
Results in Applied Mathematics 18 (2023) 100363

a

b

a

E
c
E
a
t
n
f
a

a
i
o
l
o
s

Contents lists available at ScienceDirect

Results in AppliedMathematics

journal homepage: www.elsevier.com/locate/results-in-applied-mathematics

Alpha geodesic distances for clustering of shapes
Angela A. De Sanctis a,∗, Stefano A. Gattone a, Fotios D. Oikonomou b

University ‘‘G. d’Annunzio’’ of Chieti-Pescara, viale Pindaro 42, Pescara, 65127, Italy
University of Patras, Greece

a r t i c l e i n f o

Article history:
Received 22 December 2022
Received in revised form 15 February 2023
Accepted 21 February 2023
Available online xxxx

MSC:
53Z05
53Z30

Keywords:
Shape analysis
Clustering
Fisher metric
α-connections
Geodesic distance

a b s t r a c t

According to Information Geometry, we represent landmarks of a complex shape,
as probability densities in a statistical manifold where geometric structures from α-
connections are considered. In particular the 0-connection is the Riemannian connection
with respect to the Fisher metric. In the setting of shapes clustering, we compare the
discriminative power of different shapes distances induced by geodesic distances derived
from α-connections. The methodology is analyzed in an application to a data set of
aeroplane shapes.

© 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last decades, shapes clustering has played a very important role mostly in medical imaging, computer vision
nd geometric morphometrics.
Since the shape space is invariant under similarity transformations, that is translations, rotations and scaling, the

uclidean distance on such a space is not really meaningful. Therefore, in Shape Analysis [1], in order to apply standard
lustering algorithms to planar shapes, the Euclidean metric has to be replaced by suitable metrics of the shape space.
xamples were provided in [2,3], where the Procrustes distance was integrated in standard clustering algorithms such
s the k-means. Similarly, [4] applied standard hierarchical or k-means clustering using dissimilarity measures based on
he inter-landmark distances. In a model-based clustering framework, [5] and [6] developed a mixture model of offset-
ormal shape distributions. A more recent literature considers the shape-analysis of curves and functions. Using tools
rom Differential Geometry and Functional Data Analysis, it provides a rigorous and complete methodological setting in
non-parametric context. We refer the interested reader to [7] for more details.
Since often the profile of an object is not clearly defined, as for example in some medical images, we follow a different

pproach. We deal with objects whose shapes are based on landmarks [8–10]. These objects can be obtained by medical
maging procedures, curves defined by manually or automatically assigned feature points or by a discrete sampling of the
bject contours. We assume that each landmark is modeled via a bivariate Gaussian density, where the means are the
andmark geometric coordinates and capture uncertainties that arise in landmark placement while the variances inform
n the variability across the population of shapes under study. We regard the space of bivariate Gaussian densities as a
tatistical manifold [11] with the local coordinates given by the model parameters.
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As it is well known, any hierarchical clustering algorithm uses as input the pairwise distances of all possible pairs
f points under study. Then, we define distances between landmarks which are induced by the geodesics (geodesic
istances) from the natural geometric structures of Information Geometry [12]. We already considered the Fisher metric
s a Riemannian metric on the statistical manifold of the Gaussian densities [13,14]. The induced geodesic distance is
elated with the minimization of information in the Fisher sense. In this paper we generalize the results considering the
hole family of α-connections, which includes, for α = 0, the Fisher metric as Riemannian connection. By means of a
eal application, our goal is to evaluate the discriminative power of the different shapes distances obtained by varying
he parameter α.

In Section 2, we recall the main definitions and the fundamental results, which concern the geometry of α-connections
ccording to Information Geometry.
Then, in Section 3, clustering of shapes induced by geodesic distances derived from the α-connections is introduced.

wo different generalized K-means algorithms, Type 1 and Type 2 are developed in Section 4. While in the Type 1
lgorithm the landmark coordinates variances are assumed isotropic across the clusters, in Type 2 the variances are
llowed to vary among the clusters. Section 5 presents an application on aeroplane shapes in which the discriminative
ower of the different α - connections shapes distances is evaluated. Conclusions are given in Section 6.

