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The brain is a complex system in which the functional interactions among its subunits vary over time. The 

trajectories of this dynamic variation contribute to inter-individual behavioral differences and psychopathologic 

phenotypes. Despite many methodological advancements, the study of dynamic brain networks still relies on 

biased assumptions in the temporal domain. The current paper has two goals. First, we present a novel method 

to study multilayer networks: by modelling intra-nodal connections in a probabilistic, biologically driven way, 

we introduce a temporal resolution of the multilayer network based on signal similarity across time series. This 

new method is tested on synthetic networks by varying the number of modules and the sources of noise in 

the simulation. Secondly, we implement these probabilistically weighted (PW) multilayer networks to study the 

association between network dynamics and subclinical, psychosis-relevant personality traits in healthy adults. 

We show that the PW method for multilayer networks outperforms the standard procedure in modular detection 

and is less affected by increasing noise levels. Additionally, the PW method highlighted associations between the 

temporal instability of default mode network connections and psychosis-like experiences in healthy adults. PW 

multilayer networks allow an unbiased study of dynamic brain functioning and its behavioral correlates. 
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Multilayer networks rely on the assumption that different net-

ork layers can be combined in supramodal entities since elements

nodes) occupying the same place in each network can be consid-

red as naturally linked across time or experimental conditions of a

ask ( Hutchinson et al., 2013 ; Boccaletti et al., 2014 ; Kivela et al.,

014 ; De Domenico et al., 2017 ; Thompson et al., 2018 ). Defin-

ng a supramodal structure allows us to investigate dynamic changes

n a network indexed by dynamic nodal measures such as promis-

uity, flexibility, integration, and recruitment ( Bassett et al., 2011 ;

apadopoulos et al., 2016 ; Telesford et al., 2017 ; Pedersen et al., 2018 ).

ultilayer networks have increasingly been employed in both basic and

linical neuroscience and highlighted interesting patterns of dynamic

etwork rearrangement underlying normal behavior ( Braun et al., 2015 ;

elesford et al., 2016 ) as well as clinical conditions such as depression

 Zheng et al., 2018 ) and schizophrenia ( Gifford et al., 2020 ). 

However, actual models of multilayer brain networks lack an ob-

ective methodological procedure to weight network parameters in a

iologically-sound fashion. The topological and modular properties of
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ultilayer brain networks rely on two key parameters, namely gamma

 𝛾) and omega ( 𝜔 ). The former, 𝛾, indicates the weight of the null mod-

ls when computing modularity ( Lancichinetti and Fortunato, 2009 ,

012 ; Betzel and Bassett, 2017 ). Thus, increasing the value of 𝛾 re-

ults in a more fragmented network structure with many small mod-

les ( Bassett et al., 2013 ; Gu et al., 2015 ; Nicolini and Bifone, 2016 ;

etzel et al., 2017 ). The latter, 𝜔 , represents the empirical strength of

onnections that a node has toward itself in consecutive (if multilayer

etworks are built across time) or alternative (if multilayer networks are

uilt across experimental conditions) time intervals ( De Domenico et al.,

013 ; Muldoon et al., 2016 ). Thus, 𝜔 essentially controls the intra-layer

ersus cross-layer modular architecture. The current standard is to set 𝜔

o fixed numbers and to investigate the effect of varying these “fixed- 𝜔 ”

n the modular architecture. However, as already noted by many sci-

ntists, such an assumption may introduce strong biases in the analysis

ince it implies arbitrariness regarding the values of the detection of the

odular architecture. For example, by setting 𝜔 = 1, dynamic (temporal)

scillations of nodal activity over time may be non-efficiently integrated

nto the cross-layer modular detection ( Chai et al., 2016 ; Betzel and Bas-

ett, 2017 ). 
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Many studies that investigated dynamic evolutions of brain activ-

ty and functional connectivity highlighted classes of brain regions with

eculiar functional properties in the time domain ( Van de Ville et al.,

010 ; De Pasquale et al., 2016 ; Breakspear, 2017 ). For example, regions

n the inferior parietal lobule, medial premotor cortex, and posterior cin-

ulate cortex have been labelled as functional hubs ( De Pasquale et al.,

018 ) since they dynamically link regions in their modules (cingulo-

percular network, sensorimotor network, and default mode network,

espectively) with other brain modules ( O’Neil et al., 2015 ; Preti et al.,

016 ). The efficient integration of information across networks is crucial

or controlling explicit, externally directed actions (Spadone et al., 2019;

ens et al., 2019 ) and for implicit, self-related information processing

 Di Plinio et al., 2020a ). Aberrant connectional profiles, especially in

egions related to the default mode network, seem to underlie many

sychopathological conditions ( Brovd et al., 2009 ; Hua et al., 2019 ),

nd these characteristics may depend on dysfunctional dynamic pro-

esses ( Braun et al., 2015 , 2016 ; Du et al., 2018 ). Thus, implementing a

egree of control over the temporal domain is necessary to increase the

bility to detect true transient module configurations during conscious

xperiences, which are naturally occurring both during task execution

nd during task-free states ( Liu et al., 2020 ). 

Here, we introduce an original parametrization for detecting dy-

amic modular architectures intending to improve the biological appro-

riateness of community detection in multilayer networks. As described

bove, the current estimation of the modularity relies on a structural

 𝛾) and a pseudo-structural ( 𝜔 ) parameter. Instead, the parametrization

roposed here accounts for uncertainty in the temporal domain and re-

laces 𝜔 . We introduce beta ( 𝛽), a parameter that regulates the prob-

bility distributions of the strength of edges connecting nodes across

ultiple layers of a multilayer network (intra-nodal, cross-layer connec-

ions). We also implement a biologically driven way to assign strengths

f intra-nodal (temporal) connections from these probability distribu-

ions by employing spectral coherence ( Bowyer, 2016 ; Mohanty et al.,

020 ) to choose the appropriate configuration of probabilistic intra-

odal weights. In other words, our method probabilistically regulates

ntra-nodal weights across layers based on the biological and temporal

roperties of the node’s signal. 

