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Abstract: The purpose of this finite element analysis (FEA) was to evaluate the stress distribution
within the prosthetic components and bone in relation to varying cement thicknesses (from 20 to
60 µm) utilized to attach a zirconia crown on a conometric cap. The study focused on two types
of implants (Cyroth and TAC, AoN Implants, Grisignano di Zocco, Italy) featuring a Morse cone
connection. Detailed three-dimensional (3D) models were developed to represent the bone structure
(cortical and trabecular) and the prosthetic components, including the crown, cement, cap, abutment,
and the implant. Both implants were placed 1.5 mm subcrestally and subjected to a 200 N load at
a 45◦ inclination on the crown. The results indicated that an increase in cement thickness led to
a reduction in von Mises stress on the cortical bone for both Cyroth and TAC implants, while the
decrease in stress on the trabecular bone (apical zone) was relatively less pronounced. However, the
TAC implant exhibited a higher stress field in the apical area compared to the Cyroth implant. In
summary, this study investigated the influence of cement thickness on stress transmission across
prosthetic components and peri-implant tissues through FEA analysis, emphasizing that the 60 µm
cement layer demonstrated higher stress values approaching the material strength limit.

Keywords: prosthetic cement; biomechanics; finite element analysis (FEA); implant stress analysis;
dental materials; dental prosthesis; Morse cone; conometric connection

1. Introduction

Prosthetic restorations currently employ a variety of materials. However, both metal-
ceramic and double-layer all-ceramic restorations are prone to technical complications,
primarily the cohesive fracture of the veneering ceramic, commonly referred to as chip-
ping [1–5]. The monolithic design of all-ceramic crowns has been suggested as a way to
reduce mechanical issues due to their exceptional anti-fracture mechanical properties and
biocompatibility [6]. Monolithic zirconia has emerged as an alternative material to decrease
the occurrence of mechanical complications associated with the fracture of the veneering
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ceramic, while also streamlining manufacturing time and enhancing cost-effectiveness [1,6].
Nevertheless, discrepancies in the cementation gap resulting from different zirconia milling
procedures can affect the final retention of the crown [7].

When selecting the method for the final restoration of an implant with a prosthetic
element, the primary options are typically screwed fixation and cemented fixation. Ce-
mented crowns, while challenging to remove, offer superior aesthetic qualities and higher
resistance to fracture compared to screw-fixed crowns. Screw-fixed crowns, on the other hand,
are prone to aesthetic issues, premature screw loosening, and crown fractures, despite being
easier to remove for maintenance purposes [8–12]. Additionally, the cement layer can act as a
shock absorber, transferring occlusal loads to the implant-bone complex [13–16]. To enhance
conventional retention methods, a novel connection involving the use of a coping inserted
into the crown and subsequently placed on the abutment has been introduced (bicono-
metric concept) [17]. This innovative connection involves the utilization of a conometric
coping, which serves as an intermediary component between the implant abutment and
the prosthetic crown. The conometric connection features a male cone on the connecting
element (abutment) and a female cone on the prefabricated cap, meticulously designed
to interlock securely without the requirement of cement or screws [18]. This approach is
based on the friction between the abutment’s outer surface and the coping’s inner surface
to establish an effective biological seal and mitigate the risk of bacterial infiltration and
peri-implantitis. This approach facilitates the secure attachment of prosthetic components,
mitigates the risk of cement residue or screw loosening, and allows for the convenient
removal and reinsertion of the prosthesis when necessary. Furthermore, the tapered con-
nection not only ensures stability but also promotes enhanced hygiene by eliminating
potential cement-related inflammation and peri-implant complications. The precise fit
and the physical phenomenon of friction ensure the prosthesis’ retention [17,19]. It is
noteworthy that an increase in the taper angle of the connection reduces system retention,
whereas a smaller taper angle increases retention, making disengagement of the connection
challenging due to elevated interface forces [20,21]. Furthermore, an in vitro study demon-
strated that the retention force remains constant after 5000 cycles of coping insertion and
separation, highlighting the overall effectiveness of this taper system [22]. In this type of
connection, the choice of cement for the attachment of the prosthetic crown to the coping is
pivotal in ensuring the longevity of the prosthetic restoration. The dental industry offers a
wide range of cement options, with resin-based and glass ionomer cement being the most
commonly used ones [23–30]. Resin cement exhibits superior bonding to enamel surfaces,
dentin, and metal alloys compared to glass ionomer cement, along with accelerated setting
times, contributing to enhanced crown stability. Resin cement is typically composed of
acrylic composites or acrylic resin and adhesive monomers that bond effectively with the
substrate [31–34]. On the other hand, glass ionomer cement, while comparatively less
robust and adhesive, offers unique benefits such as the release of fluoride ions, providing
effective cavity prevention. These types of cement are often used in scenarios prioritizing
cavity protection over mechanical strength, particularly in crown restorations directly onto
the tooth [35,36].

