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Abstract: Bone healing is a major clinical issue, especially in bone defects of critical dimensions.
Some studies have reported in vivo positive effects on bone healing by some bioactive compounds,
such as the phenolic derivatives found in vegetables and plants, such as resveratrol, curcumin, and
apigenin. The aim of this work was (1) to analyze in vitro in human dental pulp stem cells the effects
of these three natural compounds on the gene expression of related genes downstream to RUNX2
and SMAD5, key factor transcriptions associated with osteoblast differentiation, in order to better
understand the positive effects that can occur in vivo in bone healing, and (2) to evaluate in vivo
the effects on bone healing of critical-size defects in the calvaria in rats of these three nutraceuticals
tested in parallel and for the first time administered by the gastric route. Upregulation of the RUNX2,
SMAD5, COLL1, COLL4, and COLL5 genes in the presence of apigenin, curcumin, and resveratrol was
detected. In vivo, apigenin induced more consistent significant bone healing in critical-size defects in
rat calvaria compared to the other study groups. The study findings encourage a possible therapeutic
supplementation with nutraceuticals during the bone regeneration process.

Keywords: nutraceuticals; bone healing; polyphenols; flavonoids; adjuvant supplement

1. Introduction

The treatment of critical-size bone defects in humans, severe maxillary atrophies and
long-bone critical-size defects, often requires a multidisciplinary approach and extensive
bone grafting [1,2]. The adoption of the appropriate animal study design gives reliable
data and translational application to human bone defects [3,4]. The critical-size bone defect
represents an orthotopic model where the hard tissue is not able to heal spontaneously
with no intervention [5]. Experimental calvaria critical-size defects are histologically char-
acterized by focal competition between inflammatory tissues and new bone formation [5].
This model has been validated for the evaluation of the biological effects of biomaterials to
bridge nonunion defects. In addition, it is optimal to investigate the effects of adjuvant sup-
plements on osteogenesis and bone maturation [6]. Human dental pulp stem cells (hDPSCs)
are mesenchymal stem cells (MSCs) capable of both self-renewal and differentiation accord-
ing to an osteogenic phenotype. In recent years, this capability has been proposed for tissue
engineering and cell seeding on biomaterial to ameliorate new bone formation and graft
osseointegration [7]. In addition, the osteogenic differentiation properties of MSCs are de-
terminants to sustain the regenerative process [8]. Tissue engineering aims at the structural
and functional restoration of damaged tissues through MSC differentiation protocols alone
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or complexed with biological scaffolds to produce a tissue neoformation immunologically,
functionally, structurally, and mechanically identical to the native one [3]. Nutraceuticals
represent bioactive compounds, products derived from food sources, characterized by
medical or healthy benefits, including prevention and protection against several systemic
diseases [9–12]. Indeed, bioactive compounds are involved in many physiological and
pathophysiological processes as tissue damage repair or protection from chronic diseases
and cellular oxidative stress [10,12–14]. Some in vivo studies have reported positive effects
on bone healing by some bioactive compounds, such as the phenolic derivatives found in
vegetables and plants, such as resveratrol, curcumin, and apigenin [11–15]. As reported by
several studies, resveratrol is a polyphenol with antioxidant, anti-inflammatory, and anti-
aging properties [15]. In the literature, resveratrol has been evaluated in association with
three-dimensional-cell–engineered scaffolds, showing the promotion of osteogenesis and
the overexpression of the runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN)
genes [16–18]. In mice, resveratrol administered in combination with insulin produced a
significant increase in new bone formation of critical-size defects in the calvaria in animals
affected by diabetes. Furthermore, the combination of insulin and resveratrol induced
the modulation of bone morphogenetic protein type 2 (BMP-2) gene expression [19,20].
Apigenin is a flavonoid commonly found in different plants (such as chamomile) and veg-
etables, and it is recognized for its antioxidant, anti-inflammatory, and protective properties
in chronic diseases [21–23]. However, very little information is available about its effects
on bone metabolism [24–26]. Zhang et al. reported that apigenin promotes osteogenic
differentiation in MSCs via the JNK and p38 MAPK pathways, through increased expression
of RUNX2 and osterix (OSX) proteins [23]. Furthermore, other studies have reported that
apigenin inhibits osteoclastogenesis and osteoclast function [25,27,28]. Curcumin is a natu-
ral polyphenolic phytochemical that is characterized by a total of seven carbon linkers with
three major functional groups, including α,β-unsaturated β-diketone with an aromatic
O-methoxy-phenolic functional group [29–31]. Curcumin is able to modulate cytokines,
growth factors, transcription factors, and inflammatory molecules through different path-
ways [32–34]. The principal way is associated with the inhibition of the transcription by
nuclear factor-kappa B (NF-kB) [15]. As described in the literature, this molecule has a
protective and preventive effect against oral cancer and several metabolic diseases [15].
In tissue engineering, it has been reported that curcumin elution nanopolymers produce
in vitro an increased gene and protein expression of osteogenic markers RUNX2, ALP, and
BMP2 [15,35,36]. Altogether, the cited studies have demonstrated that all three compounds
induced an increase in gene and/or protein expression of RUNX2. To the best of our knowl-
edge, however, no studies have been carried out on a simultaneous analysis of these three
compounds and which pathways downstream of RUNX2 are modulated in the process
of osteogenesis both in vivo and in vitro. Furthermore, even if these compounds exhibit
a protective function of bone physiology [37], their role in bone fracture should be clari-
fied [38]. The only study involving these three phenolic compounds concerns their effects
in inducing cancer signaling pathway manipulation and possibly facilitating new treatment
modalities for osteosarcoma [39]. Therefore, the aim of the present study was to (1) analyze
in vitro in hDPSCs, in the presence of these three natural compounds, the gene expression
downstream of RUNX2 and SMAD5, key factor transcriptions associated with osteoblast
differentiation, in order to better understand the positive effects that can occur in vivo in
bone healing; and (2) evaluate in vivo the effects of these three nutraceuticals used in paral-
lel on the bone healing of critical-size defects in rat calvaria using an innovative method of
administration by gastric gavage in a single dose daily repeated for 30 consecutive days.
To this purpose, in vitro experiments were performed on hDPSCs in the presence of these
three natural compounds added individually, and the gene expression of RUNX2, SMAD5,
COLL1, COLL4, and COLL5 was analyzed. These substances can prove to be effective in
the field of regenerative medicine as they modulate molecular mechanisms, which can
therefore increase osteogenic differentiation and consequently improve bone regeneration.
The investigated molecules could be considered promising supplements able to repair bone
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defect healing. The null hypothesis considered no differences in osteogenic properties and
bone repair capability between the control and the different nutraceuticals groups.

