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Abstract
Spontaneous intracerebral hemorrhage (ICH) has an increasing incidence and a worse outcome in elderly patients. The 
ability to predict the functional outcome in these patients can be helpful in supporting treatment decisions and establishing 
prognostic expectations. We evaluated the performance of a machine learning (ML) model to predict the 6-month functional 
status in elderly patients with ICH leveraging the predictive value of the clinical characteristics at hospital admission. Data 
were extracted by a retrospective multicentric database of patients ≥ 70 years of age consecutively admitted for the manage-
ment of spontaneous ICH between January 1, 2014 and December 31, 2019. Relevant demographic, clinical, and radiological 
variables were selected by a feature selection algorithm (Boruta) and used to build a ML model. Outcome was determined 
according to the Glasgow Outcome Scale (GOS) at 6 months from ICH: dead (GOS 1), poor outcome (GOS 2–3: vegetative 
status/severe disability), and good outcome (GOS 4–5: moderate disability/good recovery). Ten features were selected by 
Boruta with the following relative importance order in the ML model: Glasgow Coma Scale, Charlson Comorbidity Index, 
ICH score, ICH volume, pupillary status, brainstem location, age, anticoagulant/antiplatelet agents, intraventricular hemor-
rhage, and cerebellar location. Random forest prediction model, evaluated on the hold-out test set, achieved an AUC of 0.96 
(0.94–0.98), 0.89 (0.86–0.93), and 0.93 (0.90–0.95) for dead, poor, and good outcome classes, respectively, demonstrating 
high discriminative ability. A random forest classifier was successfully trained and internally validated to stratify elderly 
patients with spontaneous ICH into prognostic subclasses. The predictive value is enhanced by the ability of ML model to 
identify synergy among variables.

Keywords Conventional statistics · Hemorrhagic stroke · Intracerebral hemorrhage · Intracranial hemorrhage · Machine 
learning · Outcome

Introduction

Spontaneous intracerebral hemorrhage (ICH) has an esti-
mated annual incidence of 25/100,000 persons and an 
overall 12-month mortality of 40–60%, mainly within the Gianluca Trevisi and Valerio Maria Caccavella equally contributed 
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first month [2, 21]. The best ICH management remains con-
servative, while surgery appears controversial and mainly 
advocated for superficial hemorrhage in younger patients 
[9, 21, 36].

ICH incidence increases with age, posing a higher assis-
tance burden in countries with aging population [2, 15, 23]. 
However, besides age, a large number of factors need to be 
considered for risk stratification, including comorbidities, 
drugs, ICH volume and site, and neurological status [15].

Functional status rather than mortality should be consid-
ered as the correct outcome measurement after ICH, espe-
cially in older patients with increasing frailty and reduced 
long-term expectations. Predicting functional outcome in 
these patients can be helpful in supporting treatment deci-
sions and prognostic expectations.

Recently, machine learning (ML) has emerged as a pow-
erful tool to develop predictive algorithms from a large 
amount of data [35].

Here, we built a ML model to predict the 6-month func-
tional status in elderly patients with ICH leveraging the 
predictive value of the clinical characteristics at hospital 
admission.

Methods

Patient population

We included patients with age ≥ 70 years consecutively 
admitted at the emergency department of 3 Italian ter-
tiary referral cerebrovascular centers for spontaneous ICH 
between January 2014 and December 2019.

All the participating hospitals had a 24/7 A&E service 
and a territory reference stroke unit with an average popula-
tion above 500,000 persons.

Patients with trauma, ruptured vascular malformations, 
or hemorrhagic neoplasms were excluded.

Management consisted of surgical evacuation or medical 
treatment with hyperosmolar solutions, steroids, antiepilep-
tics, head elevation, sedation, and ventilatory and cardio-
vascular support.

Ethical approval was waived by the local committee due 
to the retrospective and anonymous nature of the study.

