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Abstract: Organometallic ruthenium (Ru)(II)-cymene complexes display promising pharmacological
properties and might represent alternative therapeutic agents in medical applications. Polyphe-
nols, such as curcumin and curcuminoids, display beneficial properties in medicine, including
chemoprevention. Here we analyzed the anticancer effect of a cationic Ruthenium (Ru)(II)-cymene
Bisdemethoxycurcumin (Ru-bdcurc) complex. The experimental data show that Ru-bdcurc induced
cell death of colon cancer cells in vitro. In response to treatment, cancer cells activated the endoplas-
mic reticulum (ER)-resident chaperone GRP78/BiP and NRF2, the master regulators of the unfolded
protein response (UPR) and the antioxidant response, respectively. Pharmacologic targeting of either
NRF2 or BiP potentiated the cytotoxic effect of Ru-bdcurc. We also found that NRF2 and UPR
pathways were interconnected as the inhibition of NRF2 reduced BiP protein levels. Mechanistically,
the increased Ru-bdcurc-induced cell death, following NRF2 or BiP inhibition, correlated with the
upregulation of the UPR apoptotic marker CHOP and with increased H2AX phosphorylation, a
marker of DNA damage. The findings reveal that BiP and NRF2 interconnection was a key regulator
of colon cancer cells resistance to Ru-bdcurc cytotoxic effect. Targeting that interconnection overcame
the protective mechanism and enhanced the antitumor effect of the Ru-bdcurc compound.

Keywords: colon cancer; curcumin; ruthenium-cymene complex; cell death; unfolded protein
response; BiP; CHOP; NRF2; DNA damage; chemoresistance

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality world-
wide [1,2]. Chemo- and targeted therapies offer only a limited increase in overall survival
for these patients due to the acquired resistance to therapies, a major clinical issue in
CRC [3]. The use of plant-derived natural compounds, often in combination with standard
anticancer regimens [4], is now considered a valuable anticancer strategy to overcome
drug resistance or re-sensitize chemoresistant cells, especially colon cancer cells, to reduce
toxicity and to spare normal cells [5]. Among the natural compounds, curcumin shows a
large variety of therapeutic properties in medical applications [6,7]. One obstacle to the
use of curcumin in vivo though is its low absorption and poor bioavailability due to rapid
metabolism, low water solubility, and stability [8]. To circumvent this problem, a number
of strategies have been developed, involving the modification of its structure or application
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of drug systems delivery agents, such as nanoparticles, liposomes and micelles [9]. An-
other recent approach is based on the interaction of curcuminoid ligands with inorganic or
organometallic moieties to provide more soluble and more assimilable systems [10–12].

Several cellular signaling pathways are dysregulated in CRC, including the unfolded
protein response (UPR) and the antioxidant pathway, regulated by nuclear factor erythroid
2-related factor 2 (NRF2), leading to cancer onset, progression, and eventually chemore-
sistance [13,14]. The unfolded protein response (UPR) is a defense mechanism that cells
adopt to cope with endoplasmic reticulum (ER) stress to restore homeostasis or activate
cell death; therefore, its regulation can dictate the balance between cell survival and cell
death [15,16]. Under severe and prolonged ER stress, the UPR activates pathways leading
to cell death through the upregulation of C/EBP homologous protein (CHOP) [17]. The
activation of the three UPR major sensors (namely ATF6α, IRE1 α and PERK) is controlled
by the ER-resident chaperone molecule GRP78/BiP (glucose-regulated protein 78/binding
immunoglobulin protein) [18]. BiP binds to proteins to stabilize and assist them in proper
folding but may also promote cancer cell survival and chemoresistance due to its antiapop-
totic property [19,20]. Thus, BiP is considered a good marker to predict the response to
therapy and a promising target for anticancer therapies [21]. Hence, the inhibition of BiP
increases the sensitivity of colon cancer cells to chemotherapy-induced apoptosis [22].

Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that protects
cells from oxidative stress. Under canonical activation by oxidative stress, NRF2 is released
from the binding to its inhibitor Keap1, translocates into the nucleus, and induces the
transcription of several target genes, including heme-oxygenase-1 (HO-1), glutathione
reductase (Glut red), NAD(P)H quinone oxidoreductase 1 (NQO1), catalase, and superoxide
dismutase (SOD) that help to restore the cellular redox homeostasis [23]. While NRF2
transient activation is considered to be mostly cytoprotective during the first phases of
carcinogenesis, because it limits the DNA damage-induced DNA mutations, sustained
NRF2 activation promotes cancer progression and chemoresistance because it counteracts
the oxidative stress-induced cell death, particularly in response to therapies [23]. In this
regard, the activation of the NRF2 target genes, such as HO-1 and NQO1, have been found
to be involved in cancer progression. Thus, they can make cancer cells more resistant
to anticancer agents, particularly to oxidative stress inducers [24,25]. Another NRF2
transcriptional target is p62/sequestome-1 (SQSTM1), an autophagy adaptor protein that
has been shown to promote tumorigenesis [26]. P62/SQSTM1 stabilizes NRF2 in a non-
canonical way by triggering Keap1 degradation, creating a positive feedback loop that
sustains the antioxidant response that can help cancer cells survive stress [27–29]. Since
NRF2 controls several pathways involved in tumor progression, its inhibition is considered
a promising anticancer strategy to restore chemosensitivity [30].

Here we show that a cationic Ruthenium (Ru)(II)-cymeneene Bisdemethoxycurcumin
complex (Ru-bdcurc) reduced colon cancer cells proliferation and induced cell death. At
the molecular level, in response to Ru-bdcurc treatment, cancer cells activated NRF2 and
BiP pathways whose pharmacologic inhibition increased Ru-bdcurc-induced cell death,
suggesting that they acted as death resistant mechanisms to the drug. Therefore, the
BiP/NRF2 axis can be considered a potential druggable target to increase the sensitivity of
colon cancer cells to therapies.

2. Materials and Methods
2.1. Synthesis of [(cym)Ru(bdcurc)(PTA)]SO3CF3 Complex (Ru-bdcurc)

The cationic Ruthenium (Ru)(II)−cymene complex containing bisdemethoxycurcumin
and the hydrosoluble PTA phosphine ([(cym)Ru(bdcurc)(PTA)]SO3CF3) (where cym = cymene,
bdcurc = bisdemethoxycurcumin and PTA = 1,3,5-triaza-7-phosphaadamantane) (herein Ru-
bdcurc) (Figure 1) was synthesized by a procedure similar to that previously
reported [31,32]. Briefly, [Ru(cymene)Cl2]2 (306 mg, 0.50 mmol) was added to a methanol
solution (20 mL) of bisdemethoxycurcumin (bdcurcH, 308 mg, 1.00 mmol) and KOH (56 mg,
1.0 mmol) and the mixture was stirred under reflux for 24 h, and then AgSO3CF3 (257 mg,
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1 mmol) was added to perform the metathesis reaction and replace the Cl in the ruthenium
coordination sphere with the SO3CF3 anion. The reaction mixture was stirred for 1 h and
filtered to remove AgCl. PTA (PTA = 1,3,5-triaza-7-phosphaadamantane; 157 mg, 1 mmol)
was finally added to the filtrate, which was further stirred for 24 h at room temperature. The
solvent was then removed, and the crude product was recrystallized from a 2/1 mixture
of dichloromethane and n-hexane (25 mL) by cooling to 4 ◦C, slowly affording an orange
crystalline powder (787 mg, 0.68 mmol, yield 68%), which was identified as the complex
[(cym)Ru(bdcurc)(PTA)]SO3CF3.
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The Ru-bdcurc complex is air stable and soluble in alcohols, acetone, acetonitrile, and
DMSO and slightly soluble in chlorinated solvents.

