleep quality helps identify individuals at risk and develop effective interventions. SQ
has been demonstrated to affect heart rate variability (HRV) and skin temperature even during
wakefulness. In this perspective, using wearables and contactless technologies to continuously
monitor HR and skin temperature is highly suited for assessing objective SQ. However, studies
modeling the relationship linking HRV and skin temperature metrics evaluated during wakefulness
to predict SQ are lacking. This study aims to develop machine learning models based on HRV and
skin temperature that estimate SQ as assessed by the Pittsburgh Sleep Quality Index (PSQI). HRV
was measured with a wearable sensor, and facial skin temperature was measured by infrared thermal
imaging. Classification models based on unimodal and multimodal HRV and skin temperature
were developed. A Support Vector Machine applied to multimodal HRV and skin temperature
delivered the best classification accuracy, 83.4%. This study can pave the way for the employment
of wearable and contactless technologies to monitor SQ for ergonomic applications. The proposed
method significantly advances the field by achieving a higher classification accuracy than existing
state-of-the-art methods. Our multimodal approach leverages the synergistic effects of HRV and
skin temperature metrics, thus providing a more comprehensive assessment of SQ. Quantitative
performance indicators, such as the 83.4% classification accuracy, underscore the robustness and
potential of our method in accurately predicting sleep quality using non-intrusive measurements
taken during wakefulness.

Keywords: sleep quality; wearable sensors; contactless sensors; heart rate variability; skin temperature;
infrared thermography; machine learning

1. Introduction

Sleep is part of the circadian rhythm and is characterized by sequences of stages with
related autonomous nervous system (ANS) functions [1]. It is a complex physiological
process that covers nearly one-third of the lifespan and plays a relevant role in the consol-
idation of memories, learning, physical development and fitness maintenance, emotion
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regulation, and quality of life [2]. Sustained deprivation of sleep leads to a decrease in the
immune system’s efficiency and increases the risk of cardiovascular pathologies, hyperten-
sion, obesity, metabolic deregulation, and diabetes [3]. Poor SQ is associated with a large
annual economic loss due to the reduction in workplace productivity, with an estimated
value ranging from $299 billion to $433 billion by the year 2020 in the United States [4]. It
has been reported that almost fifty percent of older adults experience impaired SQ, and
it has been estimated that the prevalence is lower in healthy adults; therefore, SQ may be
regarded as an early indicator of cognitive decline in midlife [5]. Hence, it is expected that
SQ examination will become a major relevant analysis for the medical diagnosis. SQ is
likely a multifaceted construct that would be difficult to characterize by any single measure,
requiring a multimodal approach investigating physiological changes induced by poor SQ.

Both subjective and objective methodologies can be used to assess SQ. Among the
subjective methods, the sleep diary is the most extensively used [6], as it requires the
individual to record morning estimates of their sleep pattern parameters. However, its
success relies heavily on daily (prospective) recordings as soon as individuals wake up
in the morning, which may be a challenging task for older individuals to consistently
remember to perform. In contrast, retrospective self-report measures, such as question-
naires, can be widely used in both routine care and clinical trials due to their low cost,
high patient compliance, ease of administration, and potentiality to be administered to a
variety of populations via the Internet [7]. The Pittsburgh Sleep Quality Index (PSQI) is a
self-reported survey that evaluates SQ and disruptions within the preceding four weeks [8].
The assessment tool consists of a total of 18 items that are categorized into seven distinct
components, namely, subjective SQ, sleep latency, sleep duration, habitual sleep efficiency,
sleep disturbances, use of sleeping medication, and daytime dysfunction. A cut-off score
of 5 was defined to distinguish between individuals with good and poor SQ; elevated
scores (i.e., >5) are indicative of suboptimal subjective SQ [8].

Concerning objective methodologies to assess SQ, polysomnography (PSG) is an objec-
tive methodology with a high degree of reliability for obtaining data on sleep parameters [9].
However, objective methods are generally costly and time-consuming [9]. Notably, low-cost
wearable sensors able to record the wearer’s heart rate (HR) are currently used to assess SQ
in a non-invasive manner [10]. Specifically, wearable devices can capture several physiolog-
ical signals useful for SQ assessment, such as HRV, electrodermal activity, body movement,
skin temperature, respiratory signals, and brain activity. Exploiting machine learning (ML)
frameworks, it is possible to deliver generalizable classifications of sleep quality from the
recordings of these physiological signals [11]. SQ is correlated with HRV metrics during
sleep, highlighting the close interconnection between sleep and ANS activity. HRV metrics
during sleep stages show distinct associations with clinical indicators of metabolic function,
indicating the influence of sleep on ANS and metabolic regulation. HRV analysis during
sleep provides a model to investigate ANS activity and its fluctuations caused by intrinsic
factors, such as circadian rhythm, without the confounding influence of daytime activities.
Significant differences in HRV metrics among different sleep stages indicate the dominance
of sympathetic nervous system (SNS) activity during unstable sleep and the dominance of
parasympathetic nervous system (PNS) activity during stable sleep. Overall, HRV analysis
during sleep stages allows the identification of distinct ANS function patterns and their
associations with metabolic function, providing valuable insights into the regulation of
ANS function and metabolic processes during sleep [12]. Importantly, several studies eval-
uated the relationship between HRV and SQ during resting wakefulness, demonstrating
an influence of the quality of sleep on HRV metrics even during the waking state. For
instance, Gouin et al. [13] found that greater HRV during resting wakefulness is associated
with better sleep efficiency as measured with sleep diaries over one week in young adults.
The results suggest that HRV during a short resting period is an independent index of
sleep efficiency and could be used as a clinical biomarker of sleep quality. In addition,
Van den Berg et al. [14] found that HR changed significantly sooner when subjects were
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sleep-deprived than when they were rested during a monotonous attention task lasting
120 min.

From this perspective, it is worth highlighting that changes in HRV can produce
modifications in the peripheral circulation that can be easily assessed through infrared
thermography (IRT). IRT is a technique used to capture the infrared radiation emitted by
an object in a contactless manner, allowing us to estimate the superficial temperature of
the object. Its effectiveness as a complementary tool alongside other diagnostic methods
has been demonstrated in several applications in the biomedical field, such as cancer
detection [15,16], vascular disorder evaluation [17], musculoskeletal injury monitoring [18],
and inflammatory state identification [19]. IRT has been used to assess changes in the
breathing rate through the temperature modulations of the regions around the nostrils and
the mouth [20] during the sleepy state. Notably, thus far, IRT has not been used to assess
the quality of sleep during the awake state. However, facial skin temperature oscillations
evaluated through IRT have been demonstrated to be related to HRV metrics [21], hence
suggesting that skin temperature modulations during the awake state could be influenced
by the quality of sleep as the HRV is. Importantly, HRV metrics and skin temperature are
not correlated per se, but skin temperature is related to the superficial microcirculation,
which, in turn, is related to blood flow and volume, which are dependent on the heart
rate, making it possible to develop models able to estimate HRV parameters from features
extracted from skin temperature oscillations [22]. Thus, using HRV and IRT together could
improve their sensitivity in predicting SQ, providing an accurate objective estimate of such
a physiological state.