Data collection

We collected demographical, clinical, and neuroradiological 
data: patients’ age and gender, comorbidities, current medi-
cations, Charlson Comorbidity Index (CCI), and smoking 
habit; Glasgow Coma Scale (GCS), pupillary size and light 
reaction, neurological deficits, and seizures at admission; 
ICH side, location (including lobar, basal ganglia, brain-
stem, or posterior cranial fossa) and volume measured by 

the ABC/2 method, and presence of intraventricular hemor-
rhage; data about surgical or medical treatment; length of 
hospital stay; and Glasgow Outcome Scale (GOS) at dis-
charge and 6-month follow-up.

Outcome measures

We identified 3 outcome groups according to 6-month GOS 
after ICH: dead (D, GOS-1); poor outcome: vegetative sta-
tus (VS, GOS-2) and severe disability (SD, GOS-3); and 
good outcome: moderate disability (MD, GOS-4) and good 
recovery (GR, GOS-5).

We evaluated a ML model feasibility and performance 
to predict 6-month GOS leveraging the predictive value of 
patient’s characteristics at admission.

The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
statement guidelines were followed to minimize the bias 
risk during the development phase and correctly validate 
the predictive ability of our ML models during the testing 
phase [31].

Exploratory data analysis

The association between patients’ variables and outcome 
was investigated with multiple tests (chi-square test, Stu-
dent’s t test, ANOVA, Mann–Whitney U test, and Fisher’s 
exact test). Alfa was set at 0.05, and Holm-Bonferroni cor-
rection was applied to shield against type 1 error in the 
setting of multiple comparisons. All covariates reporting 
a p value < 0.05 at the univariate inferential analysis were 
further investigated with a multivariable logistic regression 
model.

Machine learning model development

The architecture adopted for ML pipeline is outlined in 
Fig. 1. Considering the characteristics of our dataset, sample 
size, and outcomes, a random forest (RF) model was deemed 
the most appropriate ML model [6]. RF is a popular ensem-
ble ML algorithm with easy hyperparameter tuning, lower 
risk of bias compared to a simple decision tree, elevated gen-
eralizability and accuracy, ability to capture non-linear data 
patterns, and applicability to different data volumes. It works 
by fitting a number of different decision trees (ensemble): 
majority “voting”/ “averaging” of all trees’ outcomes are 
used to classify/predict each patient’s outcome, thus improv-
ing predictive accuracy and controlling over-fitting.

Then, the patients’ cohort was randomly split into a train-
ing set and a hold-out test set following an 80:20 ratio. No 
data from the hold-out test set was ever employed during 
feature selection, synthetic minority over-sampling, and 
training phase.
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Feature selection

RF algorithm can achieve reliable performances even when 
the number of features exceeds that of the dataset instances 
or when most features are irrelevant to the outcome. Fea-
ture selection was performed using Boruta (v.0.3) [26], an 
all-relevant feature selection algorithm wrapped around 
RF allowing to identify and retain only the most predictive 
patient’s variables (input features). Reducing input features 
shows several advantages: (a) the model’s degrees of free-
dom reduction decreases the over-fitting and improves the 
generalizability, and (b) the emphasis of the most important 
variables enhances the model’s interpretability.

Synthetic minority over‑sampling technique

Issues deriving from the imbalanced nature of our dataset 
were explored. When training with imbalanced data, ML 
algorithms preferentially learnt from the majority than the 
minority class, thus resulting in limitedly generalizable pre-
dictive models. Thus, the original training dataset was bal-
anced using the synthetic minority over-sampling technique-
nominal continuous (SMOTE-NC) [8].

Random forest training and hyperparameter tuning

The hyperparameter optimization or tuning consists in find-
ing the optimal hyperparameters set for a ML algorithm, 
which are used to control the learning process. A fivefold 
cross validation search grid was used on the training set 
for hyperparameter tuning of RF model. The best perform-
ing hyperparameters (e.g., number of estimators, learning 
rate, max depth) and their spaces tuned via a search grid are 
reported in the Supplementary Material.