. Geometrical structures for a statistical manifold

From Differential Geometry we recall that an affine connection on a manifold N of dimension n is a mapping ∇ :

(N) × T (N) −→ T (N), where T (N) is the linear space of the vector fields on N , which satisfies the following conditions:

∇X+YZ = ∇XZ + ∇YZ

∇X (Y + Z) = ∇XY + ∇XZ

∇fXY = f∇XY

∇X fY = f∇XY + (Xf )Y

here Xf denotes the function p → Xpf .
We may define Γ k

ij the connection coefficients of ∇ with respect to some coordinate system θ i to be the n3 functions
etermined by the equation: ∇∂i∂j = Γ k

ij ∂k where ∂i =
∂

∂θ i
. In general, given X = X i∂i and Y = Y i∂i, we may write

∇XY = X i(∂iY k
+ Y jΓ k

ij )∂k

Let ∇ be an affine connection on a Riemannian manifold (N, g = ⟨, ⟩). If for all vector fields X, Y , Z it satisfies:

Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩ + ⟨X, ∇ZY ⟩

we say that ∇ is a metric connection with respect to g . Using the coordinate expressions of g and ∇ , we can rewrite this
condition as

∂kgij = Γki,j + Γkj,i

where

Γij,k = Γ
p
ij gpk

and the above equation becomes

∂kgij = Γ
p
kigpj + Γ

p
kjgpi.

We call a connection, which is both metric and symmetric, that means Γij,k = Γji,k, the Riemannian connection or the
Levi-Civita connection with respect to g . For a given g , it exists uniquely, indeed combining both the conditions we obtain:

Γij,k =
1
2
(∂igjk + ∂jgki − ∂kgij)

Besides it is possible to prove that, given any connection ∇ on a Riemannian manifold (N, g), there exists a unique
connection ∇

∗, called the dual connection of ∇ , that satisfies, for all vector fields X, Y , Z , the following identity:

X⟨Y , Z⟩ = ⟨∇XY , Z⟩ + ⟨Y , ∇∗

XZ⟩

Then we introduce a totally symmetric cubic (0, 3)-tensor (i.e. 3-covariant tensor): C(X, Y , Z) = ⟨∇XY − ∇
∗

XY , Z⟩.
We define a statistical manifold (N, g, C) a manifold N equipped with a metric tensor g and a totally symmetric cubic

tensor C .
2
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Let P a family of probability density functions p(x; θ ) parameterized by θ ∈ Rk. It is well known that we can endowed
t with a structure of manifold, whose local coordinates are the parameters of the family. As an example, we can consider
he family of p-variate Gaussian densities:

f (x; θ = (µ, Σ)) = (2π )
−p
2 (detΣ)

−1
2 exp{

−1
2

(x − µ)TΣ−1(x − µ)}

where x = (x1, x2, . . . , xp)T , µ = (µ1, µ2, . . . , µp)T is the mean vector and Σ the covariance matrix. Note that the
parameter space has dimension k = p +

p(p+1)
2 . In particular, we are interested in the case p = 2.

Natural structural conditions in such a manifold are (uniquely) geometrical met by the Riemannian metric induced
y Fisher information matrix (Fisher metric) and a family of affine connections (α - connections), which induce on P a
tructure of statistical manifold.
Precisely, for the Fisher metric, the tensor metric is defined as:

gij(θ ) = Eθ (∂ilθ∂jlθ ) =

∫
∂il(x; θ )∂jl(x; θ )p(x; θ )dx

where ∂i =
∂

∂θ i
, lθ (x) = l(x; θ ) = ln p(x; θ ) and Eθ (f ) =

∫
f (x)p(x; θ )dx.

Besides, for every real number α, we put:

(Γ (α)
ij,k )θ = Eθ [(∂i∂jlθ +

1 − α

2
∂ilθ∂jlθ )(∂klθ )]

then we can define an affine connection ∇
(α) on P by

⟨∇
(α)
∂i

∂j, ∂k⟩ = Γ
(α)
ij,k

here g = ⟨, ⟩ is the Fisher metric. We call ∇ (α) the α-connection. We remark that the α-connection is clearly a symmetric
onnection. Also the α-connection and the −α-connection are dual with respect to the Fisher metric.
It is possible to verify that

∇
(α)

= (1 − α)∇ (0)
+ α∇

(1)
=

1 + α

2
∇

(1)
+

1 − α

2
∇

(−1)

which establishes the importance of some elements of this family of affine connections obtained for particular values of
the parameter α.