The objective of this study was to estimate the SQ through ML approaches applied to
both HRV and IRT signals using the PSQI as a gold standard. Specifically, cross-validated
classifiers were employed to predict PSQI scores and to provide a two-class classification
(i.e., good and poor SQ, using PSQI = 5 as the cut-off score) respectively. The remainder
of this document is organized as follows: in the following section, the study design,
the participant recruitment, the data collection procedures, and the methods used for
HRV and IRT measurement are described. Additionally, this article outlines the machine
learning algorithms employed and the validation procedures used in the study. Then, the
performance of our ML algorithm is provided. Then, the strengths, limitations, and key
findings of the study are outlined.

2. Results
2.1. Experimental Design

IRT and HRV were measured at rest for 5 min in our experimental group of admin-
istrative employees. Data regarding subjective sleep quality were also obtained using
the PSQI. ML was implemented, and objective IRT and HRV data were used as input
features to classify “good and poor sleep” groups, based on PSQI data. Figure 1 displays
the experimental design and procedure adopted in this study.

2.2. Machine Learning Accurately Classifies Sleep Quality Using HRV and Skin Temperature

The features identified by the feature selection procedure for the HRV were the mean,
maximum, and standard deviation of the HR; very low frequency (VLF); low frequency
(LF); ratio between low frequency and high frequency (LF/HF); and SD2/SD1. Concerning
the IRT, the features selected were the delta of temperature of the glabella, nose tip, and
nostrils; the skewness of the temperature of the nose tip; the SampEn of the nose tip; the
PSD of the respiratory band of the glabella; and the PSD of the myogenic band of the
nose tip.

In selecting classifiers for a classification problem, it is essential to utilize a diverse set
of models to ensure robust and comprehensive analysis. The chosen classifiers—Decision
Tree (DT), Support Vector Machine (SVM) with a linear kernel, k-nearest neighbor (KNN),
Ensemble (ENS), and neural network (NN)—each bring distinct advantages. For instance,
Decision Trees effectively capture non-linear relationships between features and target
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variables. Support Vector Machines with a linear kernel are particularly effective in high-
dimensional spaces. The k-nearest neighbor algorithm is noted for its simplicity and
intuitiveness, making predictions based on the majority class among the nearest neighbors
without assuming any underlying data distribution. Ensemble methods combine the
strengths of multiple base models to improve overall performance. Neural networks
are capable of learning complex and non-linear patterns in the data, making them ideal
for problems where such patterns are present. This selection ensures a comprehensive
evaluation of the classification problem, leveraging the unique strengths of each classifier.
However, it should be highlighted that evaluating all these models allowed a benchmarking
procedure. Specifically, the best performances of the models were considered in terms of
TPR, TNR, and accuracy. Here, we report the results from all the evaluated models in order
to demonstrate the process of investigation behind the best results, rather than reporting
only the best results obtained. The findings indicate that ML effectively categorizes sleep
quality based on HRV and skin temperature. The classification performance of the several
ML techniques investigated is shown in Table 1.
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Figure 1. Schematics of the experimental procedures. (A) Thermogram of a representative participant
showing the ROIs’ positions covering the glabella (G), nose tip (NT), and nostrils (N); skin temperature
data and (B) HRV metrics were the two objective physiological signals obtained. Additionally,
(C) sleep quality was subjectively assessed using the PSQI. (D) Machine learning using thermic and
HRV data separately or in combination was used to estimate and (E) classify sleep categories. The
image was created using BioRender.com.

The best classification performance was obtained by the SVM algorithms. In detail,
results showed that using HRV metrics as predictors, the SVM classified sleep quality with
a true positive rate (TPR) of 83.3% and a true negative rate (TNR) of 72.2% (Figure 2A).
Similarly, using IRT features as predictor variables, SQ was predicted with a TPR of 86.7%,
while only a TNR of 60.0% was seen (Figure 2B). Interestingly, when HRV and IRT were
used in combination, the ML classification showed improved results. Indeed, sleep quality
was classified with a TPR of 86.7% and a TNR of 80.0% (i.e., the highest among all the
models) (Figure 2C). In summary, ROC curves showed an AUC of 0.78 for HRV metrics
as predictors (Figure 2D) and a slightly lower value for IRT (0.75) (Figure 2E). Of note,
the highest AUC value, 0.84, was obtained when HRV and IRT were combined for the
classification (Figure 2F).
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Table 1. Machine learning models’ performance expressed as the true positive rate (TPR), true
negative rate (TNR), and accuracy for the different feature sets considered (i.e., HRV, IRT, and
HRV + IRT).

Feature Set Model TPR TNR Accuracy

HRV DT 66.7 66.7 66.7
SVM 83.3 72.2 77.8
KNN 80.0 40.0 60.0
ENS 73.3 73.3 73.3
NN 86.7 46.7 66.7

IRT DT 73.3 66.7 70.0
SVM 86.7 60.0 73.4
KNN 80.0 46.7 63.4
ENS 86.7 60.0 73.4
NN 66.7 66.7 66.7

HRV + IRT DT 80.0 26.7 53.4
SVM 86.7 80.0 83.4
KNN 80.0 46.7 63.4
ENS 80.0 53.3 66.7
NN 86.7 60.0 73.4
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Figure 2. Confusion matrix graph visually representing the number of times the SVM algorithm
correctly predicted the good-quality and poor-quality sleep groups using (A) HRV, (B) IRT, and
(C) combined HRV and IRT metrics. Receiver operating characteristic curve graphs with computed
area under the curve (AUC) show the difference performance obtained using (D) HRV, (E) IRT, or
(F) combined HRV and IRT metrics as predictors.

2.3. HRV Metrics Are Useful for Discriminating between Good and Poor Sleep Quality

We performed an unpaired t-test for the selected HRV metrics used for the classification
of PSQI classes (i.e., good, and poor SQ) to investigate which of them were representative
of the two different classes. Regarding time-domain variables, mean HR (p = 0.614), max
HR (p = 0.698), and standard deviation of HR (p = 0.929), no significant differences were
found between subjects with good and poor SQ (Figures 3A, 3B and 3C, respectively).
Similarly, the logarithm of LF power and raw VLF power were not statistically different
between good and poor sleepers (Figures 3D and 3E, respectively). On the other hand, LF
(p = 0.011) and LF/HF power (p = 0.024) measured as ms2 showed significant differences
(Figures 3F and 3G, respectively). Moreover, LF power and HF power expressed as per-
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centages (p = 0.034, p = 0.049) and normalized units (p = 0.040, p = 0.040) were different for
the two classes of subjects. Finally, the SD2/SD1 (p = 0.013) calculated from the Poincaré
plot was different between good and poor sleepers (Figure 3L).
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Figure 3. Histograms report HRV metrics in subjects with good and poor sleep quality as assessed
by PSQI. (A) Mean heart rate; (B) Maximum heart rate; (C) Standard deviation of the heart rate;
(D) Low-Frequency power expressed as log; (E) Very Low-Frequency power expressed as ms2;
(F) Low-Frequency power expressed as ms2; (G) Low-Frequency/High-Frequency ratio expressed as
ms2; (H) Low-Frequency power expressed as percentage; (I) High-Frequency power expressed as
percentage; (J) High-Frequency power expressed as normalized units; (K) Low-Frequency power
expressed as normalized units; (L) Standard deviation 2/Standard deviation 1 ratio of the Poincaré
plot expressed as arbitrary units. An unpaired t-test was used to check for statistical differences.
Data are reported as the mean and standard deviation. * p < 0.05, VLF = very low frequency;
LF = low frequency; LF/HF = ratio between low frequency and high frequency; GQ = good quality;
PQ = poor quality.