Random forest performance metrics evaluation

Finally, the optimized RF model works stratifying hold-out 
test set patients into prognostic subclasses predicting the 
6-month status according to the 3 GOS groups reported 
above. RF model performance was thoroughly evaluated 
considering the following metrics:

• Area under the receiving operative characteristics (AUC-
ROC)

• Accuracy
• Positive predictive value (PPV) or precision
• Sensitivity or recall
• Specificity
• Negative predictive value (NPV)
• False positive rate (FPR)
• F1 score

A One-vs-the-Rest (OvR) multiclass strategy was 
employed to extract performance metrics, then the aver-
age value and its 95% bootstrap confidence interval were 
computed.

Software

All statistical analyses were performed in Jupyter Notebook, 
using Python v.3.8.2 whose packages included the follow-
ing: “Scikit-learn” to develop and train the random forest 
models, “Numpy” for Excel dataset handling, “imbalanced-
learn” to solve class imbalance problem, “Sci-py” to per-
form univariable statistical association tests, “Statsmodels” 
to perform multivariable analyses, “Boruta” to perform 
recursive feature selection, and “LIME” v.0.2.0.1 to interpret 
the ML model. The entire source code utilized to develop 
the RF model is available at https:// github. com/ valer io- mc/ 
ML- in- ICH.

Fig. 1  Machine learning workflow. [1] Data extraction and patient 
selection from a multicentric database. [2] Features selection, hyper-
parameter tuning, and random forest classifier training. [3] Evaluation 

of average performance metrics and confidence interval bootstrap-
ping. ICH, intracerebral hemorrhage

https://github.com/valerio-mc/ML-in-ICH
https://github.com/valerio-mc/ML-in-ICH
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Results

Patient population

In this multicenter series, 809 consecutive ICH patients 
were admitted in a 5-year period (Table 1). Mean age 
was 79.85 ± 6.35 years, and 389 out of 809 (48.0%) were 
men. Mean GCS score at admission was 10.43 ± 4.12, 
while mean ICH score was 1.96 ± 1.5. The mean number 
of comorbidities was 2.6 ± 1.61 with the most frequents 
being hypertension (82%), cardiovascular diseases (42%), 
and diabetes (21%; Supplementary Table 1). The mean 
number of medications per patient was 3.47 ± 1.98; among 
them were antihypertensives (72%), antiplatelets (40%), 
and anticoagulants (21%). Noteworthy, 494 patients (61%) 
were under anticoagulants and/or antiplatelets. The most 
frequently ICH topographies were parietal lobes (329 

patients, 41%) and cerebellum (99–13%). Only a minority 
of patients (39/809; 4.8%), generally the youngest (mean 
74 years), underwent surgical evacuation.

At 6-month follow-up, 301 patients (37.2%) were dead, 
261 (32.3%) had poor outcome (SD-VS), and 247 (30.5%) 
had good outcome (MD-GR).

Univariate analysis

At univariate analysis, 20 variables showed a significant 
association with the 6-month GOS after ICH (Table 1). 
Mean age, hematoma volume, ICH score, number of drugs, 
anticoagulants/antiplatelets, comorbidities, and CCI were 
higher in patients who died at 6 months conversely than 
mean GCS that was lower. A higher incidence of intra-
ventricular hemorrhage (IVH), subarachnoid hemorrhage 
(SAH), non-isochoric pupils, and antiplatelet and antacid 

Table 1  Univariate analysis: significant variables

Data reported as the number of patients (%) and mean (± SD)
IVH intraventricular hemorrhage, SAH subarachnoid hemorrhage, GCS Glasgow Coma Scale
* Significant at p ≤ 0.05 after Holm-Bonferroni correction

Parameter Total (n = 809) Dead (n = 301) Poor outcome (n = 247) Good outcome (n = 261) Corrected p values