Our approach allows different strengths of cross-layer connections

o improve the appropriateness of multilayer modular detection. The

rocedure mirrors the current methodology for selecting structural res-

lutions through the parameter 𝛾 and aims to investigate modular archi-

ectures of the brain by using multiple temporal resolutions and multi-

le structural resolutions, to implement an unbiased methodology. The

robabilistically weighted (PW) multilayer community detection pro-

osed in this paper is expected to increase the accuracy toward the

etection of physiologically plausible, dynamic modular structures by

liminating the biases constrained by a fixed and “guessed ” value of 𝜔 .

he modulation of temporal resolution in PW networks allows for un-

ertainties over temporal multilayer network features in the same way

s 𝛾 enables the control over spatial network features. 

We test this new approach both on simulated data and on real

esting-state fMRI acquisitions of 39 healthy participants. The new

ethod’s performance was tested together with standard (fixed- 𝜔 )

ethods. To compare the performances of the methods, we investi-

ated synthetic, weighted networks obtained by varying the number

f modules, the weight of structured and unstructured noise in the

ime series, the structural resolution parameter ( 𝛾), and the values reg-

lating the standard parameter ( 𝜔 ) and our proposed parameter for

robabilistic weights based on spectral coherence ( 𝛽). Moreover, the

ssociation between multilayer network properties and individual dif-

erences in behavior was tested, focusing on the neural correlates of

sychosis-relevant personality traits, which have been hypothesized to

e related to self-dysfunction and network segregation ( Ebisch and Ale-

an, 2016 ; Humpston and Broome, 2020 ; Di Plinio et al., 2020a ). Sub-

linical, psychosis-relevant personality traits were evaluated, which can

e detected on a continuum in the general population below any thresh-
2 
ld of a clinical diagnosis ( McGrath et al., 2015 ). Such traits can be con-

idered critical from a clinical point of view ( Orr et al., 2014 ), as well

s from a phenomenological perspective to provide insight into the rela-

ionship between neurobiology and the sense of self ( Humpston, 2014 ).

ethods 

ynthetic networks 

Three modules in a network of 100 nodes were simulated as follows

n 10 consecutive time windows. Each node was initially assigned to a

pecific module across all the time windows (30% of the nodes were

ssigned to module A, 50% to module B, 20% to module C). Then, 40%

f the nodes were chosen at random to be fast/slow/random oscillators

15%, 15%, 10% respectively) to simulate diverse physiological proper-

ies of brain hubs. Random, slow, and fast oscillators switched between

heir module and another random module every 1, 3, and 5 layers, re-

pectively. 

Once defined the modular time-varying structure, time series were

reated as follows. First, for each time window, a prototype matrix of

ynthetic functional connections was simulated as a 100 × 100 symmet-

ic Lehmer matrix. Since in the Lehmer matrix the values of the func-

ional connections increase with proximity to the diagonal and with pro-

ressive node numbers, such matrix allows the generation of modules

ith different degrees of intrinsic connections, thus, avoiding biases re-

ated to connection strengths. A time series was simulated for each node

rom the starting correlation structure, and, for each module, the nodes’

ime series were selectively time-shifted to create modular structures. 

Within each node, the time series of 100 voxels were simulated to

imulate realistic voxels within a parcel. Initially, for each node, the

ode’s time series was assigned to each voxel within the node. Then,

wo sources of noise were simulated to represent physiologically unre-

ated noise (unstructured noise) and the "interference" of nearby biolog-

cal units in the node signal (structured noise). Unstructured noise was

imulated - for each voxel - as a random time series that was added to

he voxel signal in a weighted manner. Structured noise was simulated

y choosing a random [2 to 5] number of attractors on the external sur-

ace of the node. A random time series was simulated for each attrac-

or. Then, each voxel in the node suffered each attractor’s interference

epending on its closeness to the attractor. Finally, to mirror common

rocedures in neuroimaging, each node time series was obtained by av-

raging the time series of the voxels within it. Different weights were

onsidered for the two noises (low, medium, high) to investigate the im-

act of the signal-to-noise ratio to the module detection across the two

ethods. 

Once noisy time series were synthesized, the generalized Lou-

ain function was used to detect multilayer modules following the

ultilayer network quality function ( Mucha et al., 2010 ) imple-

ented with codes from Jeub and colleagues ( “A generalized Lou-

ain method for community detection implemented in MATLAB ”

ttp://netwiki.amath.unc.edu/GenLouvain/GenLouvain ). In the case of

he "standard" form (fixed- 𝜔 ), the optimized generalized Louvain func-

ion for the multilayer modularity was 

 = 

1 
2μ

∑
𝑖𝑗𝑙𝑟 

{(
𝐴 𝑖𝑗𝑙 − 𝑉 𝑖𝑗𝑙 𝛾

)
𝛿𝑙𝑟 + 𝜔 𝛿𝑖𝑗 

}
δ
(
𝑔 𝑖𝑙 , 𝑔 𝑗𝑟 

)
, 

here 𝑖 and 𝑗 are nodes and 𝑙 and 𝑟 are layers, so that 𝐴 𝑖𝑗𝑙 is the con-

ection between 𝑖 and 𝑗 in the layer 𝑙, 𝑉 𝑖𝑗𝑙 is the correspondent intra-

ayer null model which follows the Newman-Girvan formulation, 𝛾 is the

tructural resolution parameter indicating the weight of the null model,

he Kronecker delta functions 𝛿𝑙𝑟 and 𝛿𝑖𝑗 are 1 if their arguments are

qual ( 𝑙 = 𝑟 , 𝑖 = 𝑗) and 0 otherwise, 𝑔 𝑖𝑙 and 𝑔 𝑗𝑟 represent the community

ssignments of 𝑖 in 𝑙 and 𝑗 in 𝑟 so that the function 𝛿( 𝑔 𝑖𝑙 , 𝑔 𝑗𝑟 ) = 1 if the

wo communities are the same and 𝛿( 𝑔 , 𝑔 ) = 0 otherwise, and μ repre-

ents the total edge weight in the whole network . Finally, 𝜔 represent

he inter-layer connectional strength. 