The thickness of the adhesive layer between the restoration and the prosthetic element
significantly influences the durability of cementation. Thin cement layers promote optimal
adhesion and retention of the restoration, while excessively thick cement films can adversely
impact retention by propagating cracks and hindering the breaking of robust bonds between
the cement and the restoration These cracks advance through the weaker cement layer,
surpassing its cohesive strength. Figure 1a shows how an extensive cement thickness results
in the fracture line extending into the thick cement layer, which possesses weak cohesive
forces and is prone to break first. Conversely, a smaller thickness leads to the extension of
the fracture line to the crown–cap interface, where the bond is stronger (Figure 1b). Thus, a
thicker layer of cement corresponds to less retention. Moreover, cement film thicknesses
exceeding 75 µm can expedite washout and contribute to retention failure [37].
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Figure 1. Failure patterns for (a) thick and (b) thin cement layers between the cap and crown.

The thickness of cement has a significant impact on stress transmission in both pros-
thetic components and bone. El-Anwar et al. [37] observed in their study that increasing
cement thickness reduced stress on cortical bone. Additionally, other finite element analysis
(FEA) studies have examined various cement-related factors influencing stress. These
studies revealed that cement with a larger Young’s modulus, indicating stiffer properties,
resulted in greater stresses [38–41]. The numerical methods employed the von Mises cri-
terion to assess stresses in peri-implant tissues and prosthetic components. This criterion
is based on the concept that the material begins to fail when the combination of principal
stresses exceeds a specific critical value, known as the tensile strength of the material [41].

This study aimed to evaluate stresses on prosthetic components and bone by conduct-
ing an FEA on two different implant types and varying the thickness of resin-based cement
(20, 40, and 60 µm) on a zirconia crown restoration using a conometric system between the
coping and the abutment.

The null hypothesis of this study posited that cement thickness does not significantly
influence stress transmission.

2. Materials and Methods
2.1. Modeling

Two distinct implant macro-morphologies, Cyroth and TAC from AoN Implants,
Grisignano di Zocco, Italy, were evaluated (Figure 2a). Both implants are 3.5 mm in
diameter and 13 mm in length, presenting a conometric connection between the abutment
and coping at a taper angle of 4◦ and between the fixture and the abutment (Figure 2b).
The TAC implant exhibits a tapered and less aggressive collar shape with sharper and more
aggressive threads in a single-thread design and a flat implant apex. In contrast, the Cyroth
cylindrical implants feature a slightly tapered collar with less aggressive threads designed
to compress and deform the bone rather than cut it, as well as a tapered apex.
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tomography (CT) scan [42]. The thickness of the cortical bone area was measured at 2 
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Figure 2. Three-dimensional (3D) models of the implants. (a) TAC and Cyroth (AoN Implants,
Grisignano di Zocco, Italy) implants; (b) cross-sectional view of the implant-abutment and abutment-
cap conometric connections.

Subsequently, the implants were subjected to three-dimensional (3D) modeling using
computer-aided design (CAD) software (Autodesk, Inventor 2023.1, San Francisco, CA,
USA), as depicted in Figure 3, illustrating the assembly of all components. Following
the abutment placement in the implant, the coping was attached with cement, and the
crown was inserted with a tapered interface on the abutment. The crown was modeled in a
simplified manner, featuring a flat surface in the occlusal contact area. The components
provided by AoN Implants (Grisignano di Zocco, Italy) were assembled and bonded using
the assemble command in the CAD software.
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Figure 3. Representative three-dimensional (3D) model of the analyzed components.