Age 79.85 (± 6.35) 80.89 (± 6.21) 80.85 (± 6.66) 77.72 (± 5.67)  < 0.001*
IVH 215 (27.0%) 129 (42.86%) 56 (22.67%) 30 (11.49%)  < 0.001*
SAH 112 (14.0%) 59 (19.6%) 34 (13.77%) 19 (7.28%) 0.001*
Hematoma volume 35.68 (± 42.14) 61.15 (± 52.38) 26.39 (± 28.21) 15.1 (± 18.47)  < 0.001*
GCS at admission 10.43 (± 4.12) 6.92 (± 3.66) 11.51 (± 3.13) 13.46 (± 1.88)  < 0.001*
ICH score 1.96 (± 1.5) 3.14 (± 1.35) 1.66 (± 1.16) 0.88 (± 0.86)  < 0.001*
Pupillary status at admission
  Isochoric 603 (74.54%) 132 (43.85%) 219 (88.66%) 252 (96.55%)  < 0.001*
  Anisocoric 116 (14.34%) 96 (31.89%) 14 (5.67%) 6 (2.3%)
  Mydriatic 45 (5.56%) 39 (12.96%) 5 (2.02%) 1 (0.38%)
  Miotic 45 (5.56%) 34 (11.3%) 9 (3.64%) 2 (0.77%)
Comorbidities
  Renal insufficiency 51 (6.0%) 17 (5.65%) 9 (3.45%) 25 (10.12%) 0.040*
  Neurological 195 (24.0%) 63 (20.93%) 54 (20.69%) 78 (31.58%) 0.026*
  Charlson Comorbidity Index 3.36 (± 2.56) 3.34 (± 2.65) 2.79 (± 2.17) 3.99 (± 2.69)  < 0.001*
  No. of comorbidities 2.6 (± 1.61) 2.44 (± 1.41) 2.4 (± 1.52) 3.02 (± 1.85)  < 0.001*
Pharmacotherapy
  Antiplatelet 324 (40.0%) 141 (46.84%) 92 (37.25%) 91 (34.87%) 0.046*
  Anticoagulant/antiplatelet 494 (61.0%) 216 (71.76%) 143 (57.89%) 135 (51.72%)  < 0.001*
  Antacids 193 (24.0%) 98 (32.56%) 53 (21.46%) 42 (16.09%)  < 0.001*
  Number of anticoagulants or 

antiplatelets
0.64 (± 0.56) 0.74 (± 0.55) 0.6 (± 0.54) 0.55 (± 0.57) 0.001*

  No. of drugs 3.47 (± 1.98) 3.78 (± 2.01) 3.35 (± 2.03) 3.23 (± 1.85) 0.014*
Topography
  Frontal 226 (28.0%) 121 (40.2%) 62 (25.1%) 43 (16.48%)  < 0.001*
  Temporal 223 (28.0%) 113 (37.54%) 67 (27.13%) 43 (16.48%)  < 0.001*
  Brainstem 29 (4.0%) 17 (5.65%) 11 (4.45%) 1 (0.38%) 0.016*
  Cerebellum 70 (9.0%) 14 (4.65%) 18 (7.29%) 38 (14.56%) 0.001*
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prescription was reported for patients who died at 6 months. 
The presence of renal insufficiency and neurological comor-
bidities was also associated with poor 6-month outcome 
(GOS 2–3). ICHs involving frontal lobe, temporal lobe, or 
brainstem were more frequently seen in patients with poorer 
6-month outcome.

Random forest performance metrics evaluation

Features selected for RF classifier via Boruta were age, 
IVH, hematoma volume, GCS at admission, ICH score, 
isochoric pupils at admission, anticoagulant/antiplatelet, 

Charlson Comorbidity Index, and brainstem or cerebellum 
involvement.

RF prediction model, evaluated on the hold-out test set, 
achieved an AUC of 0.96 (0.94–0.98), 0.89 (0.86–0.93), 
and 0.93 (0.90–0.95) for dead, poor, and good outcome 
classes, respectively, demonstrating high discriminative 
ability (Fig. 2). Moderate to high reliability was reported 
across all performance metrics for all prognostic outcome 
classes. Evaluation of the model on the hold-out test set 
corresponds to internal validation, providing reliable 
expectation on the model’s performance on new external 
data (Table 2).