Due to
∂kgij = Eθ [(∂k∂ilθ )(∂jlθ )] + Eθ [(∂ilθ )(∂k∂jlθ )] + Eθ [(∂ilθ )(∂jlθ )(∂klθ )]
= Γ

(0)
ki,j + Γ

(0)
kj,i

(1)

we can deduce that the 0-connection is the Riemannian connection with respect to the Fisher metric. In general ∇
(α) is

not metric if α ̸= 0.
Again from Differential Geometry, let N be an n-dimensional manifold and M an m-dimensional submanifold of N ,

with coordinate systems θ i and ua respectively. If ∂i =
∂

∂θ i
and ∂a =

∂
∂ua , by ∇ affine connection on N we can define a

directional derivative of a vector field Y on M along a vector of another vector field X on M . In general such a vector ∇XpY
is a tangent vector of N but not necessarily a tangent vector of M .

If, for every p inM , ∇XpY is a tangent vector ofM then ∇ is a covariant derivative onM and we say thatM is autoparallel
ith respect to ∇ . This is equivalent to there existing m3 functions Γ c

ab on M which satisfy ∇∂a∂b = Γ c
ab∂c .

1-dimensional autoparallel submanifolds are called autoparallel curves or geodesics. For a curve γ : t ↦→ γ (t) the
previous condition can be rewritten ∇γ̇ (t)γ̇ (t) = Γ (t)γ̇ (t). Because the 1-dimensional manifolds are necessarily ‘‘flat’’, for
a suitable change of variable t , we obtain Γ (t) ≡ 0 and the equation reduces to ∇γ̇ (t)γ̇ (t) = 0 that means

γ̈ k(t) + γ̇ i(t)γ̇ j(t)(Γ k
ij )γ (t) = 0

The geodesic with respect to a Riemannian connection is known to locally coincide with the shortest curve joining
two points ξ, ξ ′, measuring length according to:

∥γ ∥ =

∫ 1

0

√
gijγ̇ iγ̇ jdt

where γ (0) = ξ and γ (1) = ξ ′.
In general, from an affine connection on a complete manifold N we can define a distance (geodesic distance) between

two points ξ, ξ ′ of the manifold as the length of the geodesic joining these two points. Then, if γ = γ (t) is such a curve,
we put

d(ξ, ξ ′) = ∥γ ∥
3
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Starting from the family of bivariate Gaussian densities with diagonal covariance matrices, which we can write, if
= (µ, Σ) with µ = (µ1, µ2) and Σ = diag(σ1, σ2)

p(x, y, µ1, µ2, σ1, σ2) =
1

2πσ1σ2
exp{−

1
2

(
x − µ1

σ1

)2

−
1
2

(
y − µ2

σ2

)2

}

t is easy to prove that the Fisher matrix is given by:

g = diag[
1
σ 2
1

,
1
σ 2
2

,
2
σ 2
1

,
2
σ 2
2

]

For the Riemannian connection with respect to the Fisher metric ∇
(0), it is possible to calculate exactly the geodesics

hen we can deduce that the closed form of the geodesic distance d0 = dF between two bivariate Gaussian densities with
diagonal covariance matrices is the following [15]:

dF (θ, θ ′) =√2
2∑

i=1

⎛⎝ln
|( µi√

2
, σi) − ( µ′

i√
2
, −σ ′

i )| + |( µi√
2
, σi) − ( µ′

i√
2
, σ ′

i )|

|( µi√
2
, σi) − ( µ′

i√
2
, −σ ′

i )| − |( µi√
2
, σi) − ( µ′

i√
2
, σ ′

i )|

⎞⎠2

(2)

where θ = (µ, Σ) with µ = (µ1, µ2) and Σ = diag(σ1, σ2), θ ′
= (µ′, Σ ′) with µ′

= (µ′

1, µ
′

2) and Σ ′
= diag(σ ′

1, σ
′

2).
In this paper we are interested in the whole family of geodesic distances dα induced by the α - connections ∇