After determining the geometric characteristics of the implants, it was imperative
to model the surrounding bone structure. This involved developing a mandibular bone
block model based on cross-sectional images of the right first molar from a computed
tomography (CT) scan [42]. The thickness of the cortical bone area was measured at 2 mm.
To streamline the analysis and reduce computational time, the longitudinal dimension of
the bone was extended to 17 mm to accommodate the insertion of two implants (Figure 4a).
Subsequently, after assembling the implant components, a hole matching the implant
dimensions was created in the bone block to facilitate implant placement. The implants
were then inserted subcrestally to a depth of 1.5 mm (Figure 4b). The modeling process
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also involved examining the impact of three layers of cement (20, 40, 60 µm), as depicted in
Figure 4c.
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2.2. Material Properties

This study assumed the isotropic and homogeneous characteristics of the materials,
with isotropic behavior indicating consistent mechanical properties in all directions [42–47].
Several studies have demonstrated that the mechanical properties of bone are influenced by
density [48–50]. In this context, bone quality was classified as D1/D2, based on the Misch
classification [46]. The coping, abutment, and implant were simulated using a Ti6Al4V
titanium alloy, while the crown was modeled using zirconia. The cement employed was a
resin-based auto-polymerizing Multilink Hybrid Abutment (MHA) type (Ivoclar Vivadent,
Schaan, Liechtenstein), as detailed in Table 1 [51].

Table 1. Type and chemical composition of cement used in the analysis.

Cement Type/Curing Composition

Multilink Hybrid Abutment
(MHA)

Resin-based cement/
Auto-polymerization

Dimethacrylate, HEMA 1, fillers
(barium glass, ytterbium (III) fluoride,

spheroid mixed oxides, titanium
dioxide), MMA 2, PMMA 3,
dimethacrylates, initiators

1 Hydroxyethyl methacrylate, 2 methyl methacrylate, 3 polymethyl methacrylate.

Conversely, Table 2 provides an overview of the fundamental mechanical properties
designed for utilization in the FEA simulation. Specifically, Young’s modulus (E) defines
the material’s stiffness, while Poisson’s ratio (ν) characterizes the elasticity of an elastic
solid under various loading conditions [42,51–53].

Table 2. List of material properties used in the finite element analysis (FEA).

Model Material Young’s Modulus (GPa) Poisson’s Ratio (ν)

Crown Zirconia 205 0.34
Cement Resin-based cement (MHA) 6.3 0.25

Cap Ti6Al4V 110 0.35
Abutment Ti6Al4V 110 0.35

Implant Ti6Al4V 110 0.35
Jawbone 1 Spongy 1.37 0.30
Jawbone 2 Cortical 13.7 0.30
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2.3. Constraints and Loading Conditions

The lower and lateral surfaces of the cortical bone block were constrained from move-
ment in all directions. The loading conditions involved the application of a 45◦ inclined
load relative to the implant’s apical direction, with a force of 200 N on the upper surface
of the zirconia crown (highlighted in red), as depicted in Figure 5 [37]. Moreover, the
simulation encompassed full contact between cancellous and cortical bone and the im-
plant, aiming to replicate complete osseointegration and simulate realistic conditions at
the bone-implant interface. The interaction between the implant, abutment, and coping
was designated as a rigid contact to simulate a stable connection without any movement
between the components.
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2.4. Finite Element Analysis (FEA)

Finite element modeling was conducted using FEA software (ANSYS 2023 R1, Work-
bench, Canonsburg, PA, USA). The implant was removed from the bone model using
volume subtraction to create the implant cavity. Subsequently, the implant was carefully fit-
ted into the bone block to replicate complete osseointegration. All models were discretized
into solid elements (Solid 45) with three degrees of freedom in all axes [37]. A sensitivity
analysis was performed to determine the optimal mesh size for minimizing stress result
errors. A 0.5 mm mesh size was chosen based on a 2% minimum error, consistent with pre-
vious findings in the literature [19,43,46] (Figure 6). Subsequently, a total of 87,033 elements
and 152,096 nodes were generated for all 3D models as a result of this analysis.