Mp: 184−186 ◦C. Anal. Calcd for C36H41F3N3O7PRuS: C, 50.94; H, 4.87; N, 4.95.
Found: C, 50.48; H, 4.73; N, 4.68. IR (cm−1): 3265br, 1620sh, 1602m, 1585sh, ν(C=C), 1270m,
1155s, 1025s ν(SO3CF3). 1H NMR (DMSO-d6, 293 K): δ 1.26 (d, 6H, CH3C6H4CH(CH3)2),
2.02 (s, 3H, CH3C6H4CH(CH3)2), 2.65 (m, 1H, CH3C6H4CH(CH3)2), 4.10 (sbr, 6H, PTA),
4.43 (sbr, 6H, PTA), 5.78 (s, 1H, C(1)H of bdcurc), 6.09 (dd, 4H, CH3C6H4CH(CH3)2), 6.65,
(d, 2H, C(4,4′)H of bdcurc), 6.82 (d, 4H, C(6,6′)H and C(10,10′)H of bdcurc), 7.37 (d, 2H,
C(3,3′)H of bdcurc), 7.51 (d, 4H, C(7,7′)H and C(9,9′)H of bdcurc), 10.00 (sbr, 2H, OH).
13C NMR (DMSO-d6, 293 K): δ 16.7 (s, CH3C6H4CH(CH3)2), 22.2 (s, CH3C6H4CH(CH3)2),
30.4 (s, CH3C6H4CH(CH3)2), 51.1 (d, PCH2N, 1J(C-P) = 12.7 Hz, PTA), 72.2 (d, NCH2N,
3J(C-P) = 7.2 Hz, PTA), 88.5, 90.1, 96.4, 103.8 (s, CH3C6H4CH(CH3)2), 104.7 (s, C(1,1′) of
bdcurc), 116.4 (s, C(9,9′) and C(7,7′) of bdcurc), 123.6 (s, C(10,10′) and C(6,6′) of bdcurc),
126.5 (s, C(5,5′) of bdcurc), 130.5 (s, C(3,3′) of bdcurc), 140.0 (s, C(4,4′) of bdcurc), 160.0
(s, C(8,8′) of bdcurc), 180.2 (s, C(2,2′)=O of bdcurc). 31P NMR (DMSO-d6, 293 K): δ −27.1.
ESI-MS (+) CH3OH (m/z [relative intensity, %]): 700 [100] [Ru(cymene)(bdcurc)(PTA)]+,
543 [20] [Ru(cymene)(bdcurc)]+. Λm (CH3OH, 298 K, 10−3 mol/L): 90 S cm2 mol−1. Λm
((CH3)2SO, 298 K, 10−3 mol/L): 42 S cm2 mol−1. UV-Visible spectrum (DMSO, lmax(nm)):
253 (11487 e M−1 cm−1, n→ π*), 417 (7731 e M−1 cm−1, p→ p*), 480sh (4153 e M−1 cm−1,
MLCT Ru(4d6)→ π*). UV-Visible spectrum (EtOH, lmax(nm)): 234 (11,603 e M−1 cm−1,
n→ π*), 413 (7669 e M−1 cm−1, π→ π*), 468sh (5113 e M−1 cm−1, MLCT Ru(4d6)→ π*).

Its analytical and spectroscopic characterization confirmed the cationic structure
shown in Figure 1. The electronic spectra recorded in DMSO and EtOH displayed two
intense bands at 234–253 nm and 413–417 nm, characteristic of n−π* and π−π* transitions
of the bdcurc ligand, while the shoulder at 468–480 nm is ascribed to MLCT (metal-ligand
charge transfer) from the filled 4d orbitals of ruthenium to the empty π* orbital of the
ligand bdcurc. The NMR spectra are shown in Supplementary Figure S1.

Its stability toward hydrolysis was previously investigated by 31P NMR spectroscopy
under pseudo-pharmacological conditions at 37 ◦C (5 mM NaCl solution in D2O containing
10% [D6]DMSO, corresponding to the low intracellular NaCl concentration in cells, and in
100 mM NaCl solution in D2O containing 10% [D6]DMSO, approximating to the higher
NaCl levels in blood plasma); within 24 h in the 100 mM aqueous NaCl solution, Ru-
brdcurc decomposes into the well-known complex [Ru(cymene)(PTA)Cl2] [33], whereas in
the 5 mM aqueous NaCl solution the complex is stable.
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The Ru-bdcurc complex was dissolved in DMSO and stored at −20 before using it at
different concentrations.

2.2. Cell Culture and Reagents

Human colon cancer HCT116 (kindly provided by Prof. Ber Vogelstein, Johns Hopkins
University, Baltimore, MD, USA) and RKO cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Life Technologies-Invitrogen, Eggenstein, Germany), supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) (Corning Life Sciences, New
York, NY, USA), plus glutamine and antibiotics (Corning Life Sciences, New York, NY, USA)
in a humidified atmosphere with 5% CO2 at 37 ◦C. Cells underwent routine testing to en-
sure that they were mycoplasm negative. The inhibitor of the antioxidant response Brusatol
(Sigma-Aldrich, St Louis, MO, USA) [34,35] was used at 100 µM for 4 h pre-treatment, as
previously reported [36]; Bip/GRP78 inhibitor HA15 (Sigma-Aldrich, St Louis, MO, USA,
SML2118) [37,38] was used at 10 µM for 1 h pre-treatment, as previously reported [20].

2.3. Cell Viability Assay

Cells were plated in six-well plates and treated the day after with a different con-
centration (50, 100 µM) of Ru-bdcurc for 24, 48, and 72 h or in combinations with a 4 h
pre-treatment of brusatol (100 µM) or 1 h pre-treatment of HA15 (10 µM), as indicated.
After treatments, both floating and adherent cells were collected and subjected to Trypan
blue staining (Sigma-Aldrich, St Louis, MO, USA, #72571). Cell viability of triplicates was
assessed by counting blue (dead)/total cells with a Neubauer hemocytometer using light
microscopy.