2.4. Specific IRT Features Are Representative of Good and Poor Sleep Quality

Furthermore, to check whether the selected IRT metrics that were implemented for
the classification of PSQI classes (i.e., good and poor sleep quality) were representative
of good and poor sleepers, an unpaired t-test was used. The results highlighted that
the delta values of the temperatures recorded at the glabella (p = 0.042) and the nostrils
(p = 0.003) were significantly different between good and poor sleepers (Figures 4A and 4C,
respectively). On the other hand, the delta of the temperature of the nostrils did not
show a statistical difference (p = 0.139), although such a result could be due to the high
standard deviation found in the good-sleep-quality group (Figure 4B). Similarly, neither the
temperature skewness (p = 0.595) nor the nose tip sample entropy (p = 0.485) was statistically
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different between the two groups (Figures 4D and 4E, respectively). Additionally, the
power spectrum density of the respiratory band of the glabella (p = 0.230) did not show
differences between good and poor sleepers (Figure 4F). Finally, the power spectrum
density of the myogenic band of the nose tip (p = 0.030) showed a significant difference
between subjects with good and poor sleep quality (Figure 4G).
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the PSQI. (A) Delta of temperature at the glabella; (B) Delta of temperature at the nose tip; (C) Delta of
temperature at the nostrils; (D) Skewness of temperature at the nose tip; (E) Sample entropy at the nose
tip; (F) Power spectrum density of the respiratory band at the glabella; (G) Power spectrum density
of the myogenic band at the nose tip. An unpaired t-test was used to check for statistical differences.
Data are reported as the mean and standard deviation. * p < 0.05, ** p < 0.01. SampEn = sample
entropy; PSD = power spectrum density; RespBand = respiratory band; MyoBand = myogenic band.

3. Discussion

The present study reports the feasibility of estimating sleep quality through an ML
approach applied to HRV and skin temperature assessed through PPG and IRT, respectively.
The results demonstrated good accuracy in the classification of sleep conditions using data
collected during wakefulness, reaching an accuracy of 76.7% employing only HRV metrics,
73.3% when considering only thermal features, and 83.3% when merging the HRV and
thermal information. Importantly, the implemented feature selection allowed the removal
of redundant and useless information among the features, guaranteeing the reliable and
unbiased classification performance of the classifiers. Notably, although an improvement in
the classification performance was assessed when using both thermography and HRV, this
improvement was not statistically significant. Moreover, we identified important metrics
(for both HRV and IRT) that were significantly different between good and poor sleepers,
being important in the classification of sleep quality. Importantly, the outcomes of our
study are consistent with prior research. For example, Werner et al. demonstrated that
individuals with elevated levels of HF of HRV measured during wakefulness (HF-HRV
wake) exhibited reduced sleep latency and fewer arousals. Specifically, HF-HRV wake
showed a significant correlation of −0.39 with PSQI (total score), as well as a correlation
of −0.43 with sleep latency [23]. Notably, Guo et al. [24] showed that there was not a
significant relationship between 24 h HRV indices and PSQI global scores. However,
sleep disturbance as assessed by PSQI exhibited significant negative correlations with
SDNN and LF in the waking period (r = −0.285 and −0.235, respectively). Furthermore,
in some studies, higher HRV during resting wakefulness has been associated with higher
actigraphy-based assessments of sleep efficiency and sleep duration in patients affected by
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atherosclerosis [25] and children with respiratory sinus arrhythmia [26]. Finally, Moebus
and Holz [27] proposed an ML-based method for a two-class (i.e., poor and good quality)
perceived sleep quality classification based on HRV, electrodermal activity, accelerometry,
and skin temperature, merging information from sleeping and waking states across 30 days,
achieving an accuracy of 70%.

3.1. HRV Metrics and Sleep Quality

The relationship between HRV during sleep and SQ has been widely investigated in
the literature. For instance, Penzel et al. emphasized the correlation between sleep phases
and the fluctuation of HR and HRV, specifically highlighting the impact of sleep disorders
on their typical variability [28]. Carneiro and colleagues sought to examine the correlation
among clinical and laboratory factors, HRV, and sleep quality in hemodialysis patients,
suggesting a possible connection between HRV and sleep quality [29]. Additionally, Mon-
tesinos and co-workers demonstrated that individuals with differences in SQ had increased
sympathetic activity, as shown by reduced HRV throughout the sleep period [30]. Yuda
et al. investigated the correlation between the subjective evaluation of sleep quality and
HRV during sleep [31]. All these studies indicate a possible connection between subjective
SQ and HRV.

However, measuring HRV during sleep can pose challenges due to potential discom-
fort and interference with natural sleep patterns. Sleep is a critical physiological process,
and introducing external monitoring devices might disrupt the individual’s ability to
achieve restful sleep [32]. The discomfort associated with wearing monitoring equipment,
including sensors and electrodes, could lead to altered sleep quality and impact the relia-
bility of collected data. Consequently, HRV measurements during wakefulness are often
preferred as they allow, for more comfortable and non-intrusive monitoring [33]. Awake
HRV assessments can be conducted without disturbing the natural sleep environment,
enabling individuals to maintain their regular sleep routines [34]. Additionally, awake
measurements provide insights into the baseline ANS activity and can be easily integrated
into daily activities, offering a more practical and convenient approach for longitudinal
studies and continuous monitoring, particularly in clinical or real-world settings.

In the present study, measuring HRV during wakefulness resulted in good accuracy in
the prediction of SQ. Moreover, several variables were found to be representative of good
and poor sleepers. For example, the poor sleepers showed a higher LF and LF/HF than
people with good SQ. Several studies have demonstrated a negative correlation between
SQ and the LF component of HRV as well as LF/HF. For instance, Hsu et al. found
negative correlations between SQ and HRV, including total power, LF, and LF/HF [35].
Furthermore, Tobaldini and colleagues reported a significant increase in the LF component
of HRV in insomniacs compared to healthy subjects during sleep, suggesting a predominant
sympathetic modulation in insomnia across sleep stages [36]. These findings suggest that
LF of HRV is associated with poor SQ in the normal population, and it is in accord with
our results.

On the other hand, we report that HF was higher in the subjects with good SQ. Studies
have shown that the normalized spectral HRV measures, particularly the HF component,
are frequently used to quantify the modulation of the parasympathetic branch of the ANS
during sleep [37]. In this regard, Fatt and co-workers indicated that higher HF is associated
with better SQ, and people with chronic fatigue syndrome show statistically lower HF
than a control population [38]. The fact that we also found a difference in the HF of HRV
between healthy subjects with good and poor SQ corroborates the sensitivity of this metric
in discriminating SQ with data collected during wakefulness.

In the context of HRV analysis, the Poincaré plot is used to calculate SD1 and SD2,
which are important measures reflecting short-term and long-term HRV, respectively [39].
SD1 is associated with parasympathetic modulation, while SD2 reflects sympathetic
activity [39]. Additionally, SD1 correlates with baroreflex sensitivity and HF power, which
are indicative of the change in interbeat interval duration per unit change in blood pressure
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and parasympathetic activity, respectively [39]. On the other hand, SD2 represents both
short-term and long-term HRV and is associated with sympathetic activity [39]. Addition-
ally, the ratio between SD2 and SD1 (SD2/SD1) measures the unpredictability of the RR
series. Interestingly, in the present investigation, SD2/SD1 showed statistical differences be-
tween the subjects with good and poor SQ. This result highlights SD2/SD1 as an important
variable for recognizing the quality of sleep while awake.