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
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Fig. 1. Synthetic multilayer networks. (a) The matrix of synthetic node communities was generated for ten consecutive timepoints. To note, the communities were 

different at each cycle. (b) A Lehmer matrix was created. Values inside the matrix range from 0 to 1 to simulate functional connectivity among brain regions. A time 

series was generated for each of the voxels within each of the 100 nodes. Each voxel was affected by unstructured and structured noise. (c) While the unstructured 

noise was a random time series generated independently for each voxel, the structured noise was specific for each node. The subfigure depicts an example of “noisy 

attractors ” which differentially influenced node’s voxels depending on the distance. (d) For each module, nodes’ time series were selectively time-shifted to create 

modular structures. After the procedure, at each cycle, a series of 100 timeseries arranged with the desired modular structure and with controlled signal-to-noise 

ratio was produced. These time series were used as input for the calculation of functional connectivity matrices. The figure illustrates the three-modules structure. 

The same procedure was used for the five-modules structure. 
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The same function above was slightly changed for the probabilisti-

ally weighted method (PW) by including different values of inter-layer

onnection so that, instead of a fixed 𝜔 , a distribution 𝜔 𝑗𝑙𝑟 was intro-

uced. The values of such distribution were controlled using the pro-

edure described in the next subsection of the manuscript. Thus, the

ptimized generalized Louvain function in this case was 

 = 

1 
2μ

∑
𝑖𝑗𝑙𝑟 

{(
𝐴 𝑖𝑗𝑙 − 𝑉 𝑖𝑗𝑙 𝛾

)
𝛿𝑙𝑟 + 𝜔 𝑗𝑙𝑟 𝛿𝑖𝑗 

}
δ
(
𝑔 𝑖𝑙 , 𝑔 𝑗𝑟 

)
. 

The whole procedure was repeated for 100 independent cycles so

hat, in each cycle, a new modular structure was randomly created. The

hree levels of structured/unstructured noises were introduced for each

ycle. As suggested by many relevant studies, it is not only important

o test inter-layer connectional strengths, but it is also crucial to vary

he structural resolution parameter of brain networks ( Chai et al., 2016 ;

etzel et al., 2019 ; Puxeddu et al., 2019 ; Yang et al., 2021 ; Tardiff et al.,

021 ). Accordingly, we investigated a range of structural resolutions,

odular structures, and inter-layer functional weights in the estima-

ion of multilayer networks. More specifically, the structural resolution

arameter ( 𝛾) was varied between 0.5 and 2.0 with steps of 0.1. Differ-

nt values for the parameter establishing fixed cross-layer connections

fixed- 𝜔 ) were considered ([0.10 0.25 0.50 0.75 1.00]). Moreover, the

W method was also implemented without assumptions about the aver-

ge or median connectional strengths (see below). Analyses were per-

ormed using MatLab version 2019a (The MathWorks). The weighted

pproach is described in the next paragraphs. The procedure for obtain-

ng synthetic networks is schematised in Fig. 1 . To assess the indepen-

ence of the methods’ performances from the number of modules in the

etwork, the whole procedure was repeated using five modules of equal

ize (20% of the nodes assigned to each module) and ten modules of

qual size (10% of the nodes assigned to each module). 
3 
robabilistically Weighted (PW) multilayer networks 

To implement control over nodal temporal features of the network,

e introduced a matrix of probability weights W. Values in W were

ontrolled by the temporal resolution parameter 𝛽 and by the tempo-

al features of the nodes. As probability weights, values in W basically

epresent the probability of nodes to be self-connected among different

ayers of the network. Thus, with temporal multilayer networks, W is

 N by T-1 matrix in which T is the number of time windows and N is

he number of nodes in the network. By contrast, if working with task

ultilayer networks, the matrix W would be a N by K matrix in which

 represents within-node cross-condition interconnections and is calcu-

ated as K = C! In which C is the number of experimental conditions (e.g.,

n a classic two by two factorial psychology paradigm, there would be

our conditions, so that K = 4! = 24). 

To control the strength of cross-layer connections and to mirror the

eight of the null model for the structural resolution parameter, val-

es of W were defined using a probabilistic approach. Initially, a set of

evy alpha-stable distributions, Ω, was generated. Stable distributions

ely on four parameters, allowing complete control over the shape and

he scale of the distribution. Several different parameterizations exist for

he stable distribution. The implementation in the Statistics and Machine

earning Toolbox TM in MatLab uses the parameterization described by

olan (1997 , 2020 ). In this case, a random variable X has a stable dis-

ribution if its characteristic function is given by: 

 

(
𝑒 𝑖𝑡𝑋 

)
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑒𝑥𝑝 (− 𝜎𝛼|𝑡 |𝛼[ 1 + 𝑖𝛽𝑠𝑖𝑔𝑛 ( 𝑡 ) 𝑡𝑎𝑛 𝜋𝛼

2 

(
( 𝜎|𝑡 |) 1− 𝛼 − 1 

)]
+ 𝑖𝛿𝑡 𝑓𝑜𝑟 𝑎 ≠ 1 

𝑒𝑥𝑝 (− 𝜎|𝑡 |[1 + 𝑖𝛽𝑠𝑖𝑔𝑛 ( 𝑡 ) 2 
𝜋
𝑙𝑛 ( 𝜎|𝑡 |) ] + 𝑖𝛿𝑡 𝑓𝑜𝑟 𝑎 = 1 

here 𝛼 ( 0 < 2 < 𝛼) is the first shape parameter and determines the

symptotic behavior of the distribution, 𝛽 ( −1 ≤ 𝛽 ≤ 1 ) is the second

hape parameter and determines the skewness of the distribution, 𝜎
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w  
 0 < 𝜎 < ∞) is the scale parameter, and 𝛿 ( ∞ < δ < ∞) is the location

arameter. In the simplest case, with 𝛽 = 0, the distribution becomes

ymmetric and may be considered as a stretched exponential function. 

The rationale behind using stable distributions is to have reasonable

alues of (positive) cross-layer functional connections between 0.0 and

.0 which symmetrically vary with a center in 0.5, reflecting the situa-

ion in intra-layer functional connections usually derived using Pearson

orrelations. The 𝛽 parameter is particularly convenient since it allows

o regulate left-skewness and right-skewness of the distributions sym-

etrically. To reflect correlation (functional connectivity), the values

f W (probabilities) were sampled within the interval [0 1]. Thus, the

ocation parameter of the distributions, 𝜇, was set to 0.50 and the scale

arameter, 𝜎, was set to 0.75. The first shape parameter, 𝛼, was em-

irically set to 0.40 to efficiently modulate skewedness through the pa-

ameter 𝛽, while the second shape parameter, 𝛽, was modulated within

he range [-1 1] to obtain a series of distributions in which the head

nd the tails are arranged progressively in the interval [0 1]. In other

ords, a set of probability distributions ( Ω) was created in which the

atio of low vs high probabilities was controlled through the parameter

: with higher, positive values of 𝛽, the head and the fat tail of a spe-

ific distribution in Ω are located toward lower probability values (lower

robabilities of cross-layer connections); instead, with lower, negative

alues of 𝛽, the head and the fat tail of a specific distribution in Ω are

ocated toward higher probability values (higher probabilities of cross-

ayer connections). Values used for 𝛽 in this study were: [-.75 -.25 0 .25

75]. 