Fig. 2  A–C AUC-ROC curves (on both training and hold-out test set) for each diagnostic outcome class and global confusion matrix. D Impor-
tance of permutated features for the random forest classifier

Table 2  Random forest 
prediction model performance 
metrics

Performance metrics of the random forest prediction model on the hold-out test set were computed adopt-
ing a One-vs-Rest (OVR) multiclass strategy. Average value and 95% bootstrap confidence interval are 
reported
AUC  area under the curve, PPV positive predictive value, FPR false positive rate, NPV negative predictive 
value

Performance metrics Dead Poor outcome Good outcome

AUC 0.96 (0.94–0.98) 0.89 (0.86–0.93) 0.93 (0.90–0.95)
Accuracy 89.71% (86.42–93.01%) 82.27% (78.60–86.43%) 83.55% (79.82–87.66%)
Precision (PPV) 87.58% (82.69–92.86%) 70.46% (62.69–80.01%) 72.14% (65.59–79.45%)
Recall (sensitivity) 86.92% (80.61–92.86%) 65.04% (55.07–75.36%) 77.52% (68.42–86.84%)
Specificity 91.62% (87.59–95.19%) 89.10% (85.06–93.11%) 86.29% (82.04–91.02%)
F1 score 0.87 (0.83–0.92) 0.68 (0.60–0.76) 0.75 (0.68–0.81)
FPR 8.29% (5.35–14.42%) 11.82% (7.06–16.34%) 14.21% (10.70–19.87%)
NPV 91.75% (88.12–95.24%) 87.05% (83.36–90.21%) 89.52% (86.31–94.26%)



2862 Neurosurgical Review (2022) 45:2857–2867

1 3

Multivariate analysis

At multivariate analysis, several patient variables were sig-
nificantly associated with 6-month functional status. Results 
are summarized in Table 3.

Briefly, older age, higher ICH score, and larger ICH 
volume were associated with the risk of death at 6 months, 
while cerebellar location and higher GCS at admission were 
associated with the lower risk of death at 6 months.

Brainstem involvement, older age, higher CCI, and larger 
hematoma volume were associated with an increased risk of 
poor 6-month outcome (GOS 2–3). Conversely, higher GCS 
decreased the risk of poor 6-month outcome.

Model interpretation

Importance plot of relative features for the RF model is 
reported in Fig. 2. The parameters with strongest predictive 
values were as follows: GCS at admission, Charlson Comor-
bidity Index, ICH score, hematoma volume, pupillary status, 
and brainstem involvement.

We further introduced a locally interpretable model-
agnostic explanations (LIME) algorithm to quantify the 
feature contribution and polarity for each patient, thus pro-
viding an interpretable relationship between patient’s charac-
teristics and RF model prediction. An example is illustrated 
in Fig. 3. Understanding the reason behind both correct and 
incorrect model predictions can increase clinicians’ trust in 
model behavior and performance.

Discussion

ICH shows increasing incidence and dismal outcome in 
elderly population [2, 15, 23]. This is confirmed by our 
multicenter series showing that about 2/3 of patients died 
or were in poor functional status after 6 months from ICH 
presentation. The optimal treatment is still debated for 

aged patients as, for this population, it is more difficult 
to determine the prognostic criteria guiding therapeutic 
choices due to the numerous variables related to their 
multiple morbidity. For the same reason and the reduced 
potential of recovery, older patients are also generally poor 
candidates for surgery [9, 21, 36].

Current treatment algorithms are based on the correc-
tion of risk factors to prevent re-bleeding such as a hypo-
coagulative status and arterial hypertension and on the 
reduction of secondary damage due to edema and intrac-
ranial hypertension [21]. In this scenario, the ability to 
predict the functional outcome of elderly patients could 
provide a strong support to the decision-making process 
regarding management and communication with family.