2. Materials and Methods
2.1. Dental Pulp Stem Cells Cultures

Human dental pulp stem cells (hDPSCs) were obtained by stem cell banks (#PT-5025,
Lonza, Walkersville, MD, USA) and maintained at −80 ◦C. The hDPSCs were defrosted and
cultured with a growth medium (GM) obtained by DPSC basal medium (#PT3927, Lonza,
Walkersville, MD, USA), supplemented with the DPSC SingleQuots™ Kit (#PT4516, Lonza,
Walkersville, MD, USA) and incubated at 37 ◦C and 5% CO2. The GM was changed twice
a week, just before cells became confluent (subconfluent). Once the cells reached an ade-
quate number, they were washed twice with phosphate-buffered saline (PBS) (#ECB4004L,
Euroclone, Milan, Italy) and detached using 1 mL Trypsin–EDTA 1× in PBS (#ECB3052D,
Euroclone, Milan, Italy) for 5 min at 37 ◦C. The cells were collected in a sterile tube and
centrifuged for 5 min at 900 rpm. Once resuspended, the cells were counted by a Bürker
chamber and used for further experiments. The differentiation medium (DM) was obtained
by supplementation of Human Mesenchymal Stem Cell Osteogenic Differentiation Basal
Medium (#PT-3924, Lonza, Walkersville, MD, USA) with hMSC Osteogenic SingleQuots
(#PT-4120, Lonza, Walkersville, MD, USA) and used to evaluate osteogenic differentiation.