The distributions in Ω were used to fill values in W based on the

oherence between time intervals. More specifically, we used spectral

oherence, also known as magnitude-squared coherence ( Bowyer, 2016 ;

ohanty et al., 2020 ), across consecutive time windows of each node.

oherence estimates the consistency of amplitude and phase between

ignals across frequencies, and thus it is biologically appropriate grasp-

ng coherent signal fluctuations of a node in two adjacent time windows

or in two experimental conditions) i and j . In other words, coherence is

ppropriate to assess if two temporal fragments related to the same node

ave low or high probability to be connected – i.e., to be “self-similar ” –

etween the layers i and j . We would like to note that many other alter-

atives to the coherence, like the simple correlation, would be unsuit-

ble except in the case in which temporal segments are aligned, or time-

ocked to specific stimuli. This only occurs with task experiments using

lock-designs, with blocks of even length. Instead, coherence works in

he frequency domain and not in the time domain, and thus is valid in

ny experimental design. To have an approach which does not theoret-

cally depend on the way data was acquired is a major advantage and is

uaranteed only by using the coherence. Using this procedure, the tem-

oral resolution, 𝛽 (the 𝛽 shape parameter of the stable distributions),

egulated the probabilities of connections among adjacent time windows

n a way driven by the similarity of the node’s signals in the two con-

ecutive time intervals. The procedure for estimating probabilistically

eighted multilayer modules is illustrated in Fig. 2 . 

tatistical analyses of simulated data 

The performance of the two methods was assessed by calculating

he degree of similarity between the true simulated modular structure

nd the estimated modular structure through two commonly used in-

exes for calculating correlations across modular structures, namely

he adjusted mutual information index (AMI) and the Rand coefficient.

hese indices are commonly employed in research and indicate the per-

ormance of a modular detection (i.e., clustering) procedure when the

round truth is known ( Vinh et al., 2010 ). 

pplication on resting-state data 

The procedure described above for detecting PW multilayer net-

orks, together with the standard 𝜔 = 1 procedure was implemented also
4 
n resting-state data from a sample of 39 healthy participants (19 fe-

ales and 20 males, aged 23 ± 2; 35 right-handed and 4 left-handed)

ithout a history of psychiatric or neurological disease and contraindi-

ations for MRI scanning participated in the experiment. The experi-

ent was approved by the local ethics committee (Comitato Etico per

a Ricerca Biomedica delle province di Chieti e Pescara) and by the De-

artment of Neuroscience, Imaging and Clinical Sciences (DNISC) of the

. d’Annunzio University of Chieti-Pescara. All participants had a nor-

al or corrected-to-normal vision and provided written informed con-

ent before taking part in the study in accordance with the Declaration

f Helsinki (2013). 

esting-state data acquisition 

Each participant performed two consecutive task-free fMRI runs,

ach consisting of 376 volumes. The participants were instructed to

atch a white fixation cross on a black screen without performing a

ognitive task. Each run lasted approximately 7.5 minutes. Functional

mages were acquired using a Philips Achieva 3T scanner installed at the

nstitute for Advanced Biomedical Technologies (Gabriele d’Annunzio

niversity, Chieti-Pescara, Italy). Whole-brain functional images were

cquired with a gradient echo-planar sequence using the following pa-

ameters: repetition time (TR) = 1.2 s, echo time (TE) = 30 ms, field of

iew = 240 × 240 × 142.5 mm, flip angle = 65°, in-plane voxel size = 2.5

m 

2 , slice thickness = 2.5 mm. A high-resolution T1-weighted whole-

rain image was also acquired after functional sessions using the follow-

ng parameters: TR = 8 ms, TE = 3.7, FoV = 256 × 256 × 180 mm, flip

ngle = 8°, in-plane voxel size = 1 mm 

2 , slice thickness = 1 mm. 

esting-state data analysis 

Functional connectivity was calculated as the correlation among av-

rage parcels timeseries for a total of 418 nodes using cortical and sub-

ortical atlases from Joliot and colleagues ( Joliot et al., 2015 ) plus the

erebellar atlas from Diedrichsen and colleagues ( Diedrichsen et al.,

009 ). These atlases were chosen because of the integrative method

sed to define both cortical and subcortical parcels without lateraliza-

ion biases. The functional connectivity values, that is, the edges of the

onnectomes, were obtained using the z Fisher transform of the Pearson

orrelation among pre-processed time series and were used to create in-

ividual (subject-specific) weighted graphs. The modular architecture

as visualized using BrainNet Viewer ( www.nitrc.org/projects/bnv/ ).

e used both the PW method and the standard “fixed- 𝜔 ” implemented

o detect time-varying modular structures across 10 consecutive, non-

verlapping time windows of equal length. For consistency, the proce-

ure implemented for the analysis of multilayer networks in real data

as the same as described above for the simulations. 

We tested if brain-behavioral resting-state associations were differ-

ntially detected by the standard approach with fixed- 𝜔 and by the

W method. Thus, nodal metrics of flexibility, integration, promiscu-

ty, and recruitment ( Bassett et al., 2011 ; Papadopoulos et al., 2016 ;

elesford et al., 2017 ; Pedersen et al., 2018 ; Sizemore and Bassett, 2018 )

ere estimated for each subject using both the fixed- 𝜔 and the PW meth-

ds. The flexibility of each node corresponds to the number of times that

t changes module allegiance, normalized by the total possible number

f changes. The integration coefficient of a node is the average proba-

ility over time that it is in the same community as regions from other

ystems. The promiscuity of a node indicates the fraction of all the com-

unities in the network in which the node participates at least once.

inally, the recruitment coefficient corresponds to the average probabil-

ty that a node is in the same network community as other regions from

ts own system. A comprehensive description of the formulae for these

etrics is given in Table I . 