In the course of static analysis, a computer with an Intel Core i7 processor operating at
2.90 GHz and 16 GB of RAM was utilized. Following the implementation of the 3D model
in FEA software (ANSYS 2023 R1, Workbench, Canonsburg, PA, USA), the von Mises stress
values and distributions were examined. Stress distribution was visually represented using
color maps, where red zones indicated the highest values and blue zones denoted the least
critical areas. Subsequently, stress and strain values were evaluated at different points
within the models and then compared.



J. Funct. Biomater. 2024, 15, 199 7 of 14
J. Funct. Biomater. 2024, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
(a) (b) (c) 

Figure 6. Model meshes: (a) mesh of the entire model; (b) mesh of the two implants; (c) mesh of 
the sectional view of the model. 

In the course of static analysis, a computer with an Intel Core i7 processor operating 
at 2.90 GHz and 16 GB of RAM was utilized. Following the implementation of the 3D 
model in FEA software (ANSYS 2023 R1, Workbench, Canonsburg, PA, USA), the von 
Mises stress values and distributions were examined. Stress distribution was visually 
represented using color maps, where red zones indicated the highest values and blue 
zones denoted the least critical areas. Subsequently, stress and strain values were evalu-
ated at different points within the models and then compared. 

3. Results 
The outcomes resulting from computational processing using FEA software (AN-

SYS 2023 R1, Workbench, Canonsburg, PA, USA) were utilized to analyze von Mises 
stresses within cortical and trabecular bone tissues as well as implants.  

3.1. Stress Analysis on Bone 
Figure 7 presents the von Mises stress findings in the cortical and apical regions of 

bone, using 20, 40, and 60 μm cement layer thicknesses, respectively. 

Figure 6. Model meshes: (a) mesh of the entire model; (b) mesh of the two implants; (c) mesh of the
sectional view of the model.

3. Results

The outcomes resulting from computational processing using FEA software (ANSYS
2023 R1, Workbench, Canonsburg, PA, USA) were utilized to analyze von Mises stresses
within cortical and trabecular bone tissues as well as implants.

3.1. Stress Analysis on Bone

Figure 7 presents the von Mises stress findings in the cortical and apical regions of
bone, using 20, 40, and 60 µm cement layer thicknesses, respectively.
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Figure 7a shows that the maximum von Mises stress value in the cortical bone at
the implant contact zone was 70 MPa for the Cyroth implant and 63 MPa for the TAC
implant, with both implants having a 20 µm thick cement layer. Moreover, the TAC implant
demonstrated an elevated stress of 6 MPa at the apical zone, in contrast to 2.5 MPa for the
Cyroth at the same zone.

In the presence of a 40 µm thick cement layer, a reduction in stress within the cortical
zone was observed. Specifically, the reported stress values were 50 MPa for the Cyroth
implant and 43.79 MPa for the TAC implant. In the apical zone, the values were 2.81 MPa
for the Cyroth implant and 6.21 MPa for the TAC implant (Figure 7b).

In the case of the Cyroth implant, a cement thickness of 60 µm resulted in a cortical
bone stress of 45 MPa, whereas the TAC implant recorded 30.12 MPa. In the apical zone,
the Cyroth implant experienced a stress of 3.02 MPa, while the TAC implant was 5.85 MPa
(Figure 7c).

The data presented in Figure 8 summarize the von Mises stress outcomes within
the bone when utilizing the two implants while considering various cement thicknesses
(20, 40, and 60 µm). In the cortical zone, it was observed that stress levels were reduced
for both implants as the cement thickness increased. The stress distribution within the
apical zone exhibited a consistent trend. Furthermore, it was noted that the TAC implant
induced higher stress in the apical region compared to the Cyroth implant for all considered
cement thicknesses. This behavior can be explained by the design of the TAC implant,
characterized by a more tapered thread shape in the apical region, resulting in a different
force concentration compared to implants with wider threads. This variance directly
impacts the stress distribution within the bone and its capacity to endure such loads.
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3.2. Stress Analysis on the Implants

Similarly, an increase in cement thickness resulted in a corresponding reduction in the
maximum stress on the abutment neck at the point of contact with the implant (Figure 9).