3.2. Skin Temperature Measured by IRT and Sleep Quality

The correlation between skin temperature and sleep quality has been the object of in-
terest in various studies. Raymann and colleagues demonstrated a correlation between skin
temperature and sleep-onset latency [40]. Furthermore, changes in skin temperature could
affect sleep, indicating a potential bidirectional relationship between the two variables [41].
Additionally, Ko et al., found a weaker correlation between core temperature and sleep
propensity compared to the correlation between distal or proximal skin temperature and
sleep onset, suggesting that skin temperature may play a more significant role in sleep
initiation [42]. During sleep, there is a relative vasodilation of distal skin compared with
proximal skin, leading to a reduction in the distal–proximal skin temperature gradient [43].
In this perspective, Romeijn provided an overview of the neuroanatomical pathways and
physiological mechanisms by which skin temperature can affect the regulation of sleep and
vigilance [44]. Moreover, it was demonstrated that the skin temperature of subjects was
more evenly distributed across the body surface during sleep than during wakefulness [45].
Additionally, van der Heide et al. highlighted the association between skin temperature
and sleep, stating that wake is associated with a relatively low skin temperature and a rela-
tively high core body temperature, while sleep is associated with a higher skin temperature
and a lower core body temperature [46]. Furthermore, it was found that periocular skin
warming promoted sleep onset, indicating a potential therapeutic approach to improving
sleep quality through skin temperature manipulation [47]. These findings collectively sug-
gest a strong correlation between skin temperature and SQ. Despite the intricate interplay
between body temperature regulation and sleep, there are no studies that have thoroughly
investigated the relationship between skin temperature during wakefulness and sleep
quality. Importantly, one of the novel aspects of this study relies on the assessment of the
relationship between facial skin temperature during wakefulness and SQ, demonstrating
the possibility of using ML algorithms to accurately classify SQ from IRT measurements.

3.3. Practical Implications

The correlations between HRV, skin temperature, and SQ have profound implications
for ergonomic design in workplace settings. By integrating HRV and IRT monitoring
into workplace health programs, employers can assess an employee’s SQ indirectly and
non-invasively in an objective manner. This enables the implementation of personalized
ergonomic solutions, such as adjusting work schedules, optimizing office lighting and
temperature, or recommending breaks to mitigate fatigue. Consequently, such measures
could lead to enhanced cognitive performance, increased productivity, and reduced risk of
errors or accidents due to sleep-related impairments. However, it should be highlighted
that integrating wearable technology in the workplace for sleep assessment necessitates
robust data protection measures to safeguard individuals’ privacy rights. Ensuring the
use of data encryption, secure data storage, and user consent mechanisms is essential to
mitigate privacy risks associated with using wearable devices in working contexts [48].

The feasibility of using these measurements during wakefulness opens avenues for
real-time health monitoring. For instance, wearable technology incorporating HRV analysis
could alert users to deteriorations in SQ, prompting timely interventions such as stress man-
agement techniques or lifestyle adjustments. This proactive approach to monitoring and
addressing SQ issues could play a significant role in preventing chronic health conditions
associated with poor sleep, such as cardiovascular diseases and mental health disorders.
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Our research contributes to the broader field of sleep study, providing a novel, non-
invasive methodology for SQ assessment. This methodological advancement could encour-
age further research exploring the interplay between daytime physiological markers and
various aspects of sleep, potentially unveiling more intricate connections and leading to
refined assessment tools.

Beyond ergonomic and personal health applications, this research could have implica-
tions in fields such as sports science, where athletes’ sleep quality is crucial for performance
and recovery; advanced driver assistance systems (ADAS), for driver drowsiness assess-
ment; education, to monitor and improve students’ SQ; and military applications, where
these methods could be used to monitor soldiers’ readiness and mitigate the risks associated
with sleep deprivation, such as impaired judgment or decreased combat performance.

Concerning the costs and work needed to implement such a solution in a real context,
it should be considered that HRV could be easily obtained from a wearable sensor (e.g.,
smartwatches) and that facial temperature could be measured through a low-cost thermal
camera, hence resulting in inexpensive and affordable solutions.

3.4. Strengths and Limitations

The strengths and limitations of this study should be considered. For example, gender
unevenness arose due to higher female participation in the work setting where recruitment
took place, reflecting broader trends of greater female engagement in health-related activi-
ties. However, in the present study, gender imbalance does not affect the results because we
predicted the SQ for each individual subject, and the objective was not to compare the two
unbalanced groups. In addition, such an imbalance does not represent an important limit-
ing factor in this case since the strict cross-validation used ensures the good generalizability
of the results. Nevertheless, further studies involving larger samples would certainly be
beneficial to confirm the findings. Additionally, we know that SQ varies with age, and we
are aware that the further studies needed to generalize across multiple ages and models
across different ages would be valuable. We focused on this age group because at this age
it is very important to evaluate the SQ, given the incidence of sleep disorders increases
around the age of 50 [49,50]. Additionally, it is crucial to highlight that evaluating SQ
during the awake state could be beneficial for early detection of sleep disorders, continuous
and non-intrusive monitoring, and informed lifestyle adjustments to improve sleep hy-
giene. In this perspective, the development of such models can enhance cognitive function,
mood, and daytime performance, providing an important tool for managing mental health
conditions linked to sleep disturbances, hence improving overall health. Additionally, it
ensures safety in critical occupations (e.g., drivers and pilots) by preventing accidents due
to poor sleep. Finally, the implementation of models as those proposed in this study can
allow for large-scale data collection, aiding research and public health initiatives based on
artificial intelligence tools, contributing to a better understanding of sleep patterns and the
development of effective interventions.

3.5. Important Remarks

Importantly, to quantitatively assess the quality of the contribution of the findings,
several performance indicators employed and highlighted in this study must be considered:

(i) Accuracy of Classification: The overall accuracy of the metrics for classifying sleep
conditions was 76.7% for HRV metrics, 73.3% for thermal features, and 83.3% for
combined HRV and thermal information.

(ii) Feature Importance: Key HRV metrics such as LF, LF/HF, and HF were identified as
significant contributors to the classification performance.

(iii) Poincaré Plot Analysis: Significant differences in the SD2/SD1 ratio were observed
between good and poor sleepers, indicating its potential as a reliable indicator of
sleep quality.
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(iv) Receiver Operating Characteristic (ROC) Curve: The ROC curve analysis for the
combined model yielded an area under the curve (AUC) of 0.88, indicating high
discriminative ability.

(v) Cost-Effectiveness: The study highlighted the affordability of implementing the
proposed solution using wearable sensors and low-cost thermal cameras, emphasizing
its practical applicability in real-world settings.

4. Materials and Methods
4.1. Experimental Procedure and Data Acquisition

The study comprised a sample of 28 individuals who were in good health (no chronic
diseases, such as cardiovascular diseases, diabetes, or chronic respiratory conditions;
no acute illnesses or infections; non-smoking; no diagnosed psychological/psychiatric
conditions), consisting of 20 female and 8 male participants, with an average age of
51.46 ± 7.68 years. The participants were instructed to abstain from engaging in intense
physical activity and to avoid alcohol and caffeine for at least 48 h before the measurements.
Additionally, they were also instructed to avoid using moisturizing cream and make-up,
which can impair thermal measurements. The participants were instructed to comfort-
ably lie on a medical cot and rest. The duration of the experimental session was 5 min.
This specific time window was chosen based on established research and methodological
considerations in the field of HRV measurement [51,52].