2.2. In Vitro Study Design

Human DPSCs were cultured as described above in GM for 24 and 72 h to perform the
proliferation rate assay and in DM for 14 days to perform Alizarin Red and gene expression
analysis in four experimental conditions: hDPSCs (control), hDPSCs + apigenin (#10798,
Sigma-Aldrich, Saint Louis, MO, USA), hDPSCs + resveratrol (#R5010, Sigma-Aldrich,
Saint Louis, MO, USA), hDPSCs + curcumin (#08511, Sigma-Aldrich, Saint Louis, MO,
USA). The molecules were prepared in DMSO (#D5879, Sigma-Aldrich, Saint Louis, MO,
USA) to avoid an immediate decomposition, according to the guidelines.

2.3. Cell Proliferation Assay

Cells were seeded in 96-well plates at a density of 1.6 × 103 cells/well in 0.2 mL
medium. After 2 h, the cells were stimulated with high or low concentrations of our
compounds. High concentration: 1, 5, and 10 µM apigenin; 1, 10, and 50 µM resveratrol;
and 1, 10, and 100 µM curcumin; low concentration: 100 and 500 nM and 1 µM apigenin;
100 and 500 nM and 1 µM resveratrol; 50, 100, and 500 nM curcumin. Cell proliferation in
the presence of high concentrations was followed for 24 and 48 h and in the presence of
low concentrations was followed for 24 and 72 h. At the end of each incubation interval, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT, #M5655 Sigma-Aldrich,
Saint Louis, MO, USA) was added to each well to a final concentration of 0.5 mg/mL. The
plates were incubated for 3 h at 37 ◦C and then centrifuged at 500× g. The supernatants
were removed and discarded, and 200 µL dimethyl sulfoxide (DMSO, #D5879, Sigma-
Aldrich, Saint Louis, MO, USA) was added. After incubating for 30 min at 37 ◦C, the
absorbance was determined by spectrophotometry (SpectraMAX 190) at a wavelength of
560 nm.

2.4. Alizarin Red Staining

Cells were plated in 6-well plates at a density of about ~20,000 cells/well. After 24 h,
GM was replaced with DM, and stimuli were added as follows: 1 µM apigenin, 100 nM
resveratrol, and 50 nM curcumin. The Alizarin Red assay was performed to evaluate the
mineralized nodule deposit in hDPSCs after 14 days. Cells were washed twice in PBS
and then fixed with 1 mL/well of 4% paraformaldehyde (#157–8, Electron Microscopy
Sciences, Hatfield, PA, USA) for 15 min. Specimens were washed twice with deionized
water, and 1 mL/well of 1% Alizarin Red 40 nM (#A5533, Sigma-Aldrich, Saint Louis, MO,
USA) was added and incubated for 20 min at room temperature. Specimens were then
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washed four times with deionized water for 5 min and viewed under a light microscope at
a magnification of 10×.

2.5. Quantitative Real-Time PCR for Gene Expression Analysis

Cells were plated at a density of 2 × 103 cells/cm2. After 24 h, GM was replaced
with DM, and stimuli were added as follows: 1 µM apigenin, 100 nM resveratrol, and
50 nM curcumin. The cells were stimulated at these specific concentrations based on
the results obtained with the cell proliferation assay. After 14 days of differentiation,
hDPSCs were harvested for RNA extraction and real-time PCR analysis. The total RNA was
isolated using Tri Reagent (#T9424, Sigma-Aldrich, Saint Louis, MO, USA), according to the
manufacturer’s protocol. A quantity of 1 µg RNA was directly processed by High-Capacity
cDNA Archive Kits (Applied Biosystems, Life Technologies, Monza-Italy) according to
the manufacturer’s instructions. Singleplex real-time PCR was conducted to evaluate
the relative quantification of gene expression of RUNX2, SMAD5, COLL4, COLL5, and
COLL1 versus GAPDH by TaqMan technology on an ABI Prism 9700HT Sequence Detection
System instrument, connected to Sequence Detector Software (SDS, version 2.0; Applied
Biosystem, Life Technologies, Monza, Italy) for data collection and analysis. The primer
pairs and TaqMan probes for all of the target genes and for the GAPDH reference gene
were provided as 20× mixtures that were ready to use at a concentration of 1×. According
to the manufacturer’s recommendations, 25 µL reactions were performed in a MicroAmp
Optical 96-well reaction plate using the 12.5 µL 2× TaqMan Universal PCR Master Mix,
with the 1.25 µL 20× Inventoried Gene Expression Product for the mouse Runx2 target
gene, SMAD5, COLL1, COLL4, and COLL5 versus GAPDH (FAM-dye-labeled TaqMan MGB
probe). PCR was performed at 50 ◦C for 2 min, and at 95 ◦C for 10 min, and then run for
45 cycles at 95 ◦C for 15 s and at 60 ◦C for 1 min. All of the reactions were run in triplicate,
and each experiment was repeated three times. The relative quantification of target gene
expression was evaluated with data from the SDS software, using the arithmetic formula
2−∆∆Ct, according to the comparative Ct method, which represents the amount of target, as
normalized to the GAPDH endogenous control. Data derived from the 2−∆∆Ct formula are
named relative quantification.