(α), for
n arbitrary real number α, on the statistical manifold of bivariate Gaussian densities with diagonal covariance matrices.
We previously observed that, in the case α = 0, the analytical expression of geodesics is known. The same happens

f α = 1. Indeed, since Gaussian densities constitute an exponential family which is flat with respect to the 1-
onnection, [16], geodesics may be expressed using linear equations with respect to affine coordinate systems, that are
he canonical parameters. In the general case, for α ̸= 0 and for α ̸= 1, analytical expressions of the geodesics induced
by these affine connections are not available so we need to use numerical techniques to obtain their approximations and
deduce the geodesic distances.

3. Clustering of shapes

We will consider only planar objects, as for example a flat fish or a section of the skull. The ‘‘shape’’ of the object
consists of all information invariant under similarity transformations, that is translations, rotations and scaling [1].

Data from a shape are often realized as a set of points. Many methods allow us to extract a finite number of points,
which are representative of the shape and are called landmarks.

Suppose we are given a planar shape configuration, S, from a population of shapes. Shape S consists of a fixed number
K of labeled landmarks

S = {µ1, µ2, . . . , µK } (3)

with generic element µk = (µk1, µk2) for k = 1, . . . , K .
Following [13], the kth landmark, for k = 1, . . . , K , may be represented by a bivariate Gaussian density as follows:

f (x; θk) = (µk, Σk) = (2π )−1(detΣk)−
1
2 exp{−

1
2
(x − µk)TΣ−1

k (x − µk)} (4)

with x being a generic 2-dimensional vector and Σk given by

Σk = diag(σ 2
k1, σ

2
k2) (5)

where σ 2
k1 and σ 2

k2 are the variances of the k-th landmark.
We remark that, in the previous representation, the means are the geometric coordinates of the landmark and capture

uncertainties that arise in landmark placement. The variances are ‘‘hidden’’ coordinates of the landmarks and reflect
the natural variability across the population of shapes. Eq. (4) allows to assign to the k-th landmark the coordinates
θk = (µk, σk) on the 4-dimensional manifold which is the product of two upper half planes.

One way to compare shapes of different objects is to first register them on some common coordinate system for
removing the similarity transformations [9,17]. Alternatively, Procrustes methods [18] may be used in which objects are
scaled, rotated and translated so that their landmarks lie as close as possible to each other with respect to the Euclidean
distance.

Let S and S ′ two planar shapes registered on a common coordinate system using Procrustes method. We parameterize
them as follows: S = (θ1, . . . , θK ) and S ′

= (θ ′

1, . . . , θ
′

K ).
The geodesic distances between landmarks allow to define a distance of the two shapes S and S ′. Precisely a shape

metric for measuring the difference between S and S ′ can be obtained by taking the sum of the geodesic distances between
4
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the corresponding landmarks, according to the following definition:

D(S, S ′) =

K∑
k=1

d(θk, θ ′

k) (6)

Then a classification of shapes, using in turn, as distance d, the geodesic distance dF induced by Fisher metric and more
generally the geodesic distances dα induced by α - connections, can be done following the methodology that is recalled
in the next paragraph.

4. K-means clustering algorithms

In [14] the shape distances are implemented in two different generalized K-means algorithms, Type 1 and Type 2.
While in the Type 1 algorithm the landmark coordinates variances are assumed isotropic across the clusters, in Type 2
the variances are allowed to vary among the clusters.

The task is clustering a set of n shapes, S1, S2, . . . , Sn into G different clusters, denoted as C1, C2, . . . , CG. The
computational effort of both algorithms is of the order of combinations C(n,G) at the worst case scenario.

4.1. Type 1 algorithm

1 Initial step:
Compute the variability of the kth landmark coordinates σ2

k = (σ 2
k1, σ

2
k2), for k = 1, . . . , K .