2.4. Proliferation Assay (XTT)

Cell proliferation was evaluated by XTT assay using the Cell Proliferation II kit
following the manufacturer’s instructions (Roche Diagnostic S.p.A., Monza, Italy),
as previously reported [39]. Briefly, cells were seeded in 96-well culture plates
(5 × 10(3) cells/well, in triplicates) and were treated the day after with Ru-bdcurc (100 µM)
alone or in combination with a 4 h pre-treatment of brusatol (100 µM) for the indicated time.
After treatment, XTT was added for 4 h at 37 ◦C before stopping the formazan formation
with the solubilization solution. The absorbance was measured at a wavelength of 492 nm,
using the Multiskan FC microplate reader, (Thermo Fisher Scientific, Walthman, MA, USA).

2.5. Western Blotting

Western blotting was performed, as previously reported [40]. Briefly, cells were
lysed in lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 150 mM
KCl, 1 mM dithiothreitol and 1% Nonidet P-40) (all from Sigma- Aldrich, Dorset, UK)
containing protease inhibitors (CompleteTM, Mini Protease Inhibitor Cocktail, Merck,
Life Science S.r.l., Milan, Italy). Proteins were separated by loading 10–30 ug of total cell
lysates on denaturing 8–15% SDS-PAGE (polyacrylamide gel electrophoresis) gels (Bio-
Rad, Hercules, CA, USA), following semidry blotting to polyvinylidene difluoride (PVDF)
membranes (Immobilon-P, Merk-Millipore, Milan, Italy). Unspecific signals were blocked
by incubating the membranes in Tris buffered saline containing 0.1% Tween 20 (TBS) and
3% BSA (Sigma-Aldrich, Dorset, UK) for 1 h. Membranes were then probed with the
primary antibodies and subsequently with the appropriate secondary antibodies coupled
to horseradish peroxidase (HRP) (Bio-Rad, Hercules, CA, USA). The enzymatic signal was
visualized by chemiluminescence (ECL Detection system, Amersham GE Healthcare, Milan,
Italy). Densitometry was performed on ECL results with ImageJ software (1.47 version,
NIH, Bethesda, MD, USA) which was downloaded from the NIH website (http://imagej.
nih.gov/ij, accessed on 1 August 2022) and the relative band intensity was normalized to
β-actin signals and plotted as protein expression/β-actin ratio.

http://imagej.nih.gov/ij
http://imagej.nih.gov/ij
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2.6. Antibodies

To detect the protein expression on Western blot membranes, the following anti-
bodies were used: mouse monoclonal anti-p62/SQSTM1 (D-3, sc-28359) (1:1000), mouse
monoclonal anti-HO-1 (A-3, sc-136960) (1:1000) and mouse monoclonal anti-NQO1/A180,
sc-32793) (Santa Cruz Biotechnology Inc, Dallas, TX, USA), rabbit polyclonal anti-NRF2
(1:1000) (Abcam, Cambridge, UK, #ab62352), mouse monoclonal anti-phospho-Histone
H2AX (Ser139 clone JBW301) (1:1000) (Sigma-Aldrich, St Louis, MO, USA, #05-636), rabbit
polyclonal anti-CHOP (GADD153) (1:1000) (Proteintech, Rosemont, IL; USA, #15204-1-AP),
and rabbit polyclonal anti-BiP/GRP78 (1:5000) (Proteintech,Rosemont, USA, #11587-1-AP).
Mouse monoclonal β-actin (Ab-1) (1:10,000) (Calbiochem, San Diego, CA, USA, #CP01),
was used as protein loading control.

2.7. RNA Extraction and Semiquantitative Reverse Transcription (RT)-Polymerase Chain Reaction
(PCR) Analysis

RT-PCR analysis was performed, as previously reported [40]. Briefly, total RNA
extraction was performed by using TRIzol Reagent (Thermo Fisher Scientific, Walthman,
MA, USA); cDNA was synthesized by using an MuLV reverse transcriptase kit (Applied
Biosystems, Foster City, CA, USA); semiquantitative reverse-transcribed (RT)-PCR was
carried out with 2 µL cDNA reaction and genes specific oligonucleotides under conditions
of linear amplification by using Hot-Master Taq polymerase (Thermo Fisher Scientific,
Walthman, MA, USA). PCR products were run on a 2% agarose gel and visualized with
GelRed Nucleic Acid gel stain (Biotium, San Francisco, CA, USA). The housekeeping
28S gene, used as the internal standard, was amplified from the same cDNA reaction
mixture. Densitometric analysis was applied to quantify mRNA levels compared to control
gene expression.