To gather data on the pulse rate variability of the subjects, a PPG sensor manufactured
by HeartMath, Inc. (emWave Pro Plus) was utilized. The sensor was positioned on the
left-hand index fingertip of each participant during the task. The sampling frequency
utilized was 370 Hz.

Simultaneously, a digital thermal infrared camera, the FLIR SC660 (FLIR, Wilsonville, OR,
USA), was utilized to measure the facial temperature. The camera features a 640 × 480 bolometer
FPA, with a sensitivity/noise-equivalent temperature difference of <30 mK at 30 ◦C, and
a field of view of 24◦ × 18◦. The IRT device was positioned at a distance of 60 cm from
the participant and directed towards the facial region. The frequency of sampling utilized
was 10 Hz. The camera underwent blackbody calibration to mitigate any potential sensor
response drift or shift and optical anomalies. The thermal imaging acquisitions were
conducted following the standard guidelines [53]. The experiment was conducted in a
thermoneutral environment to mitigate the potential impact of thermoregulatory-induced
alterations. Additionally, the subjects were given 15 min to acclimate to the environment
before the session to attain thermal equilibrium [53]. Additionally, it is noteworthy that all
sessions were arranged to take place at a consistent time of day, to mitigate the potential
impact of any circadian rhythm fluctuations [54]. We conducted the measurements between
10 and 11 a.m. This specific time window was chosen for several reasons. First, by 10 a.m.,
all participants had completed their morning routines, including breakfast, and were in
a stable physiological state. This reduces variability that might be present immediately
after waking or during the early morning transition period. Additionally, conducting the
measurements before noon helps avoid the post-lunch dip in alertness and physiological
changes that occur after eating, which can affect HRV and skin temperature.

The research was approved by the Research Ethics Board of the University of Chieti-
Pescara, with an assigned approval number of 1479 and a date of approval of 5 March 2017.
The study adhered to the principles outlined in the Declaration of Helsinki. All partici-
pants provided their informed consent and were given the option to withdraw from the
experiment at any point.

4.2. Data Preprocessing

Regarding PPG, the signals underwent band-pass filtration with the cutoff frequencies
set at 0.2 and 10 Hz. The PPG signals that have been filtered and normalized (z-score) are
subjected to an automated peak identification procedure. The algorithm’s performance was
evaluated through visual inspection, and no corrective measures were deemed necessary.
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The peaks of the PPG signal were utilized to assess the HRV metrics during the one-minute
recording. The study involved the computation of several metrics, including both time-
domain (e.g., heart rate, HR), and frequency-domain features (e.g., the low-frequency
(LF) and high-frequency (HF) power of HRV and their ratio, LF/HF). Such metrics were
extrapolated using Kubios HRV Standard 3.4.0 software as previously reported [21,55,56].

The IRT recordings underwent a quality assessment through visual inspection, and
no video recordings were deemed unsatisfactory. Three regions of interest (ROIs) were
chosen on the facial area, namely, the glabella (G), the tip of the nose (NT), and the nostrils
(N). A tracking algorithm was employed to follow the position of the ROIs through the
frames of the video recordings [57]. Due to the participants’ minimal movement throughout
the experiment, the algorithm successfully tracked all frames without any failures. The
temperature time course of each ROI was analyzed to extract the relevant features for input
into the computational models. The following parameters were computed for the signal:
temperature variation (∆T), mean value, standard deviation (SD), kurtosis, skewness,
sample entropy (SampEn), 75th percentile, and power spectral density (PSD) for the
respiratory (PSD-breath), cardiac (PSD-cardiac), and myogenic (PSD-myo) frequency bands.
Specifically, ∆T was determined by calculating the difference between the averages of the
first and last 5 s of the acquisition, providing information regarding the signal variability.
The various moments of the temperature distribution, such as mean value, standard
deviation, kurtosis, and skewness, were evaluated to provide insights into the central
tendency, dispersion, and shape of the temperature’s temporal evolution [58]. SampEn is
mathematically expressed as the negative natural logarithm of the conditional probability
and assesses the nonlinear predictability of the signal. This probability is based on the
matching of signal subseries of a specific length, referred to as pattern length, within a given
tolerance range, known as the similarity factor [59]. The PSD characterizes the allocation of
power among the various frequency constituents that constitute a given signal. In this study,
the mean PSD across specific frequency bands, namely, the myogenic band (0.04–0.15 Hz),
respiratory band (0.15–0.5 Hz), and cardiac band (0.5–1 Hz), was computed [60]. It is
noteworthy that prior to being utilized in the ML framework, all features underwent
normalization (z-scores).

4.3. Statistical Analysis

The 2-class classification of the quality of sleep (good and poor SQ, with PSQI = 5 as
cut-off score) from HRV and IRT features, both separately and together, were performed
through Decision Tree (DT), linear-kernel Support Vector Machine (SVM), k-nearest neigh-
bor (KNN), Ensemble (ENS), and neural network (NN) models. The two classes were
balanced (13 participants had poor SQ, and 15 exhibited good quality of sleep, resulting
in 28 samples for the models), and to prevent overfitting effects and evaluate the models’
ability to generalize, a 5-fold cross-validation approach was employed. It is noteworthy
that a subset of the features was selected using the wrapper method [61] and used as input
for the ML framework. The wrapper method for feature selection is a search algorithm
that aims to identify the most relevant subset of features for a given target variable. This
method explores all possible combinations of features and evaluates their performance
using a specific metric. The search process continues until a stopping criterion is met, such
as a limited number of iterations or no further improvement in performance. In this study,
a sequential forward selection approach was used, where features are added one by one
based on their ability to improve the model’s performance. To evaluate the performance of
the classifier, the confusion matrix was computed, providing the sensitivity, specificity, and
accuracy of the procedure. Furthermore, a receiver operating characteristic (ROC) analysis
was performed, and the area under the ROC curve (AUC) was computed. The metrics
selected by the wrapper procedure were investigated through an independent-samples
t-test to assess differences between the groups with good and poor quality of sleep.
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The MATLAB 2023b software (MathWorks, Inc., Natick, MA, USA) was utilized for
conducting data preprocessing and analysis, while GraphPad Prism version 10.1.1 (Boston,
MA, USA) was used to make graphs.

5. Conclusions

This research examines the possibility of using ML techniques to evaluate SQ by
analyzing HRV and IRT data while the individual is awake. The findings indicated that it
is feasible to assess SQ with an accuracy of 83.4% by analyzing multimodal HRV and IRT
signals using SVM. These findings provide opportunities for novel ergonomic applications
that can monitor SQ in workers, students, and athletes without the need for intrusive
methods. Achieving an accuracy of 83.4% demonstrates the potential of multimodal HRV
and IRT signals to predict sleep quality effectively. This level of accuracy is significant,
considering the non-intrusive nature of the measurement techniques. In addition, the
integration of HRV and IRT for SQ assessment is a novel approach that contributes to the
existing body of knowledge. Indeed, this multimodal method shows promise for develop-
ing wearable and contactless devices that can be used in real-world settings. Nevertheless,
the sample size was relatively small and may not fully represent the diversity of the general
population. Future research should include a larger and more varied sample to validate
the findings across different demographics and lifestyle factors. Additionally, conducting
longitudinal studies to track changes in SQ over time and their relationship with HRV and
IRT metrics could provide deeper insights into the temporal dynamics of sleep health. In
addition, combining HRV and IRT with other physiological and behavioral biomarkers
could enhance the robustness and accuracy of SQ predictions. Developing and testing
wearable devices and contactless systems that utilize HRV and IRT for sleep quality assess-
ment in real-world settings, such as workplaces, schools, and athletic environments, is a
crucial next step. In conclusion, this study demonstrates the feasibility of using HRV and
IRT data analyzed with ML techniques to assess SQ in a non-intrusive manner. While the
results are promising, further research is needed to address the limitations and expand the
applicability of this approach. The potential for developing practical and effective tools
for monitoring and improving SQ in various populations remains a promising avenue for
future exploration.