Randomly assign the n shapes, S1, S2, . . . , Sn into G clusters, C1, C2, . . . , CG.
For g = 1, . . . ,G calculate the cluster center cg = (θ g

1 , . . . , θ
g
K ) with kth component θ

g
k = (µgk, σ

2
k ) obtained as

θ
g
k =

1
ng

∑
i∈Cg θ i

k, where ng is the number of elements in the cluster Cg and θ i
k is the kth coordinate of Si given by

θ i
k = (µik, σ

2
k ).

2 Classification:
For each shape Si, compute the distances to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si and the cluster center cg is given by:

D(Si, cg ) =

K∑
k=1

d(θ i
k, θ

g
k ).

Assign Si to cluster h that minimizes the distance:

D(Si, ch) = min
g

D(Si, cg ).

3 Renewal step:
Compute the new cluster centers of the renewed clusters c1, . . . , cG.
The kth component of the gth cluster center cg is defined as θ

g
k =

1
ng

∑
i∈Cg θ i

k.

4 Repeat 2 and 3 until convergence.

4.2. Type 2 algorithm

1 Initial step:
Randomly assign the n shapes, S1, S2, . . . , Sn into G clusters, C1, C2, . . . , CG.
In each cluster compute the variability of the kth landmark coordinates σ2

gk = (σ 2
gk1

, σ 2
gk2

), for k = 1, . . . , K and
g = 1, . . . ,G.
Calculate the cluster center cg = (θ g

1 , . . . , θ
g
K ) with kth component θ

g
k = (µgk, σ

2
gk) obtained as θ

g
k =

1
ng

∑
i∈Cg θ i

k for
g = 1, . . . ,G, where ng is the number of elements in the cluster Cg and θ i

k = (µik, σ
2
gk) for i ∈ Cg .

2 Classification:
For each shape Si, compute the distances to the G cluster centers c1, c2, . . . , cG.
The generic distance between the shape Si and the cluster center cg is given by:

D(Si, cg ) =

K∑
k=1

d(θ i
k, θ

g
k ).

Assign Si to cluster h that minimizes the distance:

D(Si, ch) = minD(Si, cg ).

g

5
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Fig. 1. Aeroplane shape classes.

3 Renewal step:
Update the variability of the kth landmark coordinates in each cluster by computing σ2

gk = (σ 2
gk1

, σ 2
gk2

), for k =

1, . . . , K and for g = 1, . . . ,G.
Calculate the new cluster centers of the renewed clusters c1, . . . , cG.
The kth component of the gth cluster center cg is defined as θ

g
k =

1
ng

∑
i∈Cg θ i

k.

4 Repeat 2 and 3 until convergence.

5. Application

We consider a set of thirty aeroplanes (thirty shapes), of six different classes (six clusters), with each one of them
comprised of sixty dots (sixty landmarks). These data were taken from ‘‘Anthony Bagnall, Jason Lines, William Vickers
and Eamonn Keogh, The UEA & UCR Time Series Classification Repository, www.timeseriesclassification.com’’. Each cluster
contains five aeroplanes. All the aeroplanes were first registered using Procrustes analysis [1]. The sample of registered
shapes is depicted in Fig. 1.

According to Type 1 or Type 2 algorithm, we randomly assign the 30 shapes into 6 clusters and gradually reassign
them to cluster that minimizes the distance D computed as above using the α - geodesic.

In order to find the α - geodesic for the α - connection γ (t) from the given point θ = (µ1, µ2, σ1, σ2) to the (also
given) point θ ′