2.6. In Vivo Animal Study
2.6.1. Surgical Procedure

The study received the approval of the ethical committee of the local Ethics Committee
of the University of Chieti-Pescara, Chieti, Italy (No. 84/2020), and the Italian Ministry
of Health. Twenty adult male Sprague Dawley rats were used for this study. Bone de-
fects were produced in the calvaria bone (Figure 1A–D). Anesthesia was obtained by an
intraperitoneal injection of sodium pentobarbital (Pentobarbital, Italy, 50 mg/kg). After
shaving, the surgical field was prepared with 10% iodine solution. A sagittal incision of the
midline was made starting from the occipital region and proceeding with the periosteal
dissection highlighting the parietal region. The unilateral cranial bone defect (diameter,
5 mm) (1 defect/rat) was produced by using a drill under abundant irrigation of sterile
physiological solution. After removing the bone disc, the various planes were sutured.
Pain relieving and antibiotic therapy were administered with the methods and dosages
previously described [5,20]. Twenty experimental defects were created (Figure 1A–D):

(1) Group A: Ctr—empty bone defect;
(2) Group B: Resveratrol (resveratrol 98%, No. 3183, Galeno SRL, Comeana, Italy) 1 mL

(10 mg/kg)—empty bone defect/administration of resveratrol by gastric gavage in a
single dose daily [40];

(3) Group C: Curcumin (curcumin 95%, No. 4507, Galeno SRL, Comeana, Italy) 1 mL
(10 mg/kg)—empty bone defect/administration of curcumin by gastric gavage in a
single dose daily [41];
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(4) Group D: Apigenin (apigenin 98%, Biorigins, Sandleheath, UK) 1 mL (10 mg/kg)—
empty bone defect/administration of apigenin by gastric gavage in a single dose
daily [42,43].
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Figure 1. Surgical phases of the in vivo experiment: (A) exposure of the calvarial surface through a
full-thickness incision; (B) drilling of the cortical surface of the calvaria through the 5 mm trephine
bur; (C) details of the site after the osteotomy; (D) cortical layer removal.

Concentration and solution preparation was performed following a previously de-
scribed method by Correa et al. [40,41,44]. The resveratrol solution was prepared in 100 mL
polysorbate 80 (Sigma-Aldrich, St. Louis, MI, USA), a surfactant and nonionic emulsifier
common in pharmaceuticals and food preparation. The curcumin and apigenin solution
was obtained in 9% ethanol and diluted in order to obtain the concentrations considered
for the present study [40,41,44]. Eventual complications and infections were treated by
administering post-operative antibiotic therapy and painkiller therapy. The daily clinical
evaluation of the post-operative surgery was performed through the rat grimace scale prior
to surgery on Days 1, 3, 7, 14, and 30. The animals were sacrificed after 30 days, and the
biopsies were retrieved for further analysis. The obtained samples were radiographically
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and evaluated by 3D CBCT scans (EZ3D, Vatech, Gyeonggi-do, Republic of Korea) to
evaluate the level of bone healing and defect recorticalization.