The behavioral variables were represented by five latent, orthog-

nal psychosis-relevant factors that have also been used in previous

orks to study the sense of self and the sense of agency ( Di Plinio

http://www.nitrc.org/projects/bnv/
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Fig. 2. Toy example with 4 nodes and 3 layers (a), illustrating the procedure for estimating probabilistically weighted cross-layer links. Temporal (biological) 

features (e.g., frequencies amplitudes) are extracted for each node, in each layer (b). The similarity of temporal features is calculated for each adjacent layer (c) 

using coherence, producing a N x L-1 matrix, where N is the number of nodes and L is the number of layers (HH = very high similarity; LL = very low similarity). 

Concurrently, a vector of N x L-1 probability weights, W, is obtained from a sample distribution for each value of 𝛽 considered in the probabilistic analysis (d). For 

example, with 𝛽 = 0.75, most links will have a value between 0.1 and 0.2 (e), and high similarities will be associated with higher values. Then, weights are assigned 

according to both the values in W and the signal similarity over time (coherence), so that cross-layer links connecting nodes with high self-similarity over time are 

higher (f). Weights can be eventually used as probabilities for the linkage to occur in binary networks (g). 

Table I 

Formulae, descriptions, and details for the four multilayer metrics investigated in the study. 

Metric Formula Description Details 

Flexibility 𝐹𝐿 𝐸 𝑖 = 
𝑚 𝑖 

𝑇−1 
How frequently a node 𝑖 changes module over time 𝑇 = number of layers 

𝑚 𝑖 = number of times 𝑖 switched community 

𝑁 = number of nodes 

𝑛 𝑠 = nodes in the community 𝑠 

𝑚 𝑖 = total number of communities in which 𝑖 participated 

𝑃 𝑖𝑗 = element 𝑖 𝑗 of the allegiance matrix 𝑃

𝐾 = total number of communities 

Integration 𝐼 𝑁 𝑇 𝑖 = 
1 

𝑁− 𝑛 𝑠 

∑
𝑗∉𝑠 
𝑃 𝑖𝑗 Average probability for the node 𝑖 to lie in the same 

community as nodes from other modules 

Promiscuity 𝑃𝑅 𝑂 𝑖 = 
𝑘 𝑖 

𝐾 
Fraction of all communities in the network in which the 

node 𝑖 participate at least once 

Recruitment 𝑅𝐸 𝐶 𝑖 = 
1 
𝑛 𝑠 

∑
𝑗∈𝑠 
𝑃 𝑖𝑗 Probability over time of a node 𝑖 to lie within the same 

community as other nodes from the same module 
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t al., 2019 , 2020a , 2020b ). We investigated the relation between dy-

amic multilayer metrics and psychosis-related personality traits with

 focus on factors related to psychotic disorders ( Asai et al., 2011 ;

allagher et al., 2016 ). These five factors were reliably (Tucker con-

ruence coefficient = 0.95) derived from a factor analysis with or-

hogonal (orthomax) rotation on a series questionnaires that were ad-

inistered to a larger sample (N = 101) including the present fMRI

ample (see Di Plinio et al., 2019 , 2020a , 2020b for the complete

actor analysis procedure) The questionnaires measured basic as well

s psychosis-relevant personality traits: the Big-Five Questionnaire
5 
BFQ short version, Soto and John, 2017 ), the tolerance of uncer-

ainty scale (IUS-12, Carleton et al., 2007 ), the Schizotypal Personal-

ty Questionnaire (SPQ, Raine et al., 1991 ), the Community Assess-

ent of Psychic Experience (CAPE, Konings et al., 2006 ), and the

tate-Trait Anxiety Inventory (STAI2, Spielberger et al., 1983 ). The

ve factors showed the highest loadings in the following subscales:

actor 1: STAI2, IUS-inhibitory, CAPE-depression, BFI-neuroticism

negative affect); factor 2: SPQ-cognitive perceptual, CAPE-positive,

APE-negative (psychosis-like experiences); factor 3: IUS-prospective,

FI-extraversion, BFI-agreeableness, BFI-openness (sociality); fac-
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Table II 

Effects for the fixed term method in the linear mixed-effects models investigat- 

ing the global performance of the PW method versus standard fixed- 𝜔 values as 

indexed by the adjusted mutual information index (AMI). The structural reso- 

lution parameter was tuned in the range [0.6 2.0]. Since the table reports the 

effect size (coefficient) for the term method (contrast: PW – fixed- 𝜔 ), it can be 

interpreted as the increase in the AMI index when using PW methods instead of 

fixed- 𝜔 methods. It is important to note that the greatest increase in performance 

coincides with the structural resolution in which the two methods are globally 

more efficient, showing a considerably better performance in the PW method. 

It can also be noticed how the effect is greater with higher levels of noise, re- 

flecting the resistance of the PW method (but not of the fixed- 𝜔 method) against 

high noise in the data. Significant effects are highlighted in bold ( ∗ : p < .05, ∗ ∗ : 

p < .01, ∗ ∗ ∗ : p < .001). 