= (µ′

1, µ
′

2, σ
′

1, σ
′

2) we suppose that,

γ i(t) = γ i(0) + t
dγ i

dt

⏐⏐⏐⏐
t=0

+
t2

2
d2γ i

dt2

⏐⏐⏐⏐
t=0

for i=1,2,3,4 i.e. we consider the Taylor expansion of γ i(t) for up to second order. From the equations of the geodesics we
have

d2γ i

dt2
= −Γ αi

jk
dγ j

dt
dγ k

dt
,

so the above expansion takes the form

γ i(t) = γ i(0) + t
dγ i

dt

⏐⏐⏐⏐
t=0

−
t2

2

(
Γ αi

jk
dγ j

dt
dγ k

dt

) ⏐⏐⏐⏐
t=0

with γ (0) = θ . So, in order to have an approximate expression for the geodesic γ (t), we want to know the first order
derivatives dγ j

dt

⏐⏐⏐
t=0

at t=0. These can be computed if we demand

γ (1) = θ ′
= (µ′

1, µ
′

2, σ
′

1, σ
′

2),

so we have a non-linear system of four equations with four unknowns which we solve numerically. Finally, we compute
numerically the integral,

d(θ, θ ′) =

∫ 1

0

√
gij

dγ i

dt
dγ j

dt
dt,

from which we compute the distance D above. Both computations were done with mathematica. As a comparison, a
K-means algorithm was implemented with the Procrustes distance [1], a well-known shape-distance commonly used for
landmark-based planar shapes.

The results are depicted in Figs. 2, 3, 4 for Type 1 algorithm and Figs. 5, 6, 7 for Type 2. (in Type 2 algorithm we have
set the value of variance to be 1E-9 when necessary, to avoid divisions by zero). Type 1 algorithm clearly outperforms
6
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Fig. 2. Type 1 algorithm. Adjusted rand index for various types of distance.

Fig. 3. Type 1 algorithm. Mean adjusted rand index for various types of distance.

Fig. 4. Type 1 algorithm. Median of the adjusted rand index list for various types of distance.
7
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Fig. 5. Type 2 algorithm. Adjusted rand index for various types of distance.

Fig. 6. Type 2 algorithm. Mean adjusted rand index for various types of distance.

Fig. 7. Type 2 algorithm. Median of the adjusted rand index list for various types of distance.
8
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Type 2. Indeed, in the data, the landmark variability does not change across the different clusters. Thus, estimating the
variability in each cluster deteriorates the clustering results because of the small sample size. Precisely, in general, Type
1 algorithm uses only one estimate of the variance, assumed equal across the clusters, instead, Type 2 algorithm uses a
different estimate of the variance for each cluster. Thus, if the variability is different across the clusters, then the Type
2 algorithm should outperform Type 1 and if the variability is homogeneous across the clusters, then, Type 1 should
outperform Type 2.

Interestingly, the clustering results vary according to the value of α used in computing the distance. In this application,
for example, neither the Fisher metric (α = 0) nor the 1-connection delivers the best results, being the best α value equal
to 0.2 which compares favourably with the results obtained with the Procrustes distance. The α value reflects the (kind
of) ‘‘metric’’ most suitable to identify the cluster structure. Indeed, since ∇

(α)
= (1−α)∇ (0)

+α∇
(1), varying α is as having

a mixture between two geometries: one is like the Procrustes one since the geodesics are straight lines when α = 1,
and the other, when α = 0, is that induced from the Fisher–Rao. The best alpha value will depend on the data and, in
particular, to what ‘‘metric’’ is more relevant for identifying the cluster structure.

6. Conclusions

After having represented shapes based on landmarks as points in a statistical manifold, in this paper, we deal with
shape distances derived from the geodesic distances induced by α - connections. Then, the discriminative power, with
respect to the α parameter, of these shapes distances is evaluated in the setting of K-means clustering. An application, for
a data set of aeroplane shapes, shows that the value of alpha affects the performance of the algorithm in terms of recovery
of the true classification structure. This result, on the one hand, it enlarges the application of the α-connections in the
context of cluster analysis; on the other, it arises the problem of how to select the good value of α in real applications
where the ground truth is unknown. A possible way of handling this problem is to select the value of alpha by using
internal validity indices such as the pseudo F index [19] or the GAP statistic [20]. The preliminary results have also shown
the validity of the presented numerical approximation of the geodesics based on the quadratic Taylor expansion.

This work is a first foray into the introduction of a novel family of shape distances and it suffers from a few drawbacks
which represent possible paths for future research.

Firstly, we have yet to perform a complete numerical comparison to the main state of the art distances used in shape
analysis (for an update and complete view see [7]).