2.6.2. Specimen Processing

The biopsies were fixed into 4% paraformaldehyde and 0.1% glutaraldehyde in 0.15 M
cacodylate buffer and pH 7.4 at room temperature for 1 week. The samples were dehydrated
in ascending concentration rinses of ethyl alcohol from 60% to 100% and embedded in a
hydrophilic acrylic resin of high viscosity (LR White Resin London Resin Company Ltd.,
UK). After polymerization, the specimens were sectioned, along their longitudinal axis,
with a high-precision and -accuracy diamond disc at about 150 µm and ground down to
about 30 µm with a specially designed grinding machine. Two slides were obtained for
each specimen. The slides were stained with toluidine blue and acid fuchsin to evaluate
the newly formed and mature bone. The samples were observed in normal transmitted
light under a Nikon microscope ECLIPSE (Nikon, Tokyo, Japan).

2.7. Statistical Analysis

The statistical software package GraphPad 8 (Prism, San Diego, CA, USA) was used
for the data analysis. The parametric methods were applied considering the existence
of the required assumptions. The study variables were the time elapsed, the molecule
concentration, and the gene expression levels. The sample size of the in vivo experiments
was calculated for a total of 4 different groups, according to an α error of 0.05 and a power
of 80%. The minimum sample size for statistical significance was 5 defects for each group
(total of 20 sites and animals). The statistical analysis of the in vitro experiments was
conducted by applying the unpaired t-Student test. The level of significance was assessed
considering a p < 0.05. The descriptive statistic of bone defect healing in vivo was calculated
by CBCT scans considering the means, standard deviation, and 95% confidence intervals
for conditions.

3. Results
3.1. In Vitro Procedure
3.1.1. Cell Proliferation Assay

The MTT assay dose–response experiment was assessed to identify the optimal con-
centration for hDPSC cultures (Figure 2). Apigenin at final concentrations of 1 µM, 500
and 100 nM; resveratrol 1 µM, 500 and 100 nM; and curcumin 50, 100, and 500 nM were
tested. The observation was performed at 24 and 72 h to verify the effect after the cells
had completed a replication period (Figure 2). To select the most appropriate substance
concentrations, we opted for the best concentrations that at both 24 h and 72 h had no
toxic effects or with values very similar to controls (CTRL) or even had a proliferative
effect. Based on the results obtained, for apigenin, resveratrol, and curcumin, we selected
and utilized for further experiments the following concentrations: 1 µM apigenin, 100 nM
resveratrol, and 50 nM curcumin.

3.1.2. Alizarin Red Assay

The formation of calcification nodules obtained in hDPSC cultures was shown by
Alizarin Red staining. The cells cultured in the presence of 1 µM apigenin or 100 nM
resveratrol or 50 nM curcumin were analyzed after 14 days. All samples cultured in
the presence of the nutraceuticals showed more nodules positive for Alizarin Red in
differentiation medium (DM) conditions with respect to the control (CTRL) (Figure 3).

3.1.3. Gene Expression

RT-PCR analysis was performed for RUNX2, SMAD5, COLL1, COLL4, and COLL5
genes after 14 days of differentiation in DM, and the data were reported as relative quantifi-
cation means ± standard error (Figure 4). The expression of genes SMAD5 and RUNX2
was statistically increased in the presence of apigenin, resveratrol, and curcumin compared
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to the control group (p < 0.05). Even COLL1, COLL4, and COLL5 were upregulated in the
presence of apigenin, resveratrol, and curcumin compared to the control (p < 0.05).
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Figure 4. RT-PCR of RUNX2, SMAD5, COLL1, COLL4, and COLL5. The graph shows the expression of
analyzed genes after 14 days of differentiation in DM. Data derived from three different experiments
(each n = 3) are reported as relative quantification means ± standard error. Unpaired t-test was
applied to compare apigenin, resveratrol, curcumin, and the control group (* p < 0.05, ** p < 0.005.
*** p < 0.0005).

3.1.4. In Vivo Procedure

No dropouts were reported after the surgery and the treatment protocol. A good
tolerance of the treatment was evidenced for all time points on Days 1, 3, 7, 14, and 30,
with no difference between the treatment groups (rat grimace scale) (p < 0.05) (Table 1). No
evidence of infection or inflammation was present in all groups.