Conventional statistics

In this study, we investigated the role of 114 different 
variables including, among the others, the following: age, 
drugs, comorbidities, neurological status, as well as some 
radiological features such as ICH side, location, and vol-
ume. Several of these were significantly associated with 
death or poor 6-month functional outcome at univariate 
analysis.

Regarding the risk of death, we divided these fac-
tors in subject-related (age, number of drugs including 
antithrombotics, number of comorbidities, and CCI), ICH-
related (volume, IVH, SAH), and presenting clinical sta-
tus–related (GCS, non-isochoric pupils).

Some specific comorbidities such as renal insufficiency 
and neurological disorders as well as some ICH topog-
raphies (frontal, temporal, brainstem) instead appeared 
related to poor outcome.

At multivariate analysis (Table 3), increasing age, larger 
hematoma volume, lower GCS at admission, ICH score, 
and brainstem location were significantly associated with 
death, poor outcome, or both.

Table 3  Multivariate logistic 
regression: significant variables

GCS Glasgow Coma Scale, ICH intracerebral hematoma

Outcome Parameter Odds ratio 95% CI p value

Death Cerebellum 0.380 0.143–0.999 0.049
Age 1.05 1.004–1.097 0.033
Hematoma volume 1.020 1.008–1.033 0.001
GCS at admission 0.651 0.574–0.737  < 0.001
ICH score 1.673 1.187–2.358 0.003

Poor outcome Brainstem 10.834 1.278–91.851 0.029
Age 1.057 1.017–1.098 0.005
Charlson Comorbidity Index 1.211 1.096–1.337  < 0.001
Hematoma volume 1.012 1.001–1.024 0.036
GCS at admission 0.760 0.677–0.855  < 0.001
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Conversely, cerebellar ICH location was associated with 
a better clinical outcome at univariate analysis and to a 
reduced risk of death at multivariate analysis.

Machine learning model: variable selection 
and relative importance

A ML model allows to elaborate a prediction algorithm 
including a number of variables hardly manageable with 
conventional statistics [22]. In fact, ML also explores non-
linear correlations among variables and detects not only sig-
nificant associations with outcomes, but also the synergy 
among variables in outcome prediction. Indeed, an elec-
tronic health record–based prediction model has been shown 
to be more accurate in predicting the risk of adverse outcome 
than traditional models using the a priori selected clinical 
variables and predictors representing a source of agnostic 
assessment that is independent of practitioner experience 
and provide additional assurance to families when consider-
ing ongoing intervention [42]. Moreover, the relative weight 
of single variables may vary among patients due to the inter-
action and interplay with the others. For example, the use 
of medications may play different weights among patients’ 
prognostication according to other features such as age and 
comorbidities. This allows discovering an unexpected asso-
ciation between variables and outcomes, confirming the role 
of known variables and emphasizing their combination.

As shown in Fig. 2D, the relative importance of the 10 
variables selected by Boruta for our RF model differs with 
the following order:

1) GCS: presenting GCS shows the higher relative impor-
tance in our model. More than 20% of patients have a 
pre-hospital GCS deterioration (drop of 2 or more GCS 
points) [30] and another 20% presenting with a GCS 
score ≥ 13 have an early deterioration after hospital 
admission [13]. Moreover, elderly patients usually pre-
sent a worse GCS than younger ones [15]. Baseline GCS 
and GCS deterioration were found significantly asso-
ciated with ICH-related mortality and poor functional 
outcome in several studies [1, 38].

2) CCI: our study confirms previous findings that comor-
bidities as measured by the CCI independently influence 
the outcome after ICH [4, 24]. Interestingly, CCI showed 
a higher relative importance than hematoma volume and 
patient’s age in our model.