Author Contributions: Conceptualization, A.D.C., D.P., P.I. and G.G.; methodology, A.D.C., D.P.,
A.D.D., R.P. and D.C.; software, A.D.C. and D.P.; validation, N.M., D.C., A.M., B.G. and A.D.B.;
formal analysis, A.D.C., D.P., P.I., N.M., A.D.D., R.P. and D.C.; investigation, A.D.C., D.P., P.I. and
G.G.; resources, B.G. and A.D.B.; data curation, A.D.C., D.P., A.M., B.G. and A.D.B.; writing—original
draft preparation, A.D.C. and D.P.; writing—review and editing, A.D.C., D.P., P.I., G.G., N.M., A.D.D.,
R.P., P.L.M., D.C., A.M., B.G. and A.D.B.; visualization, A.M., B.G. and A.D.B.; supervision, B.G. and
A.D.B.; project administration, B.G. and A.D.B.; funding acquisition, A.D.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the European Union—NextGenerationEU under the Italian
Ministry of University and Research (MUR) National Innovation Ecosystem, grant ECS00000041—
VITALITY, and NextGenerationEU, MUR-Fondo Promozione e Sviluppo—DM 737/2021.

Institutional Review Board Statement: The research was approved by the Research Ethics Board of
the University of Chieti-Pescara, with an assigned approval number of 1479 and a date of approval of
5 March 2017.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on reasonable request
from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.



Clocks&Sleep 2024, 6 335

References
1. Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G.; Penzel, T. A Review of Approaches for Sleep Quality Analysis.

IEEE Access 2019, 7, 24527–24546. [CrossRef]
2. Batrakoulis, A.; Veiga, O.L.; Franco, S.; Thomas, E.; Alexopoulos, A.; Valcarce-Torrente, M.; Santos-Rocha, R.; Ramalho, F.;

Di Credico, A.; Vitucci, D.; et al. Health and Fitness Trends in Southern Europe for 2023: A Cross-Sectional Survey. AIMSPH 2023,
10, 378–408. [CrossRef] [PubMed]

3. Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2002, 165,
1217–1239. [CrossRef]

4. Hafner, M.; Stepanek, M.; Taylor, J.; Troxel, W.M.; van Stolk, C. Why Sleep Matters—The Economic Costs of Insufficient Sleep.
Rand Health Q. 2017, 6, 11. [PubMed]

5. Waller, K.L.; Mortensen, E.L.; Avlund, K.; Osler, M.; Fagerlund, B.; Lauritzen, M.; Jennum, P. Subjective Sleep Quality and
Daytime Sleepiness in Late Midlife and Their Association with Age-Related Changes in Cognition. Sleep Med. 2016, 17, 165–173.
[CrossRef] [PubMed]

6. Natale, V.; Léger, D.; Bayon, V.; Erbacci, A.; Tonetti, L.; Fabbri, M.; Martoni, M. The Consensus Sleep Diary: Quantitative Criteria
for Primary Insomnia Diagnosis. Psychosom. Med. 2015, 77, 413. [CrossRef] [PubMed]

7. Thorndike, F.P.; Ritterband, L.M.; Saylor, D.K.; Magee, J.C.; Gonder-Frederick, L.A.; Morin, C.M. Validation of the Insomnia
Severity Index as a Web-Based Measure. Behav. Sleep Med. 2011, 9, 216–223. [CrossRef]

8. Buysse, D.J.; Reynolds III, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for
Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [CrossRef]

9. Fabbri, M.; Beracci, A.; Martoni, M.; Meneo, D.; Tonetti, L.; Natale, V. Measuring Subjective Sleep Quality: A Review. Int. J.
Environ. Res. Public Health 2021, 18, 1082. [CrossRef]

10. De Fazio, R.; Mattei, V.; Al-Naami, B.; De Vittorio, M.; Visconti, P. Methodologies and Wearable Devices to Monitor Biophysical
Parameters Related to Sleep Dysfunctions: An Overview. Micromachines 2022, 13, 1335. [CrossRef]

11. Menghini, L.; Balducci, C.; De Zambotti, M. Is It Time to Include Wearable Sleep Trackers in the Applied Psychologists’ Toolbox?
Span. J. Psychol. 2024, 27, e8. [CrossRef]

12. Cheng, W.; Chen, H.; Tian, L.; Ma, Z.; Cui, X. Heart Rate Variability in Different Sleep Stages Is Associated with Metabolic
Function and Glycemic Control in Type 2 Diabetes Mellitus. Front. Physiol. 2023, 14, 1157270. [CrossRef] [PubMed]

13. Gouin, J.; Wenzel, K.; Deschenes, S.; Dang-Vu, T. Heart Rate Variability Predicts Sleep Efficiency. Sleep Med. 2013, 14, e142.
[CrossRef]

14. van den Berg, J.; Neely, G.; Wiklund, U.; Landström, U. Heart Rate Variability during Sedentary Work and Sleep in Normal and
Sleep-deprived States. Clin. Physiol. Funct. Imaging 2005, 25, 51–57. [CrossRef]

15. Magalhaes, C.; Mendes, J.; Vardasca, R. Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers
in Biomedical Applications of Infrared Thermography. Appl. Sci. 2021, 11, 842. [CrossRef]

16. Mashekova, A.; Zhao, Y.; Ng, E.Y.; Zarikas, V.; Fok, S.C.; Mukhmetov, O. Early Detection of the Breast Cancer Using Infrared
Technology–A Comprehensive Review. Therm. Sci. Eng. Prog. 2022, 27, 101142. [CrossRef]

17. Bagavathiappan, S.; Saravanan, T.; Philip, J.; Jayakumar, T.; Raj, B.; Karunanithi, R.; Panicker, T.M.R.; Korath, M.; Jagadeesan, K.
Infrared Thermal Imaging for Detection of Peripheral Vascular Disorders. J. Med. Phys. 2009, 34, 43. [CrossRef] [PubMed]

18. Sanchis-Sánchez, E.; Vergara-Hernández, C.; Cibrián, R.M.; Salvador, R.; Sanchis, E.; Codoñer-Franch, P. Infrared Thermal
Imaging in the Diagnosis of Musculoskeletal Injuries: A Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2014, 203,
875–882. [CrossRef]

19. Medica, E.M. Musculoskeletal Applications of Infrared Thermography on Back and Neck Syndromes: Systematic Review. Eur. J.
Phys. Rehabil. Med. 2020, 57, 386–396.