Table 1. Summary of the rat grimace scale at 1, 3, 7, 14. and 30 days for the control, apigenin,
resveratrol, and curcumin groups.

Rat Grimace Scale
(Mean, SD) Day 1 Day 3 Day 7 Day 14 Day 30

Control Group 1.7 ± 0.4 1.1 ± 0.5 0.6 ± 0.4 0.3 ± 0.4 0.2 ± 0.4
Resveratrol Group 1.7 ± 0.5 1.2 ± 0.5 0.6 ± 0.5 0.2 ± 0.4 0.2 ± 0.4
Apigenin Group 1.8 ± 0.4 1.1 ± 0.6 0.6 ± 0.4 0.3 ± 0.5 0.2 ± 0.5
Curcumin Group 1.7 ± 0.4 1.2 ± 0.5 0.6 ± 0.4 0.2 ± 0.5 0.2 ± 0.4

p value p > 0.05 p > 0.05 p > 0.05 p > 0.05 p > 0.05

3.1.5. Tomography Assessment

All defects showed a bone repair at 30 days from the surgery visible by CBCT scans
and optical microscopy. After 30 days of treatment, a significantly improved corticalization
was visible for apigenin (Figure 5B) compared to the resveratrol (Figure 5C) and curcumin
groups (Figure 5D) after the healing period, while this evidence was not evident in the
control group (Figure 5A) (p < 0.05). No evidence of fibrous tissue was present in all
specimens at the microscopic observation.

3.1.6. Histological Assay

All the samples treated healed normally with no evidence of infection or inflammatory
infiltrate. The histological evaluation with acid fuchsin and toluidine blue staining showed
that after 30 days from the surgery, the control group reported evidence of marginal bone
resorption with a few areas of new bone formation localized in the intracranial side of
the cortical bone. Active multinucleated osteoclasts activity is evident at the level of the
marginal walls of the defect. No evidence of inflammatory infiltrate was reported at the
higher magnification (Figure 6) level of the margin of the defect. Focal regions of new bone
formation were present at the level of the intracranial side of the defect.
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In the apigenin group, bone morphology presented differentiated cell lineages specific
to the bone tissues, such as osteoblasts, osteocytes, and newly formed blood vessels. The his-
tological images showed a wide number of newly formed bone trabeculae (Figures 6 and 7),
while osteoblasts actively secreted the osteoid matrix that, in some areas, was undergoing
mineralization. At higher magnifications, an osteoclast rim was present at the level of the
defect margins with evidence of an active remodeling of the bone tissue (Figure 8).
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In the resveratrol group no fibrous tissue was observed at the level of the newly formed
bone surfaces compared to the control group (Figures 9 and 10). Newly formed bone was
found in close contact with the calvarial defect margins with wide bone trabeculae and
large osteocyte lacunae (Figure 10). The osteoblasts were actively secreting the osteoid
matrix that, in some areas, was undergoing mineralization.
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In the curcumin group, a noncomplete filling of the bone defect was evident after
30 days of curcumin administration, and a nonorganized osteoid matrix neo-apposition
was reported (Figures 11 and 12).
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3.1.7. Bone Defect Repair

The bone defect radiographically measured reported that the control group showed a
significantly lower bone repair level compared to the experimental groups with a mean
resorption of 18.5 ± 2.4% (p < 0.05). The bone defect repair of the apigenin group was
69.6 ± 2%. The bone defect healing of the resveratrol group and curcumin groups was,
respectively, 42.5 ± 3.6% and 23.7 ± 4.1% smaller than the baseline diameter defect, as
reported in Figure 13.
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Figure 13. Bone defect healing of the control, apigenin, resveratrol, and curcumin groups after 30 days
from the surgery. A negative defect repair of the control group was present, while the apigenin
administration showed the highest level of defect healing.

The defect area treated with apigenin gave the highest new bone formation with
respect to the other treated groups. In the apigenin, resveratrol, and curcumin groups, a
higher new bone formation was detected compared to the control group. The curcumin
group showed a lower percentage of bone compared to apigenin and resveratrol after
30 days of treatment, but even higher than the control group (Figure 13).