3) ICH score: it is a 6-point score (0-to-5) developed in 
2001 to predict the 30-day mortality after ICH [19]. It 
includes GCS (3–4/5–12/13–15), ICH volume (< 30 ml 
or > 30 ml), IVH, infratentorial location, and an age 
threshold of 80 years. This score has also been related 
to functional outcome in ICH patients [11, 12, 20]. 
Noticeably, all ICH score variables were automatically 
selected by our RF model as significant for 6-month out-

Fig. 3  Output of local interpretable model–agnostic explanation 
(LIME) with random forest classifiers applied to one correctly pre-
dicted patient that died within 6 months. The figure reveals the role 
of various features in influencing the outcome prediction for each 

patient. A Patient’s characteristics. B Features contributions on pre-
dicted probabilities (red, risk factor; blue, protective factor). C Pre-
dicted probability of death at 6 months. IVH, intraventricular hemor-
rhage; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage
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come prediction. However, some authors observed that 
the current survival of poor ICH score grades is higher 
than what prognosticated at the time of score developed 
20 years ago [29]. Unlike ICH score using categorical 
data, the RF model adopts continuous variables as age, 
ICH volume, and GCS to depict their importance in 
single patients. The selection of ICH score as feature 
reinforces the role of other variables.

4) ICH volume: the prognosticating value of ICH volume 
has been shown as dependent by the topography of the 
hematoma. Indeed, supratentorial ICH ≥ 30 ml, thalamic 
ICH ≥ 8 ml, basal ganglia ICH ≥ 18 ml, and cerebellar 
ICH ≥ 15 ml are cutoff volumes for poor outcome [7, 25, 
27]. These differences were not taken into account by the 
original ICH score.

5) Pupillary status: it is a reliable sign of cerebral her-
niation and intracranial hypertension. ICH volume and 
midline shift were correlated with impaired pupillary 
reactivity [28].

6) Brainstem location: despite often classified as “infraten-
torial” as well as the cerebellar location, brainstem ICH 
shows worse clinical presentation and poorer outcome 
[10, 32].

7) Age: elderly is a risk factor for ICH occurrence and 
worse outcome [2, 15, 23]. However, it is difficult to 
distinguish between age itself and associated comorbidi-
ties [1]. In our model, the weight of CCI appeared higher 
than age for outcome prognostication. Indeed, as already 
shown in several studies on intracranial traumatic and 
non-traumatic ICH, age is one among, but not the most 
important risk factor for outcome prediction [3, 37]. In 
our cohort of elderly patients, the RF model detected an 
age threshold of 80 years for poor outcome (Fig. 3BB).

8) Anticoagulant/antiplatelet agents: these drugs are asso-
ciated with an increased risk of ICH occurrence and 
poor outcome [34, 41]. Despite diverse bleeding odds 
have been reported with different medications, only 
antiplatelets showed a significant association with out-
come at univariate analysis (Table 1 and Supplementary 
Table 1), but neither at multivariate statistics nor at RF 
model. Noticeable, in all participating centers, there was 
the attitude to pharmacologically reverse the coagulative 
status, when possible, immediately after the radiological 
evidence of ICH. However, our ML model automatically 
selected as significant for outcome prognostication the 
entire category of anticoagulant/antiplatelet agents.

9) IVH: intraventricular bleeding is more common after 
thalamic bleeding [27]. The association between IVH 
and hyperpyrexia and, in turn, their negative influence 
on prognosis of ICH patients is already known [16, 33].

10) Cerebellar location: cerebellar ICH appeared associated 
to a better outcome with both conventional statistics and 
ML mode in agreement with several previous studies 

[10, 25, 32]. In fact, current American and European 
guidelines suggest a more aggressive surgical attitude in 
cases of cerebellar ICH > 3 cm in diameter (about 14 ml) 
[21, 36].

Machine learning model: RF model accuracy 
and clinical implication

We built a robust RF prediction model with high discrimi-
native ability for death (GOS 1), poor outcome (GOS 2–3), 
and good outcome (GOS 4–5). RF metrics appeared par-
ticularly performing in prediction of death (about 90% of 
accuracy) and both poor and good outcomes (accuracy of 
82% and 84%, respectively; Table 2). F1 score, which is a 
balance between precision and recall, was less reliable for 
poor outcome detection, due to a relatively high number of 
false negatives with a recall of 65%. This was balanced by 
the more satisfactory F1 metrics for the other two outcomes. 
RF metrics showed that our model has a slightly “optimis-
tic” predictive attitude, with an increasing FPR at improving 
functional status, suggesting caution in over-emphasizing a 
good outcome prediction.