2.8. Statistical Analysis

The results are expressed as mean± standard deviation (S.D.) of at least three indepen-
dent experiments. A two-tailed Student’s t-test was applied for two-samples comparison.
A difference was considered statistically significant when the p-value was at least ≤0.05.

3. Results
3.1. Ru-bdcurc Compound Induces Cell Death in Colon Cancer Cells

RKO and HCT-116 cells were treated with Ru-bdcurc compound (50 and 100 µM)
for 24, 48, and 72 h, and then cell proliferation was measured using the XTT assay. The
data show that Ru-bdcurc treatments inhibited cell proliferation of both cell lines in a time-
dependent fashion and in a dose-dependent manner (Figure 2A). In agreement, Ru-bdcurc
treatments induced both RKO and HCT-116 cell death in a dose- and time-dependent
manner (Figure 2B). Cell death was also evidenced microscopically where distinct signs of
cell shrinkage were observed (Figure 2C).

These results indicate that the Ru-bdcurc complex was able to trigger colon cancer
cells death.

3.2. Induction of NRF2 and BiP Expression in Response to Rubdcurc Treatment

Although cancer cells underwent cell death, some cells appeared to be less sensitive to
the cytotoxic effect of Ru-bdcurc. Therefore, we investigated the possible mechanisms of
death resistance. As shown in Figure 3, following Ru-bdcurc treatment, cancer cells greatly
increased the NRF2 protein levels and the expression of NRF2 targets, including HO-1,
NQO1, and p62/SQSTM1 (Figure 3A–C), suggesting the induction of NRF2 transcriptional
activity. In addition, cancer cells also increased the protein levels of BiP in response to
Ru-bdcurc treatment (Figure 3A).
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Figure 2. Dose-and time-dependent inhibition of colon cancer cells proliferation by Ru-bdcurc.
(A) RKO and HCT116 colon cancer cells were left untreated or treated with different doses of Ru-
bdcurc (50 and 100 µM) for 24, 48, and 72 h before cell proliferation was measured by XTT assay.
(B) Cell viability of cells treated as in (A) was measured by Trypan blue exclusion assay and (C) live
cell images were taken by light microscopy. * p ≤ 0.05. White arrows indicate dead cells.
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Figure 3. Activation of NRF2 and BiP pathways in response to Ru-bdcurc treatment. (A) Western
blot analysis of the indicated proteins in RKO and HCT116 colon cancer cells treated with 50 and
100 µM Ru-bdcurc for 48 h or (B) with 100 µM Ru-bdcurc for 48 h. β-actin was used as protein
loading control. The ratio of the proteins level vs. β-actin, following densitometric analysis, is
reported. (B) Total mRNA was extracted from cells treated as in (A) to evaluate HO-1 and p62
gene expression by RT-PCR of reverse transcribed cDNA. Histograms represent the mean of three
independent experiments ± S.D. (C) Western blot analysis of p62 in RKO and HCT116 cells treated
as in (A) with 50 and 100 µM Ru-bdcurc for 48 h. The ratio of the proteins level vs. β-actin, following
densitometric analysis, is reported. * p ≤ 0.05.

Bip is a molecule belonging to the UPR pathway that has been shown to promote cancer
cell survival and chemoresistance due to its antiapoptotic property [19,20,41]. Altogether,
these results indicate a concomitant activation of the NRF2 and UPR pathways, potentially
acting to counteract the Ru-bdcurc cytotoxic effect.

3.3. NRF2 and BiP Pathways as Death Resistant Mechanisms to Ru-bdcurc Cytotocicity

In order to evaluate the role of NRF2 on the Ru-bdcurc cytotoxic effect, we phar-
macologically inhibited it with brusatol [34,35]. We found that brusatol co-treatment
reduced the Ru-bdcurc-induced protein levels of NRF2 and its activity, as assessed by the
downregulation of the NRF2 targets p62/SQSTM1 and HO-1 (Figure 4A,B). Of note, the
brusatol/Ru-bdcurc co-treatment greatly induced γH2AX levels (Figure 4A), compared
to the single treatment, suggesting that the inhibition of the NRF2 antioxidant activity
correlated with increased DNA damage following Ru-bdcurc treatment. Thus, H2AX
phosphorylation, generating γH2AX, is considered a marker of DNA damage [42,43]. Inter-
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estingly, brusatol co-treatment significantly reduced the Ru-bdcurc-induced BiP expression
levels (Figure 4A).

Biomedicines 2023, 11, x FOR PEER REVIEW 8 of 16 
 

Interestingly, brusatol co-treatment significantly reduced the Ru-bdcurc-induced BiP ex-

pression levels (Figure 4A). 