Unstructured 

Noise 

3-modules network 5-modules network 

Structured Noise Structured Noise 

low med high low med High 

𝜸 = 0.6 low .10 .19 ∗ .20 ∗ ∗ .03 .09 ∗ .11 ∗ ∗ 

med .11 .20 ∗ .20 ∗ ∗ .04 .09 ∗ .11 ∗ ∗ 

high .12 .20 ∗ .20 ∗ ∗ .06 .10 ∗ .11 ∗ ∗ 

𝜸 = 0.8 low .14 .18 ∗ .24 ∗ ∗ ∗ .05 .10 .12 ∗ ∗ 

med .14 .18 ∗ .23 ∗ ∗ .06 .10 .12 ∗ ∗ 

high .15 .18 ∗ .24 ∗ ∗ ∗ .06 .10 ∗ .13 ∗ ∗ 

𝜸 = 1.0 low .18 ∗ .20 ∗ ∗ ∗ .21 ∗ ∗ ∗ .06 .09 ∗ .13 ∗ ∗ ∗ 

med .18 ∗ .18 ∗ ∗ ∗ .21 ∗ ∗ ∗ .06 .09 ∗ .14 ∗ ∗ ∗ 

high .19 ∗ .20 ∗ ∗ ∗ .21 ∗ ∗ ∗ .06 .09 ∗ .14 ∗ ∗ ∗ 

𝜸 = 1.2 low .15 ∗ ∗ .17 ∗ ∗ ∗ .15 ∗ ∗ ∗ .07 ∗ .11 ∗ ∗ ∗ .13 ∗ ∗ ∗ 

med .16 ∗ ∗ .18 ∗ ∗ ∗ .16 ∗ ∗ ∗ .07 ∗ .11 ∗ ∗ .13 ∗ ∗ ∗ 

high .15 ∗ ∗ .17 ∗ ∗ ∗ .16 ∗ ∗ ∗ .08 ∗ .12 ∗ ∗ ∗ .13 ∗ ∗ ∗ 

𝜸 = 1.4 low .14 ∗ ∗ ∗ .12 ∗ ∗ ∗ .09 ∗ ∗ ∗ .08 ∗ ∗ .12 ∗ ∗ ∗ .13 ∗ ∗ ∗ 

med .14 ∗ ∗ ∗ .12 ∗ ∗ ∗ .09 ∗ ∗ ∗ .09 ∗ ∗ .12 ∗ ∗ ∗ .13 ∗ ∗ ∗ 

high .13 ∗ ∗ ∗ .11 ∗ ∗ ∗ .09 ∗ ∗ ∗ .09 ∗ ∗ .12 ∗ ∗ ∗ .13 ∗ ∗ ∗ 

𝜸 = 1.6 low .08 ∗ ∗ ∗ .05 ∗ ∗ ∗ .04 ∗ ∗ ∗ .09 ∗ ∗ ∗ .11 ∗ ∗ ∗ .12 ∗ ∗ ∗ 

med .08 ∗ ∗ ∗ .05 ∗ ∗ ∗ .04 ∗ ∗ ∗ .10 ∗ ∗ ∗ .12 ∗ ∗ ∗ .12 ∗ ∗ ∗ 

high .08 ∗ ∗ ∗ .05 ∗ ∗ ∗ .04 ∗ ∗ ∗ .10 ∗ ∗ ∗ .12 ∗ ∗ ∗ .12 ∗ ∗ ∗ 

𝜸 = 1.8 low .04 ∗ ∗ ∗ .03 ∗ ∗ ∗ .03 ∗ ∗ ∗ .09 ∗ ∗ ∗ .10 ∗ ∗ ∗ .09 ∗ ∗ ∗ 

med .04 ∗ ∗ ∗ .03 ∗ ∗ ∗ .03 ∗ ∗ ∗ .10 ∗ ∗ ∗ .10 ∗ ∗ ∗ .09 ∗ ∗ ∗ 

high .03 ∗ ∗ ∗ .03 ∗ ∗ ∗ .02 ∗ ∗ ∗ .10 ∗ ∗ ∗ .10 ∗ ∗ ∗ .08 ∗ ∗ ∗ 

𝜸 = 2.0 low .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .09 ∗ ∗ ∗ .07 ∗ ∗ ∗ .06 ∗ ∗ ∗ 

med .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .08 ∗ ∗ ∗ .07 ∗ ∗ ∗ .07 ∗ ∗ ∗ 

high .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .02 ∗ ∗ ∗ .08 ∗ ∗ ∗ .07 ∗ ∗ ∗ .06 ∗ ∗ ∗ 
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or 4: SPQ-interpersonal, SPQ-disorganizational (schizotypal); factor

: BFI-conscientiousness. 

tatistical analyses of real data 

Brain-behavioral relationships were investigated using whole brain,

nivariate mixed-effects models in which the five psychometric factor

cores were used as continuous predictors for each multilayer metric of

nterest; random intercepts and slopes were added at the individual node

evel to allow for ROI-specific weighting of brain-behavior correlations;

andom intercepts were added at the subject level. To properly assess

eaningful brain-behavior correlations, we implemented a cross- 𝛾 com-

rehensive regression model by using 𝛾 as a further random grouping

actor. For this analysis, 𝛾 was varied in the interval [0.6 1.5] with steps

f 0.1. A separate model was built for each method (fixed- 𝜔 , PW) and

or each parameter value used for detecting multilayer networks and

elated theoretical measures. Major nodal contributions in the brain-

ehavior associations were detected using best linear unbiased predic-

ors (BLUPs) to generate nodal conditional expectation (ICE) plots and

o highlight nodes with the highest contribution. 

esults 

imulations 

The PW method outperformed the fixed- 𝜔 method by far as demon-

trated by differences in the indices used to measure the correspondence

etween true modular structures and reconstructed modules (i.e., ad-

usted mutual information and Rand coefficient). The PW method out-

erformed the standard method with every noise combination and in-

ependently of the structural resolution parameter 𝛾. 

Regarding the three-modules structure, as shown in Fig. 3 a, the ef-

ect of the term method in the models was significant across structured

nd unstructured noise. The effect also tended to be stronger (larger

ffect size) for increasing levels of noise showing that the PW method

s less affected by noise in the data. Furthermore, as shown in Fig. 3 b,

he standard method does not efficiently detect oscillator regions with

igh fixed- 𝜔 values (e.g., 𝜔 = 1.0); on the other hand, it fails to detect a

odule’s stability with low fixed- 𝜔 values (e.g., 𝜔 = 0.1). 

The same results were obtained with the five-modules structure. Also

n this case, the performance of the PW method was better than the

erformance of the standard fixed- 𝜔 method ( Fig. 4 a). Moreover, also

n this case the PW method was more resistant to increasing levels of

oise. Similar to results for the three-modules structure, the standard

ethod did not efficiently detect oscillator regions with high fixed- 𝜔

alues and failed to detect module’s stability with low fixed- 𝜔 values

 Fig. 4 b). 

A comprehensive list of cross- 𝛾 results is provided in Table II , which

eports significance levels and effect sizes (estimates) for the factor

ethod across the various simulations in the study. Results for the Rand

oefficient are shown in supplementary Figure S1 and in Table SI and

II, which also show results of a control analyses using a 10-modules

etwork structure. 