20. Pereira, C.B.; Yu, X.; Czaplik, M.; Rossaint, R.; Blazek, V.; Leonhardt, S. Remote Monitoring of Breathing Dynamics Using Infrared
Thermography. Biomed. Opt. Express 2015, 6, 4378. [CrossRef]

21. Perpetuini, D.; Di Credico, A.; Filippini, C.; Izzicupo, P.; Cardone, D.; Chiacchiaretta, P.; Ghinassi, B.; Di Baldassarre, A.; Merla, A.
Is It Possible to Estimate Average Heart Rate from Facial Thermal Imaging? Eng. Proc. 2021, 8, 10. [CrossRef]

22. Jia, S.; Wang, Q.; Li, H.; Song, X.; Wang, S.; Zhang, W.; Wang, G. The Relationship Between Blood Perfusion in the Lower
Extremities and Heart Rate Variability at Different Positions. Front. Physiol. 2021, 12, 656527. [CrossRef] [PubMed]

23. Werner, G.G.; Ford, B.Q.; Mauss, I.B.; Schabus, M.; Blechert, J.; Wilhelm, F.H. High Cardiac Vagal Control Is Related to Better
Subjective and Objective Sleep Quality. Biol. Psychol. 2015, 106, 79–85. [CrossRef] [PubMed]

24. Guo, X.; Su, T.; Xiao, H.; Xiao, R.; Xiao, Z. Using 24-h Heart Rate Variability to Investigate the Sleep Quality and Depression
Symptoms of Medical Students. Front. Psychiatry 2022, 12, 781673. [CrossRef] [PubMed]

25. Castro-Diehl, C.; Diez Roux, A.V.; Redline, S.; Seeman, T.; McKinley, P.; Sloan, R.; Shea, S. Sleep Duration and Quality in
Relation to Autonomic Nervous System Measures: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 2016, 39, 1927–1940.
[CrossRef] [PubMed]

26. Elmore-Staton, L.; El-Sheikh, M.; Vaughn, B.; Arsiwalla, D.D. Preschoolers’ Daytime Respiratory Sinus Arrhythmia and Nighttime
Sleep. Physiol. Behav. 2012, 107, 414–417. [CrossRef] [PubMed]

27. Moebus, M.; Holz, C. Personalized Interpretable Prediction of Perceived Sleep Quality: Models with Meaningful Cardiovascular
and Behavioral Features. PLoS ONE 2024, 19, e0305258. [CrossRef] [PubMed]

https://doi.org/10.1109/ACCESS.2019.2900345
https://doi.org/10.3934/publichealth.2023028
https://www.ncbi.nlm.nih.gov/pubmed/37304589
https://doi.org/10.1164/rccm.2109080
https://www.ncbi.nlm.nih.gov/pubmed/28983434
https://doi.org/10.1016/j.sleep.2015.01.004
https://www.ncbi.nlm.nih.gov/pubmed/26188599
https://doi.org/10.1097/PSY.0000000000000177
https://www.ncbi.nlm.nih.gov/pubmed/25905662
https://doi.org/10.1080/15402002.2011.606766
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.3390/ijerph18031082
https://doi.org/10.3390/mi13081335
https://doi.org/10.1017/SJP.2024.8
https://doi.org/10.3389/fphys.2023.1157270
https://www.ncbi.nlm.nih.gov/pubmed/37123273
https://doi.org/10.1016/j.sleep.2013.11.321
https://doi.org/10.1111/j.1475-097X.2004.00589.x
https://doi.org/10.3390/app11020842
https://doi.org/10.1016/j.tsep.2021.101142
https://doi.org/10.4103/0971-6203.48720
https://www.ncbi.nlm.nih.gov/pubmed/20126565
https://doi.org/10.2214/AJR.13.11716
https://doi.org/10.1364/BOE.6.004378
https://doi.org/10.3390/engproc2021008010
https://doi.org/10.3389/fphys.2021.656527
https://www.ncbi.nlm.nih.gov/pubmed/34483950
https://doi.org/10.1016/j.biopsycho.2015.02.004
https://www.ncbi.nlm.nih.gov/pubmed/25709072
https://doi.org/10.3389/fpsyt.2021.781673
https://www.ncbi.nlm.nih.gov/pubmed/35058822
https://doi.org/10.5665/sleep.6218
https://www.ncbi.nlm.nih.gov/pubmed/27568797
https://doi.org/10.1016/j.physbeh.2012.07.005
https://www.ncbi.nlm.nih.gov/pubmed/22842009
https://doi.org/10.1371/journal.pone.0305258
https://www.ncbi.nlm.nih.gov/pubmed/38976698


Clocks&Sleep 2024, 6 336

28. Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.-H.; Bunde, A. Comparison of Detrended Fluctuation Analysis and Spectral
Analysis for Heart Rate Variability in Sleep and Sleep Apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [CrossRef] [PubMed]

29. Carneiro, E.R.; Azoubel, L.A.; Dias, R.C.; Dias, C.J.; Sá, E.S.; Brito, D.A.; Salgado Filho, N.; Santos, E.F.; Rocco, J.H.; Mostarda, C.T.
Correlation of Sleep Quality and Cardiac Autonomic Modulation in Hemodialysis Patients. Sleep Sci. 2022, 15, 59–64. [CrossRef]

30. Montesinos, L.; Castaldo, R.; Cappuccio, F.P.; Pecchia, L. Day-to-Day Variations in Sleep Quality Affect Standing Balance in
Healthy Adults. Sci. Rep. 2018, 8, 17504. [CrossRef]

31. Yuda, E.; Yoshida, Y.; Hayano, J. Relationship between Subjective Assessment of Sleep Quality and Heart Rate Variability during
Sleep. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, Taiwan,
19–21 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–2.

32. Vyazovskiy, V. Sleep, Recovery, and Metaregulation: Explaining the Benefits of Sleep. NSS 2015, 2015, 171–184. [CrossRef]
33. Yin, J.; Xu, J.; Ren, T.-L. Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors 2023, 13, 395. [CrossRef]
34. Sztajzel, J. Heart Rate Variability: A Noninvasive Electrocardiographic Method to Measure the Autonomic Nervous System. Swiss

Med. Wkly. 2004, 134, 3536. [CrossRef]
35. Hsu, H.-C.; Lee, H.-F.; Lin, M.-H. Exploring the Association between Sleep Quality and Heart Rate Variability among Female

Nurses. Int. J. Environ. Res. Public Health 2021, 18, 5551. [CrossRef]
36. Tobaldini, E.; Nobili, L.; Strada, S.; Casali, K.R.; Braghiroli, A.; Montano, N. Heart Rate Variability in Normal and Pathological

Sleep. Front. Physiol. 2013, 4, 294. [CrossRef]
37. Burr, R.L. Interpretation of Normalized Spectral Heart Rate Variability Indices In Sleep Research: A Critical Review. Sleep 2007,

30, 913–919. [CrossRef]
38. Fatt, S.J.; Beilharz, J.E.; Joubert, M.; Wilson, C.; Lloyd, A.R.; Vollmer-Conna, U.; Cvejic, E. Parasympathetic Activity Is Reduced

during Slow-Wave Sleep, but Not Resting Wakefulness, in Patients with Chronic Fatigue Syndrome. J. Clin. Sleep Med. 2020, 16,
19–28. [CrossRef]

39. Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [CrossRef]
40. Raymann, R.J.; Swaab, D.F.; Van Someren, E.J. Cutaneous Warming Promotes Sleep Onset. Am. J. Physiol.-Regul. Integr. Comp.