To evaluate the interplay between NRF2 and BiP, we treated cells with Ru-bdcurc 

and then isolated the cell fraction that remained attached to the bottom of the wells (live 

cells, resistant to the drug cytotoxic effect) and the cell fraction floating in suspension 

(dead cells, sensitive to the drug cytotoxic effect). The results show that the Ru-bdcurc-

induced BiP protein levels were more expressed in the population of attached live cells 

compared to the population of floating dead cells (Figure 4C, compare lane 2 with lane 5). 

Brusatol co-treatment strongly reduced the Ru-bdcurc-induced BiP protein levels in the 

population of attached live cells (Figure 4C, compare lane 2 with lane 3) and further re-

duced the BiP level in the floating dead cells (Figure 4C, compare lane 5 with lane 4). This 

result suggests that inhibiting NRF2 also inhibits BiP and that the occurrence of NRF2 and 

BiP interplay, mainly in the attached live cells, was acting as a death resistant mechanism 

to the Ru-bdcurc cytotoxic effect. 

 

Figure 4. Inhibition of NRF2 reduced BiP and induced DNA damage in response to Ru-bdcurc. (A) 

Western blot analysis of the indicated proteins in RKO and HCT116 colon cancer cells pre-treated 

with 100 brusatol (Brus) for 4 h and the treated with 100 µM Ru-bdcurc for 24 h. β-actin was used 

as protein loading control. The ratio of the proteins level vs. β-actin, following densitometric 

Figure 4. Inhibition of NRF2 reduced BiP and induced DNA damage in response to Ru-bdcurc.
(A) Western blot analysis of the indicated proteins in RKO and HCT116 colon cancer cells pre-treated
with 100 brusatol (Brus) for 4 h and the treated with 100 µM Ru-bdcurc for 24 h. β-actin was used as
protein loading control. The ratio of the proteins level vs. β-actin, following densitometric analysis,
is reported in the right panels. (B) Total mRNA was extracted from cells treated as in (A) to evaluate
HO-1 and p62 gene expression by RT-PCR of reverse transcribed cDNA. Histograms represent the
mean of three independent experiments ± S.D. (C) RKO and HCT116 cells were pre-treated with
100 brusatol (Brus) for 4 h and then treated with 100 µM Ru-bdcurc for 48 h. After treatment, the
expression of BiP in living or dead cells was evaluated by Western blot analysis. β-actin was used
as protein loading control. The ratio of BiP level vs. β-actin, following densitometric analysis, is
reported in the right panel. * p ≤ 0.05.

To evaluate the interplay between NRF2 and BiP, we treated cells with Ru-bdcurc and
then isolated the cell fraction that remained attached to the bottom of the wells (live cells,
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resistant to the drug cytotoxic effect) and the cell fraction floating in suspension (dead cells,
sensitive to the drug cytotoxic effect). The results show that the Ru-bdcurc-induced BiP
protein levels were more expressed in the population of attached live cells compared to
the population of floating dead cells (Figure 4C, compare lane 2 with lane 5). Brusatol
co-treatment strongly reduced the Ru-bdcurc-induced BiP protein levels in the population
of attached live cells (Figure 4C, compare lane 2 with lane 3) and further reduced the BiP
level in the floating dead cells (Figure 4C, compare lane 5 with lane 4). This result suggests
that inhibiting NRF2 also inhibits BiP and that the occurrence of NRF2 and BiP interplay,
mainly in the attached live cells, was acting as a death resistant mechanism to the Ru-bdcurc
cytotoxic effect.

Finally, we correlated the biochemical results to the biological outcome. We found
that the pharmacologic inhibition of NRF2 with brusatol significantly improved the Ru-
bdcurc-induced inhibition of cell proliferation, as assessed by XTT assay (Figure 5A) and,
in agreement, potentiated the cell death induced by Ru-bdcurc (Figure 5B). These findings
confirm that the NRF2 pathway was indeed acting as a mechanism of resistance to the
Ru-bdcurc-induced cell death. We finally investigated the role of BiP, in this setting, by
pharmacologic inhibition with HA15 [37,38]. We found that BiP inhibition potentiated the
Ru-bdcurc-induced cell death (Figure 5C). The increased cytotoxicity following HA15 co-
treatment correlated with a greater increase of CHOP and γH2AX protein levels (Figure 5D),
highlighting the antiapoptotic role of BiP in this setting and the strict interconnection
between a strong ER stress and the occurrence of DNA damage.