As expected, results from our simulations indicated that the PW mul-

ilayer networks outperformed by far the standard fixed- 𝜔 method in

etecting true synthetic multilayer networks. The performance achieved

ith PW multilayer networks on synthetic data was better across struc-

ural resolutions and with every teste combination of structured and

nstructured noise. Moreover, this better performance using the PW

ethod was permanent using both the three-module and the five-

odule multilayer structures. 

eal data 

Two significant associations were detected through the analysis of

ultilayer measures and latent behavioral dimensions. The first one
6 
as a positive association between nodal flexibility and factor 2 (F2,

sychosis-like experiences). This association was detected by using the

tandard fixed- 𝜔 approach as well as by using PW multilayer modelling.

owever, the results were not significant for the fixed 𝜔 approach with

 = 1 ( Fig. 5 a). The analysis of random effects and of individual condi-

ional expectation (ICE) plots showed a consistent heterogeneity of re-

ults across nodes ( Fig. 5 b). Nodes with the most prominent effects were

ocated in medial prefrontal, posterior cingulate, and anterior temporal

ortices usually ascribed to the default mode network ( Fig. 5 c). 

The second significant effect concerned a negative association be-

ween nodal recruitment and factor 2. The effect was detected with both

he standard fixed- 𝜔 method and the PW multilayer networks ( Fig. 5 d).

lso in this case, there was a high degree of heterogeneity of effect sizes

cross brain regions ( Fig. 5 e) and nodes primarily involved were located

n anterior prefrontal, posterior cingulate, and anterior temporal regions

f the default mode network ( Fig. 5 f). 

No significant results were observed regarding promiscuity or in-

egrity. 

iscussion 

The primary aim of this study was to test the performance of the

robabilistically weighted (PW) method for detecting cross-layer com-

unities. We implemented this method both in synthetic, perturbated

ime series of a network and in real data from resting-state fMRI. When

pplied to synthetic data, the PW method outperformed the standard

ethod and was less affected by increasing noise levels in the time se-
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Fig. 3. Results from simulated data with a three-modules structure. (a) The PW method (red) outperformed the standard fixed- 𝜔 method (blue) as shown by box 

plot reporting increased adjusted mutual information (AMI). The effect size (ES) for the term method in the mixed-effects model indicates, for each combination of 

noise levels, a performance increase of the PW method in contrast to the fixed- 𝜔 method. Significance levels are indicated by the asterisks ( ∗ ∗ ∗ : p < .001, ∗ ∗ : p < .01, 
∗ : p < .05). (b) Differential community detection for medium noise levels. It is possible to appreciate that the standard method does not efficiently detect oscillator 

regions with high fixed- 𝜔 values (e.g., 𝜔 = 1.0); on the other hand, it fails to detect module’s stability with low fixed- 𝜔 values (e.g., 𝜔 = 0.1). To note, results reported 

here are for 𝛾= 1.0. For a comprehensive list of cross- 𝛾 effects, see Table II . 
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ies. The better performance of the PW method was confirmed using

he adjusted mutual information index and the Rand coefficient. More-

ver, a better performance was found for the PW method using modular

tructures with an increasing number of modules. Importantly, standard

xed- 𝜔 approaches did not efficiently detect oscillator regions with high

xed- 𝜔 values (e.g., 𝜔 = 1.0) and failed to detect modular stability with

ow fixed- 𝜔 values (e.g., 𝜔 = 0.1). 

The improvement in accuracy brought by our PW method was con-

istent across different structural resolution ( 𝛾) values. These results are

he direct consequence of a reduced bias of selection with respect to the

trength of cross-layer intra-nodal connections in the PW method. When

pplied to real data, the PW method was able to identify significant as-

ociations of two dynamic metrics, namely flexibility and recruitment,

ith behavioral measures. We postulate that probabilistically weighted
7 
ultilayer networks are desirable for implementation in future studies

nd should replace the standard, biased fixed- 𝜔 method. 

To note, the method presented in this paper is intrinsically devel-

ped, and thus more suitable, for weighted networks. However, it can

lso be applied to binarized graphs since the intra-nodal weights can be

irectly transformed in a stochastic binary connection value. Of course,

inarizing cross-layer connections makes sense in a framework in which

lso intra-layer functional connectivity is binarized. However, the focus

f the present study is not on binarized versus weighted procedures for

etwork analysis. 

The results on real resting-state fMRI data also deserve further dis-

ussion. Flexibility indicates how frequently a node changes module al-

egiance over time. Instead, recruitment indicates the probability of a

ode to belong to the same community as other nodes from its own sys-
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Fig. 4. Results from simulated data with a five-modules structure. (a) The PW method (red) outperformed the standard fixed- 𝜔 method (blue) as shown by box 

plots reporting increased adjusted mutual information (AMI). The effect size (ES) for the term method in the mixed-effects model indicates, for each combination of 

noise levels, a performance increase of the PW method in contrast to the fixed- 𝜔 method. Significance levels are indicated by the asterisks ( ∗ ∗ ∗ : p < .001, ∗ ∗ : p < .01, ∗ : 

p < .05). (b) Differential community detection for medium noise levels. As in Fig. 3 b, it is possible to appreciate that the standard method does not efficiently detect 

oscillator regions with high fixed- 𝜔 values (e.g., 𝜔 = 1.0); on the other hand, it fails to detect module’s stability with low fixed- 𝜔 values (e.g., 𝜔 = 0.1). To note, results 

reported here are for 𝛾= 1.0. For a comprehensive list of cross- 𝛾 effects, see Table II . 
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n  
em. Thus, our results indicate that a decreased stability of nodes within

he DMN correspond to higher levels of psychosis-like experiences (F2)

n healthy adults. These findings are in line with the role of the frag-

entation of the DMN in the predisposition toward psychopathology

nvolving psychosis and dysfunctional behavior ( Braun et al., 2016 ;

u et al., 2017 ; Hua et al., 2019 ; Fan et al., 2019 ). Moreover, higher

exibility and less stable modular organization have already been

hown in patients with schizophrenia ( Braun et al., 2015 ; Gifford et al.,

020 ), whereas higher switching has been associated with impaired

leep and decreased behavioral performances ( Thompson et al., 2018 ;

edersen et al., 2018 ). In this framework, our findings also fit with DMN-

pecific network aberrancies observed in patients with psychotic disor-

ers ( Ebisch and Aleman, 2016 ; Du et al., 2018 ; Di Plinio et al., 2020a ;

umpston and Broome, 2020 ), which also have genetic underpinnings
8 
 Scariati et al., 2014 ). We contribute to this framework by showing for

he first time an association between nodal instability within the DMN

especially in medial prefrontal and in posterior cingulate cortices) and

sychosis-like experiences in a sample of healthy individuals. We re-

ark that these findings were possible due to the implementation of

he PW method here presented. Considering that an aberrant degree of

sychosis-like experiences may imply difficulties in social interactions

 De Bézenac et al., 2015 ) and eventually impaired social functioning

 Nelson et al., 2012 ), future studies are needed to assess how the de-

reased stability of self-networks (DMN) may predispose toward clinical

elf-disturbances in healthy populations ( Nelson et al., 2012 ; Orr et al.,

014 ; Humpston et al., 2014 ; McGrath et al., 2015 ). 