The stress zones identified in this scenario are deemed reasonable as the application of
a 200 N load at a 45◦ angle to the prosthetic crown resulted in bending on the abutment,
leading to the localization of stresses in that specific area. Following the examination
of Figure 9 b,c, it is evident that the stress reduction became less sensitive for cement
thicknesses between 40 and 60 µm. Specifically, with a cement thickness of 20 µm, the
maximum stresses at the abutment for both implants were approximately 309.22 MPa.
Increasing the thickness to 40 µm reduced the maximum stress to about 250.62 MPa, which
stabilized at around 248.22 MPa with a 60 µm cement thickness. While the stress on the
abutments was found to be comparable for both the Cyroth and TAC implants, there was a
notable difference in the stress distribution on the implant bodies. Figure 9 illustrates that
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the TAC implant experienced higher stress levels due to its more tapered morphology. This
is evident in the increased yellow areas observed on the TAC implant.
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Upon increasing the thickness of the cement, a corresponding increase in internal
stress was observed. This phenomenon explains the rationale for the stiffer system behav-
ior observed when employing a thin layer of cement, with the majority of stress being
distributed to the implant and bone. Conversely, an increase in thickness resulted in the
absorption of stress distribution. Notably, a 60 µm layer exhibited a higher load absorption
by the cement at 26.41 MPa, in contrast to the 2.41 MPa load absorption with a reduced
thickness of 20 µm. It is important to note that the optimal strength for a resin-based
cement is approximately 29.7 MPa and exceeding the 60 µm thickness threshold may lead
to potential strength issues [37].

4. Discussion

The main objective of this study was to assess the stress applied to prosthetic compo-
nents and bone using the FEA of two distinct types of implants. The investigation involved
manipulating the thickness of resin-based cement (20, 40, and 60 µm) on a zirconia crown



J. Funct. Biomater. 2024, 15, 199 10 of 14

restoration featuring a conometric connection between the coping and the abutment. The
findings, in line with the existing literature, indicated that an increase in cement thick-
ness from 20 to 60 µm led to reduced stresses, particularly on cortical bone. Additionally,
it was observed that this increase in thickness induced a variation in the internal stress
distribution within the cement, resulting in critical mechanical strength phenomena for
60 µm thicknesses. This stress level approached the strength of resin cement. Consequently,
the null hypothesis is rejected due to the significant impact on stress transmission within
prosthetic structures and peri-implant tissues due to variations in cement thickness.

The choice between cemented and screw-retained prostheses in the field of implant
dentistry is a topic of considerable interest within the dental community [13–15,54]. Ce-
mented prostheses offer several advantages, including precise fitting, strong biomechanical
stability, absence of screw access holes, superior occlusal design, and adaptability to accom-
modate malpositioned implant prosthetics. Furthermore, the cement layer acts as a shock
absorber, compensating for dimensional variations between the restoration and the anchor
element. However, a potential issue with cemented prostheses is the difficulty associated
with the removal of excess cement, leading to complications such as peri-implantitis, peri-
implant mucositis, and marginal bone loss [8–10,55]. On the other hand, screw-retained
prostheses offer facilitated retrieval but are more susceptible to technical issues, including
component fractures and screw loosening [12,56,57]. Moreover, in a cemented restoration,
the reduction in the number of screws restricts the micro-movement of the components.
While this reduction may be advantageous in addressing issues linked to the mechanical
strength of prosthetic components, it also influences the transmission of forces within the
implant system. Indeed, the decrease in micro-movements alters stress distribution, partic-
ularly on bone structures [58]. A direct transmission of masticatory loads from the occlusal
surface to the bone is evident, signifying that forces generated during mastication may not
be adequately dissipated by prosthetic components, ultimately leading to heightened stress
on bone tissues [58,59].