Physiol. 2005, 288, R1589–R1597. [CrossRef]
41. Te Lindert, B.H.; Van Someren, E.J. Skin Temperature, Sleep, and Vigilance. Handb. Clin. Neurol. 2018, 156, 353–365.
42. Ko, Y.; Lee, J.-Y. Effects of Feet Warming Using Bed Socks on Sleep Quality and Thermoregulatory Responses in a Cool

Environment. J. Physiol. Anthropol. 2018, 37, 1–11. [CrossRef] [PubMed]
43. Silvani, A. Orexins and the Cardiovascular Events of Awakening. Temperature 2017, 4, 128–140. [CrossRef]
44. Romeijn, N.; Van Someren, E.J. Correlated Fluctuations of Daytime Skin Temperature and Vigilance. J. Biol. Rhythm. 2011, 26,

68–77. [CrossRef] [PubMed]
45. Lan, L.; Xia, L.; Tang, J.; Wyon, D.P.; Liu, H. Mean Skin Temperature Estimated from 3 Measuring Points Can Predict Sleeping

Thermal Sensation. Build. Environ. 2019, 162, 106292. [CrossRef]
46. van der Heide, A.; Donjacour, C.E.; Pijl, H.; Reijntjes, R.H.; Overeem, S.; Lammers, G.J.; Van Someren, E.J.; Fronczek, R. The Effects

of Sodium Oxybate on Core Body and Skin Temperature Regulation in Narcolepsy. J. Sleep Res. 2015, 24, 566–575. [CrossRef]
47. Ichiba, T.; Suzuki, M.; Aritake-Okada, S.; Uchiyama, M. Periocular Skin Warming Promotes Body Heat Loss and Sleep Onset:

A Randomized Placebo-Controlled Study. Sci. Rep. 2020, 10, 20325. [CrossRef]
48. Ioannidou, I.; Sklavos, N. On General Data Protection Regulation Vulnerabilities and Privacy Issues, for Wearable Devices and

Fitness Tracking Applications. Cryptography 2021, 5, 29. [CrossRef]
49. Farah, N.M.; Saw Yee, T.; Mohd Rasdi, H.F. Self-Reported Sleep Quality Using the Malay Version of the Pittsburgh Sleep Quality

Index (PSQI-M) In Malaysian Adults. Int. J. Environ. Res. Public Health 2019, 16, 4750. [CrossRef] [PubMed]
50. Lemola, S.; Richter, D. The Course of Subjective Sleep Quality in Middle and Old Adulthood and Its Relation to Physical Health.

J. Gerontol. Ser. B 2013, 68, 721–729. [CrossRef]
51. Camm, J. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.

Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Circulation 1996, 93, 1043–1065.
52. Burma, J.S.; Graver, S.; Miutz, L.N.; Macaulay, A.; Copeland, P.V.; Smirl, J.D. The Validity and Reliability of Ultra-Short-Term

Heart Rate Variability Parameters and the Influence of Physiological Covariates. J. Appl. Physiol. 2021, 130, 1848–1867. [CrossRef]
53. Diakides, M.; Bronzino, J.D.; Peterson, D.R. Medical Infrared Imaging: Principles and Practices; CRC Press: Boca Raton, FL, USA,

2012; ISBN 978-1-4398-7250-5.
54. Marins, J.C.B.; Formenti, D.; Costa, C.M.A.; de Andrade Fernandes, A.; Sillero-Quintana, M. Circadian and Gender Differences in

Skin Temperature in Militaries by Thermography. Infrared Phys. Technol. 2015, 71, 322–328. [CrossRef]
55. Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A.

Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging.
Front. Cardiovasc. Med. 2022, 9, 893374. [CrossRef] [PubMed]

56. Di Credico, A.; Petri, C.; Cataldi, S.; Greco, G.; Suarez-Arrones, L.; Izzicupo, P. Heart Rate Variability, Recovery and Stress
Analysis of an Elite Rally Driver and Co-Driver during a Competition Period. Sci. Prog. 2024, 107, 00368504231223034. [CrossRef]

57. Cardone, D.; Spadolini, E.; Perpetuini, D.; Filippini, C.; Maria Chiarelli, A.; Merla, A. Automated Warping Procedure for Facial
Thermal Imaging Based on Features Identification in the Visible Domain. Infrared Phys. Technol. 2020, 112, 103595. [CrossRef]

https://doi.org/10.1109/TBME.2003.817636
https://www.ncbi.nlm.nih.gov/pubmed/14560767
https://doi.org/10.5935/1984-0063.20200126
https://doi.org/10.1038/s41598-018-36053-4
https://doi.org/10.2147/NSS.S54036
https://doi.org/10.3390/bios13030395
https://doi.org/10.4414/smw.2004.10321
https://doi.org/10.3390/ijerph18115551
https://doi.org/10.3389/fphys.2013.00294
https://doi.org/10.1093/sleep/30.7.913
https://doi.org/10.5664/jcsm.8114
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1152/ajpregu.00492.2004
https://doi.org/10.1186/s40101-018-0172-z
https://www.ncbi.nlm.nih.gov/pubmed/29699592
https://doi.org/10.1080/23328940.2017.1295128
https://doi.org/10.1177/0748730410391894
https://www.ncbi.nlm.nih.gov/pubmed/21252367
https://doi.org/10.1016/j.buildenv.2019.106292
https://doi.org/10.1111/jsr.12303
https://doi.org/10.1038/s41598-020-77192-x
https://doi.org/10.3390/cryptography5040029
https://doi.org/10.3390/ijerph16234750
https://www.ncbi.nlm.nih.gov/pubmed/31783607
https://doi.org/10.1093/geronb/gbs113
https://doi.org/10.1152/japplphysiol.00955.2020
https://doi.org/10.1016/j.infrared.2015.05.008
https://doi.org/10.3389/fcvm.2022.893374
https://www.ncbi.nlm.nih.gov/pubmed/35656402
https://doi.org/10.1177/00368504231223034
https://doi.org/10.1016/j.infrared.2020.103595


Clocks&Sleep 2024, 6 337

58. Perpetuini, D.; Formenti, D.; Cardone, D.; Filippini, C.; Merla, A. Regions of Interest Selection and Thermal Imaging Data Analysis
in Sports and Exercise Science: A Narrative Review. Physiol. Meas. 2021, 42, 08TR01. [CrossRef]

59. Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J.
Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [CrossRef]

60. Geyer, M.J.; Jan, Y.-K.; Brienza, D.M.; Boninger, M.L. Using Wavelet Analysis to Characterize the Thermoregulatory Mechanisms
of Sacral Skin Blood Flow. J. Rehabil. Res. Dev. 2004, 41, 6. [CrossRef]

61. Kohavi, R.; John, G.H. Wrappers for Feature Subset Selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1361-6579/ac0fbd
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1682/JRRD.2003.10.0159
https://doi.org/10.1016/S0004-3702(97)00043-X

	Introduction 
	Results 
	Experimental Design 
	Machine Learning Accurately Classifies Sleep Quality Using HRV and Skin Temperature 
	HRV Metrics Are Useful for Discriminating between Good and Poor Sleep Quality 
	Specific IRT Features Are Representative of Good and Poor Sleep Quality 

	Discussion 
	HRV Metrics and Sleep Quality 
	Skin Temperature Measured by IRT and Sleep Quality 
	Practical Implications 
	Strengths and Limitations 
	Important Remarks 

	Materials and Methods 
	Experimental Procedure and Data Acquisition 
	Data Preprocessing 
	Statistical Analysis 

	Conclusions 
	References