Altogether, these results indicate that the inhibition of the NRF2 or BiP pathways
potentiated the pro-death effect of UPR and the cytotoxic effect of Ru-bdcurc.
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Figure 5. Inhibition of NRF2 or BiP increases the Ru-bdcurc cytotoxic effect in colon cancer cells.
(A) RKO and HCT116 colon cancer cells were left untreated or pre-treated with 100 µM brusatol
(Brus) for 4 h and then treated with 100 µM Ru-bdcurc for 24 and 48 h, before cell proliferation was
measured by XTT assay. (B) Cell viability of RKO and HCT116 cells pre-treated with 100 µM brusatol
(Brus) for 4 h and then treated with 100 µM Ru-bdcurc for 24 was measured by Trypan blue exclusion
assay. (C) Cell viability of RKO and HCT116 cells, pre-treated with 10 µM HA15 for 1 h and then
treated with 100 µM Ru-bdcurc for 48 h, was measured by Trypan blue exclusion assay. * p ≤ 0.05.
(D) Western blot analysis of CHOP in RKO and HCT116 colon cancer cells pre-treated with 10 µM
HA15 for 1h and the treated with 100 µM Ru-bdcurc for 48 h. β-actin was used as protein loading
control. The ratio of the proteins level vs. β-actin, following densitometric analysis, is reported in the
right panels. (E) Schematic summary of the negative effect of NRF2 and BiP pathways on Ru-bdcurd
cytotoxic effect (left panel); inhibition of NRF2 also inhibits BiP and improves the Ru-bdcurc-induced
cell death (right panel).

4. Discussion

In this study we evaluated the anticancer effect of an organometallic cationic Ruthe-
nium (Ru)(II)−cymene complex containing bisdemethoxycurcumin (Ru-bdcurc). We found
that the compound-mediated cytotoxic effect against colon cancer cells was greatly im-
proved by the concomitant inhibition of NRF2 and BiP, highlighting a critical interplay
between these two molecules and their pathways that cancer cells exploit to resist to the
cytotoxic effect of the anticancer therapies.

Sustained NRF2 activation protects cancer cells against chemo- and radiation thera-
pies, promoting molecular pathways that support cell proliferation [23]. This outcome is
achieved not only by the antioxidant effect of NRF2, but also because NRF2 collaborates
with several different oncogenic pathways, sometime interconnected and/or that act in a
feedback loop with NRF2, leading cancer cells to adapt to stresses induced, for instance, by
anticancer therapies [44,45]. One of these oncogenes is p62/SQSTM1 [26] that is a target of
NRF2 and can stabilize NRF2 in a non-canonical way by triggering Keap1 degradation [27].
Moreover, the NRF2/p62 interplay creates a positive feedback loop that has been reported
to help cancer cells survive in conditions of stress, therefore promoting chemoresistance [28].
Therefore, the interplay between NRF2 and p62/SQSTM1 is considered a potential target
to be exploited for anticancer therapeutical benefits. Here, we found that p62/SQSTM1
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was induced in response to Ru-bdcurc and that this induction was counteracted by the
inhibition of NRF2 activity. The inhibition of NRF2/p62/SQSTM1 crosstalk correlated
with an increased cell death response to the Ru-bdcurc treatment, confirming that the
NRF2/p62/SQSTM1 axis was acting as a pro-survival pathway.

High levels of NRF2 have been found in colon cancer patients and are associated with
poor prognosis and resistance to therapies [14,46,47]. NRF2 inhibition is indeed considered
a potential anticancer strategy to restore chemosensitivity [30], as also demonstrated by our
previous studies [39,40,48–50]. One of the main effectors of NRF2-dependent cell response
that contributes to survival advantage, tumor aggressiveness, chemoresistance, and poor
patient outcome is HO-1 [24,51]. In healthy cells, HO-1 plays a key role in maintaining
redox homeostasis; however, many studies demonstrated its tumorigenic role in cancer
proliferation and resistance to therapies in different tumor types [52]. HO-1 is therefore a
potential biomarker for cancer progression and a promising target to improve the anticancer
therapies. In line with this issue, here we found that the induction of HO-1 in response to
NRF2 activation was counteracted by inhibiting NRF2, and that the inhibition of the NRF2
pathway increased the cytotoxic effect of Ru-bdcurc treatment.

Here we also found that the increased Ru-bdcurc-induced cell death following NRF2
inhibition correlated with high levels of H2AX phosphorylation, an early cellular response
to the induction of the DNA double-strand breaks, that is considered a marker of DNA
damage [42]. H2AX phosphorylation has been shown to mediate apoptosis and its inhibi-
tion has been shown to correlate with tumor resistance to radio-and chemotherapies [53].
Our findings highlight the NRF2 cytoprotective effect, likely by its antioxidant function,
to counteract the DNA damage-induced cell death in response to Ru-bdcurc treatment.
Indeed, increased NRF2 activity has been shown to reduce the oxidation-mediated DNA
damage by, for instance, ionizing radiation or cisplatin treatment [54,55].