The challenges associated with existing retention systems in dental prosthetics have led
to the introduction of an innovative prosthetic connection called the Morse cone (conometric
concept) [60]. This novel connection utilizes a conometric coping to connect the implant
abutment to the prosthetic crown [18]. This approach enables the secure attachment
of prosthetic components, reducing the risk of cement residue or screw loosening, and
allowing for the convenient removal and reinsertion of the prosthesis when needed.

The prosthetic crown, as previously mentioned, is attached to the tapered coping using
cement, which plays a pivotal role in the success of dental restorations. In the case of tapered
coping connections, the cement’s primary function is to securely bond the prosthetic crown
to the coping while maintaining excellent aesthetic properties. The mechanical properties of
the cement, including type, thickness, and stiffness, are fundamental not only for ensuring
proper retention but also for facilitating load transmission without creating areas of stress
concentration that could lead to excessive bone resorption. Resin cement has become
increasingly popular in the dental field due to its high compressive and tensile strength,
low solubility, and favorable aesthetic properties. These cements are notable for their ability
to withstand significant force and stress. Moreover, both in vitro and clinical studies have
indicated that resin-composite adhesion can aid in stress distribution and the prevention of
crack propagation in ceramic material repairs [37,61,62].

In an FEA study conducted by El-Anwar et al. [37], the influence of cement thickness
on stress distribution in bone structures was investigated. The findings revealed that
increasing the cement layer from 40 to 60 µm resulted in a decrease in the maximum von
Mises stress on the cortical bone. This effect was more pronounced for the cortical bone
compared to the trabecular bone, where the impact was found to be minimal. Furthermore,
it was noted that increasing the cement thickness led to a reduction in the maximum von
Mises stress for both glass ionomer and zinc phosphate resin cement, with the specific
percentage changes varying depending on the thickness and type of the cement. The general
implication of increasing the cement thickness is a more favorable stress distribution, which
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minimizes the maximum stress on cortical bones with a relatively lesser influence on
trabecular bones. However, it is noteworthy that excessively thick layers could potentially
lead to “washout”, characterized by cement removal due to external stresses, such as those
induced by oral fluids. Notably, the study highlighted those thicknesses exceeding 75 µm
accelerated washout and led to retention failure. Consequently, this study utilized the
FEA method to examine the mechanical behavior of the resin-based cement used to affix
prosthetic crowns on a tapered coping positioned on the abutments of two distinct implants,
Cyroth and TAC, each characterized by unique implant shapes.

Some limitations should be highlighted in the current study. The models used in this
study may not fully replicate actual human oral conditions. As such, further clinical studies
are necessary to validate the findings. This approach also poses challenges related to
software familiarity, the influence of configuration parameters on results, and the need for a
comprehensive understanding of component behavior. It is essential to recognize that while
FEA is a valuable numerical investigation method, it is unable to completely mimic tissue
behavior or accurately represent the complexity of the biological field. Additionally, it is
prone to potential numerical errors. The study made assumptions about the homogeneity,
isotropy, and linear elasticity of all materials, as well as the complete osseointegration
between the bone and implants, despite these assumptions being impractical in clinical
practice [63].

The presented FEA study, notwithstanding its limitations, offers a notable conclusion.
It indicates that increasing cement thickness can effectively reduce stress, particularly
in cortical bone as opposed to trabecular bone, which exhibits a more uniform stress
distribution at the interface with the implant body. This study observed that the Cyroth
implant induces a greater stress field on the cortical bone compared to the TAC implant,
while the TAC implant generates more stress in the apical zone. Additionally, as the cement
thickness increases, the internal stress absorbed by the cement also increases. This study
notes that criticalities may arise when the cement thickness reaches approximately 60 µm,
as the absorbed stress value approaches the material’s strength value.

Therefore, based on these findings, it may be suggested that the optimal cement
thickness ranges between 40 and 60 µm. To verify the accuracy and clinical relevance of the
model, it is essential to conduct in vitro and in vivo experimental studies alongside FEA
results. Moreover, future FEA studies should encompass real-life clinical conditions, such
as masticatory forces and patient-specific anatomical features, to more accurately replicate
the environment in which the dental implant will be subjected to loading.
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