4. Discussion

The functional and aesthetic restoration of bone defects and atrophies represents a clin-
ical condition that could require a regenerative approach and grafting procedures [3,45,46].
The identification of novel approaches and adjuvant therapies able to improve the healing
of damaged tissues and bone defects represents one of the recent orientations of regener-
ative medicine [47–49]. Several studies have been performed to verify the regenerative
effects of some plant-derived substances, such as phenolic compounds, both in vitro and
in vivo in different experimental models [26,50,51]. However, no studies have been carried
out that simultaneously analyze these three compounds in parallel and which pathways
downstream of RUNX2 are modulated in the process of osteogenesis. Furthermore, even
in vivo, there is no research investigating the parallel use of these natural compounds.
The only study involving these three phenolic compounds concerns the effects of these
nutraceuticals in inducing cancer signaling pathway manipulation and possibly facilitating
new treatment modalities for osteosarcoma [39].

The present compound concentrations were adopted considering the evidence of
the literature in this field. The dosages used demonstrated their effectiveness in very
wide experimental models on rats, but the critical-size bone defect represents a novelty
of the present paper. Correa et al. investigated the same concentration of nutraceutical
administered by daily gastric gavage to evaluate in an experimental model of periodontitis,
validating their effectiveness and safety with no adverse effect on rats [40].

In addition, apigenin and curcumin administered orally demonstrated in two dif-
ferent studies a consistent effectiveness for bone loss prevention and mineral density on
ovariectomy-induced bone loss in rats [41,43]. Low-dose daily administration is a strategy
that is able to avoid the risk of high-dosage compound administration that could produce
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significant systemic side effects. On the contrary, gastric absorption could represent a
potential weak point due to the compound absorption levels and the peripheric balance
levels necessary to produce a therapeutic level [40,41,43].

Among the most studied bioactive compounds is certainly resveratrol, as well as
other molecules such as apigenin, a natural flavone, and curcumin with beneficial effects
on cell differentiation [38,52]. A fairly recent study reports that apigenin, at µM concen-
tration, stimulates myogenic differentiation of the murine cell line C2C12 and regulates
the expression of total myosin heavy chain (MHC), MHC2A, and MHC2B [53]. In the
present investigation, we evaluated the putative role of apigenin, resveratrol, and curcumin
dietary supplements in improving the in vitro osteogenic differentiation of hDPSCs, as
well as in affecting bone healing with an improvement of the clinical outcomes in vivo.
The in vitro results of the study showed that apigenin, resveratrol, and curcumin could
provide a promoting action for osteogenetic proliferation and differentiation of hDPSCs.
The positivity for Alizarin Red staining showed mineral deposition obtained from hDPSCs
cultured either in the presence or not of apigenin, resveratrol, and curcumin. The calcifica-
tion nodules were more observable after 14 days of culture in DM in the presence of stimuli,
demonstrating an earlier differentiation of hDPSCs in an osteogenic pattern. These results
were in line with previous outcomes showing positive alizarin-red-stained calcification
nodules in 21-day-differentiated hDPSCs [54]. However, the more pronounced calcification
nodules In the presence of stimuli confirmed an earlier differentiation process related to
their effect. We can speculate that the three substances were effective in boosting osteogenic
differentiation both in in vitro and in vivo experiments. Indeed, we demonstrated that the
hDPSCs cultured in the presence of the nutraceuticals showed more nodules positive for
Alizarin Red in differentiation medium conditions with respect to the control. Moreover,
in vivo, in the apigenin, resveratrol, and curcumin groups, a higher new bone formation
was detected compared to the control group.