Secondly, the proposed Alpha geodesic distances are not invariant with respect to shape preserving transformations
such as rotation, translation, and scaling. Most recent approaches incorporate at least one type of equivalence relation such
as the representation based on the Square-Root-Velocity function (re-parameterization invariant) [21] used for geodesic
computation between planar shapes. We remark, however, there is no arbitrariness in the results as long as one works
with shapes coordinates, i.e. registered shapes aligned as closely as possible through linear mapping.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

We have used previously published data.

References

[1] Dryden IL, Mardia KV. Statistical shape analysis. London: John Wiley & Sons; 1998.
[2] Stoyan D, Stoyan H. A further application of D.G. Kendall’s procrustes analysis. Biom J 1990;32:293–301.
[3] Amaral G, Dore L, Lessa R, Stosic B. K-means algorithm in statistical shape analysis. Commun Stat-Simul C 2010;39:1016–26.
[4] Lele S, Richtsmeier J. An invariant approach to statistical analysis of shapes. New York: Chapman & Hall/CRC; 2001.
[5] Huang C, Styner M, Zhu H. Clustering high-dimensional landmark-based two-dimensional shape data. J Am Stat Assoc 2016;110:946–61.
[6] Kume A, Welling M. Maximum likelihood estimation for the offset-normal shape distributions using EM. J Comput Graph Stat 2010;19:702–23.
[7] Srivastava A, Klassen EP. Functional and shape data analysis. New York: Springer; 2016.
[8] Bookstein FL. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press; 1991.
[9] Kendall DG. Shape manifolds, Procrustean metrics and complex projective spaces. Bull Lond Math Soc 1984;16:81–121.

[10] Cootes T, Taylor C, Cooper D, Graham J. Active shape models-their training and application. Comput Vis Image Underst 1995;61:38–59.
[11] Murray MK, Rice JW. Differential geometry and statistics. Chapman & Hall; 1984.
[12] Amari S, Nagaoka H. Methods of information geometry. Translations of mathematical monographs, vol. 191, Providence: AMS & Oxford University

Press; 2000.
[13] Gattone S, Sanctis AD, Russo T, Pulcini D. A shape distance based on the Fisher–Rao metric and its application for shapes clustering. Phisica A

2017;487:93–102.
[14] Gattone S, Sanctis AD, Puechmorel S, Nicol F. On the geodesic distance in shapes K-means clustering. Entropy 2018;20(9):647.
[15] Costa S, Santos S, Strapasson J. Fisher information distance: A geometrical reading. Discrete Appl Math 2015;197:59–69.
[16] Ay N, Jost J. Information geometry. A series of modern surveys in mathematics, Cham: Springer; 2017.
[17] Bookstein FL. Size and shape spaces for landmark data in two dimensions. Statist Sci 1986;1:181–242.
9

http://refhub.elsevier.com/S2590-0374(23)00009-2/sb1
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb2
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb3
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb4
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb5
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb6
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb7
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb8
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb9
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb10
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb11
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb12
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb12
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb12
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb13
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb13
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb13
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb14
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb15
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb16
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb17


A.A. De Sanctis, S.A. Gattone and F.D. Oikonomou Results in Applied Mathematics 18 (2023) 100363
[18] Goodall CR. Procrustes methods in the statistical analysis of shape. J R Stat Soc 1991;53:285–339.
[19] Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat - Theory Methods 1974;3:1–27.
[20] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a dataset via the gap statistic. J R Stat Soc B 2001;63(2):411–23.
[21] Srivastava A, Klassen E, Joshi SH, Jermyn IH. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans Pattern Anal Mach Intell

2011;33(7):1411–28.
10

http://refhub.elsevier.com/S2590-0374(23)00009-2/sb18
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb19
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb20
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb21
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb21
http://refhub.elsevier.com/S2590-0374(23)00009-2/sb21

	Alpha geodesic distances for clustering of shapes
	Introduction
	Geometrical structures for a statistical manifold
	Clustering of Shapes
	K-means clustering algorithms
	Type 1 algorithm
	Type 2 algorithm

	Application
	Conclusions
	Declaration of Competing Interest
	Data availability
	References