When constructing and analyzing brain activity and functional con-

ectivity, ground truths are rare and unstable. However, advances in
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Fig. 5. Significant associations between the behavioral factor F2 (psychosis-like experiences) and flexibility (left column) or recruitment (right column). (a) Flexibility 

was associated with F2 across all the investigated values of 𝛽 (lower row, red). The association was significant also with four out of five of the fixed- 𝜔 values (higher 

row, blue) but not with 𝜔 = 1.0. Significance is indicated by the asterisks ( ∗ ∗ ∗ : p < .001, ∗ ∗ : p < .01, ∗ : p < .05), whereas the bars without asterisks represent results not 

significant after correction for multiple comparisons. (b) Individual conditional expectation (ICE) plot representing predictions for flexibility in each brain node with 

varying levels of psychosis-like experiences (F2). (c) Brain topography of the association between flexibility and F2. Only nodes for which the slope was significantly 

higher than the average are represented. Colour intensity indicates the strength of the effect size. The subfigures (d-e-f) illustrate the corresponding results for the 

metric recruitment. For simplicity, only results according to 𝛾= 1.0 and to the PW multilayer networks obtained with 𝛽= .25 are shown in subfigures b, c, e, and f. 
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he understanding of dynamic brain networks point toward the exis-

ence of multi-scale entities in the brain architecture ( Hutchinson et al.,

013 ; Boccaletti et al., 2014 ; Kivela et al., 2014 ; Braun et al., 2015 ;

elesford et al., 2016 ; De Domenico et al., 2017 ; Betzel and Bas-

ett, 2017 ; Zheng et al., 2018 ; Thompson et al., 2018 ; Betzel et al.,

019 ; Gifford et al., 2020 ; Yang et al., 2021 ; Tardiff et al., 2021 ).

hese advances followed recent developments in network science

 Newman, 2003 ; Rubinov and Sporns, 2010 ; Bassett and Sporns, 2017 ),

nd generally indicate the necessity to implement unbiased methods

or detecting communities ( Newman and Girvan, 2004 ; Porter et al.,

009 ; Fortunato, 2010 ; Lancichinetti et al., 2011 ; Fenn et al., 2012 ;

porns and Betzel, 2016 ; Fortunato and Hric, 2016 ), possibly con-

rolling for multiple stochasticity in the community organization, like
9 
n multi-resolution approaches ( Rubinov et al., 2015 ; Chai et al.,

016 ; Puxeddu et al., 2019 ; Di Plinio et al., 2020a ; Malagruski et al.,

020 ). In fact, the choice of the resolution parameter 𝛾 is important

ince it regulates the number and size of communities in a network

 Lancichinetti and Fortunato, 2009 , 2012; Betzel and Bassett, 2017 ).

owever, in multilayer networks, the weight of intra-nodal (cross-layer)

inks become crucial if we are interested in temporal features of the

etwork such as flexibility, recruitment, or promiscuity ( Bassett et al.,

011 ; Papadopouolos et al., 2016 ; Telesford et al., 2017 ; Pedersen et al.,

018 ). The implementation of PW multilayer networks allows an unbi-

sed approach to the study of brain networks through multiple tempo-

al resolutions and without a-priori guessing the strength of cross-layer

onnections. 
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Concluding, we introduce a probabilistic, biologically driven ap-

roach for the unbiased selection of cross-layer weights in multi-

ayer networks. Our study does not only propose a way of optimizing

ross-layer functional connections for accurate modular detection, but

lso renovate the theoretical conception of multilayer brain networks,

avouring the shift toward a probabilistic and biologically-sound transla-

ion of timelines to modules. Probabilistic multilayer networks allow the

roper study of multiple temporal resolutions, represented by multiple

hape ( 𝛽) values in the distribution of intra-node connection weights.

he PW method performs optimally despite modulations of 𝛽 (proba-

ilistic weights), indicating that it can model a plurality of multilayer

etworks without suffering from the biases previously described from

xed- 𝜔 approaches. Furthermore, it investigates multiple temporal reso-

utions in multilayer networks that are biologically grounded since they

re assigned based on the coherence across time windows, paralleling

he actual unbiased approach commonly employed for spatial resolution

 𝛾). Coherence allows measuring the self-similarity of temporal frag-

ents related to the same node and is suitable for both temporal and

onditional multilayer networks. Working in the frequency domain and

ot in the time domain, coherence is valid in any experimental design.

owever, for coherence to be applied legitimately, it is important for

he time series to have sufficient time points per layer. 

Many studies suggested procedures to “optimize ” the selection of

alues such as the structural resolution and the weight of cross-layer

onnections. However, selecting a-priori parametrizations guided by

rbitrary optimizations may influence the interpretation of multilayer

ommunities detection. Although optimization strategies may help to

educe the complexity of the results, they are not realistic since the

round truth is inevitably complex when we study brain functioning.

n fact, the brain probably works at multiple spatial (cross- 𝛾) and tem-

oral (cross- 𝛽/ 𝜔 ) scales simultaneously ( Friston, 2009 ; Betzel and Bas-

ett, 2017 ; Yuan et al., 2018 ; Ramstead et al., 2019; Xu et al., 2021 ;

anchez-Rodriguez et al., 2021 ). Thus, we suggest relying on the anal-

sis of multiple 𝛾 and 𝛽 parameters to favour unbiased research. The

igher performance achieved by the PW method, together with the de-

ected significant associations with psychotic-like experiences, moves

owards an unbiased approach in the study of dynamic brain function-

ng as well as its behavioral and cognitive correlates. 
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