Multipotent stem cells are induced to osteogenic differentiation into osteoblasts ac-
cording to BMP signaling [55–57]. BMP2 signaling appears to permit the expression of
osteo-specific RUNX2, which induces the expression of alkaline phosphatase and osteo-
calcin, and SMAD5, which activates the expression of early osteoblast differentiation
markers [57–59]. Moreover, BMP2 and SMAD5 can bind RUNX2 with an increase in
transcriptional activity [57]. In fact, RUNX2 activity with osteocalcin and β-catenin is
known to be essential for osteoblast formation [60–62]. The activation of this signaling
is confirmed by the increased upregulation of SMAD5 and RUNX2. The study data con-
firmed the literature showing the maximum upregulation at 14 days of culture [7]. RUNX2
is a determinant transcription factor in bone formation and upregulates osteocalcin, a
key regulator of the development of the osteoblast phenotype by modulating bone ex-
tracellular matrix proteins and collagen types 1, 4, and 5. Indeed, its increased activity
could suggest a more rapid evolution and a major degree of differentiation of hDPSCs
on the osteogenic line [60–62]. In agreement with the study findings, resveratrol oral
administration is able to decrease alveolar bone resorption in experimental defects with
reduced levels of proinflammatory cytokines IL1b, IL6, and TNFa [33,43]. In addition, in
the literature, treatment with curcumin in experimental bone defects has been shown by
others to downregulate RANKL/RANK/osteoprotegerin, as well as to reduce bone loss [33].
These physiopathogenetic mechanisms seem to be correlated with the regulation of var-
ious molecular targets, including increasing ALP activity and osteoblast-specific mRNA
expression of RUNX2 and osteocalcin [29,63,64]. Curcumin is able to decrease the release of
inflammatory cytokines in articular chondrocytes and produce antagonist activity against
proinflammatory molecules [33]. As reported in the literature, apigenin, curcumin, and
resveratrol have potent antioxidant activity [20,30,33,43,49,65]. The cell cultures exhibit
upregulation of all tested genes in the presence of nutraceutical administration during os-
teogenic differentiation, which may be associated with augmented cell activity and growth.
In order to understand if the enhanced differentiative features demonstrated in vitro on
hDPSC cultures could be related to the more effective healing of bone defects, we also
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evaluated in vivo in rats the effects of apigenin, resveratrol, and curcumin administration
on experimental critical-size bone defects. Park et al. reported an ovariectomy-induced
bone loss in rats, where the administration of apigenin with a dose of 10 mg/kg three times
a week for 15 weeks induced an increase in the bone density of the trabecular bone of the rat
femur, with an inhibition of bone resorption and osteoclast apoptosis [43,66]. In agreement
with the current literature, we used 10 mg/kg of apigenin, curcumin, and resveratrol. Our
data showed that apigenin seems to be more effective at enhancing the healing of bone
defects and mineralization of the osteoid matrix in rat calvaria compared to the control
group. Moreover, the apigenin group resulted in more effective and significantly higher
bone defect repair compared to the other study groups. The control group revealed after 30
days a marginal bone resorption that is compatible with a local adaptation that produced
a significant increase in the bone defect diameter. Conversely, mild new bone formation
activity was localized in the intracranial portion of the defect.

Another notable aspect is the histological findings of the initial active remodeling
process of the osteoid matrix visible in all test groups compared to the control, which
reported evidence of marginal bone resorption activity. These results are in agreement with
previous studies reported in the literature [26,33,43]. In addition, the findings of the in vivo
experiment confirmed the rejection of the null hypothesis, revealing a significant difference
concerning the percentage of calvarial defect repair and the histological evidence of a more
active nonmature bone synthesis of the test groups.

5. Conclusions

Apigenin, curcumin, and resveratrol investigated in parallel in the present study
showed a significant increase in bone repair in critical-size defects in rat calvaria. Among
these, apigenin induced the best results. These in vivo results could be related to a dif-
ferentiative boost due to all substances, as shown by the in vitro results. Altogether, the
study evidence encourages a translational application for fracture defect repair as adjuvant
supplement therapy. It is noteworthy that in the present study, gastric gavage was used as
a new method for substances’ administration in in vivo experiments, intended to mimic
the effects that could be obtained with dietary supplementation of possible therapeutic in-
tegrations with nutraceuticals during the bone regeneration process. Based on the findings
of the present investigation, further longer-term studies in models of experimental bone
defects might be required to elucidate the effects of nutraceuticals. This could lead to the
development of more effective therapies and adjuvant supplements approaches for bone
defect repair in humans.
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