Another molecule that can promote cancer cell survival and chemoresistance due to
its antiapoptotic property is BiP [19–21,41]. Here we found that in response to Ru-bdcurc
treatment, colon cancer cells increased the levels of BiP. Interestingly, we found that BiP
levels were mainly increased in the fraction of cells resistant to Ru-bdcurc-induced cell
death, and that BiP inhibition improved the compound cytotoxic effect. This is in line
with studies showing that the inhibition of BiP increases the sensitivity of colon cancer
cells to chemotherapy-induced cell death [22]. The increased Ru-bdcurc-induced cell
death after BiP inhibition correlated with the upregulation of CHOP, the UPR apoptotic
marker activated under sustained and chronic conditions of ER stress [13]. We also found
a link between NRF2 and UPR. Thus, the BiP downregulation was observed following
NRF2 inhibition with brusatol, suggesting that its inhibition could be the additional mech-
anism, other than the downregulation of the NRF2 pathway, through which brusatol
increased the Ru-bdcurc-induced cell death, as the specific BiP targeting by HA15, in
comparison, induced the same effect. However, the molecular mechanisms of NRF2 and
UPR that interplay in this setting need to be evaluated further, as it has been reported
that NRF2 can be activated in the course of ER stress by IRE1α and PERK branches of
UPR [56,57]. Our results are in agreement with the finding that both NRF2 and BiP are
adaptive response pathways that cancer cells overexpress in order to survive stress, and
in particular chemotherapeutic agents [15,17,18,21,22,58,59]. The overexpression of those
adaptive pathways, however, turns out to be an Achille’s heel for cancer cells [60]. Thus, tar-
geting NRF2 and/or BiP induces cancer cell death by concomitantly exacerbating ER stress
and inducing DNA damage, as also demonstrated in this study. The NRF2/BiP interplay
may be considered a promising target in therapeutical anticancer strategies to overcome
pro-survival mechanisms that favor cancer progression and chemoresistance [61,62].

The use of plant-derived natural compounds [4,63], often in combination with stan-
dard anticancer regimens, is now considered a valuable anticancer strategy to overcome
drug resistance or to re-sensitize chemoresistant cells [5]. Natural compounds, such as
curcumin, have been extensively evaluated in preclinical studies in the last years for their
anti-cancer and anti-inflammatory properties, and for their low toxicity [64]. Curcumin is
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the major biologically active polyphenolic constituent in turmeric plant (Curcuma longa),
along with two other curcuminoids that occur in lesser amounts, namely, demethoxycur-
cumin (dcurcH) and bis-demethoxycurcumin (bdcurcH), that also present a large variety of
therapeutic properties in medical applications [6–11]. One obstacle to the use of curcumin
in vivo is its low absorption and poor bioavailability due to rapid metabolism, low wa-
ter solubility, and stability [8]. To circumvent this problem, a number of strategies have
been developed, involving the modification of its structure or application of drug systems
delivery agents, such as nanoparticles, liposomes, and micelles [9]. Another recent ap-
proach is based on the interaction of curcuminoid ligands with inorganic or organometallic
moieties to provide more soluble and more assimilable systems [10,12]. Organometallic
ruthenium(II) cymene complexes have been shown to possess promising pharmacological
properties [65]. The relatively robust nature of ruthenium(II)-cymene complexes allows
their rational modification such that an organic compound of known therapeutic value may
be tethered to the motif [66]. It was previously shown that organometallic ruthenium(II)
complexes with a PTA ligand display antimetastatic activity in vivo, [33] as well as an
intrinsic antiangiogenic activity [67] and the ability to reduce the growth of certain primary
tumors [68]. Here, we show that the Ru-bdrcurc presented anticancer activity, in agreement
with several (arene)Ru(II) complexes containing curcuminoid ligands, that we previously
developed [31,32,50,69–71]. Moreover, Ru-brdcurc could be a potential anticancer molecule
to also be used efficiently in vivo, not only for its good water solubility and stability but
also because it has been proven to spare nontumorous cells [31].

In summary, the results of this study indicate that BiP and NRF2 were intercon-
nected pathways and contributed to colon cancer cells resistance to Ru-bdcurc cytotoxic
effect. Therefore, this interconnection could be considered a potential druggable target
for the development of more efficient therapies against colon cancer in combination with
organometallic ruthenium (Ru)(II)-cymene complexes.
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