Previous evidences and current novelties

Other authors previously reported their experiences with ML 
for ICH prognostication.

Wang et al. [39] found that among 39 ML methods, RF 
was the most accurate for predicting 1-month and 6-month 
functional outcomes after ICH in a younger cohort of 
patients.

Similarly, Hall and colleagues [17] demonstrated that 
hematoma volume, its expansion, GCS score, age, and IVH 
were the most important variables associated with for out-
come prediction at 14-day and 3-month using decision tree 
and RF models.

Baseline hematoma volume (> 20  ml), IVH, age 
(> 53 years), and diabetes had the highest percentage of 
influence weight in a ML model developed by He and 
colleagues [18] to estimate poor outcome in supratento-
rial spontaneous ICH treated with conservative treatment. 
Another ML-based radiomics-clinical model constructed to 
predict IVH growth after spontaneous ICH found as inde-
pendent predictors of IVH growth: hypercholesterolemia, 
baseline Graeb score, time to initial CT, international nor-
malized ratio, and Rad score [43].

Fernandez-Lozano et al. [14] also confirmed that the RF 
model was the most accurate ML approach, and neurological 
status during the first 48 h, axillary temperature, early neu-
rological deterioration, leukocyte count, and blood glucose 
were the most relevant outcome predictors in a large series 
of patients with ischemic strokes and ICH.
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However, all these previous studies focused on a general, 
unselected, population including younger people and overall 
agreeing that prognostication in ICH patients is difficult and 
age is the main functional outcome predictor.

In our study, instead, firstly, we focused the analysis on 
the elderly population, which is the most often affected by 
spontaneous ICH and the most problematic for the decision-
making process about treatment due to the elevated risk of 
expected unfunctional outcome.

Our results support the clinicians in defining the expected 
outcome for ICH patients aged above 70 years.

Study limitations

Our study has several limitations: first, it has a retrospective 
nature and limited differences among treatments. Indeed, 
only a minority of patients underwent ICH evacuation, 
while the majority had medical treatment, generally based 
on osmotic agents or hypertonic saline solution at different 
doses among the participating centers. This made a direct 
association between treatment and outcome difficult to 
assess, but assuming that all the cases received the best med-
ical treatment and an eventual evacuation when the clinical 
status had requested, we believe the results of the present 
study may reinforce the awareness that some independent 
variables may play a major role in outcome prediction. In 
fact, we built a very accurate model able to detect numerous 
major and minor potential variables, weighting their role not 
only in dead/alive status prediction, but, above all, also in 
the 6-month functional status prognostication.

Perspectives

The input of selected features allows to obtain a predic-
tive probability of the outcome of interest, also allowing 
to visualize the weight of each variable for single patient 
prognostication (Fig. 3). This model, available on a freely 
accessible repository a simple and user-friendly webpage 
with an interface (3A), could be validated and implemented 
by external research groups, allowing clinicians to insert 
details of the 10 selected features of each patient and to cal-
culate the predictive probability for the three main outcomes 
(dead, poor, and good) at 6 months.

Although the power of prognostication is an undoubtedly 
important tool helping to assess the severity of illness and 
provide information to families, the experience and sensitiv-
ity of the expert clinicians using these fallible instruments 
should never be put aside to avoid the generation of a “self-
fulfilling prophecy” attitude discouraging from the effort to 
maximize the treatment opportunities for patients, which is 
the aim of this study [5, 29, 40].

Conclusions

A RF classifier was successfully trained and internally 
validated to stratify elderly patients with spontaneous 
ICH into prognostic subclasses based on GOS. The pre-
dictive value is enhanced by the ability of the ML model 
to identify factors not relevant if analyzed singularly, but 
becoming significant when combined each other in a real-
life setting.
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