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Abstract
Background Case-reports/series and cohorts of Guillain–Barré syndrome (GBS) associated with COVID-19 vaccination 
have been reported.
Methods A systematic review and meta-analysis of cohort studies of GBS after COVID-19 vaccination was carried out. 
Incidence and incidence rate ratio for a number of vaccine doses and risk of GBS, also considering the specific vaccine 
technology, were calculated in a random-effects model.
Results Of 554 citations retrieved, 518 were discarded as irrelevant. We finally included 15 studies. The random effect model 
yielded, regardless of the vaccine technology, 1.25 (95%CI 0.21; 2.83) GBS cases per million of COVID-19 vaccine doses, 
3.93 (2.54; 5.54) cases per million doses for adenovirus-vectored vaccines and 0.69 (0.38; 1.06) cases per million doses for 
mRNA vaccines. The GBS risk was 2.6 times increased with the first dose. Regardless of the vaccine technology, the GBS risk 
was not increased but disaggregating the data it was 2.37 (1.67; 3.36) times increased for adenovirus-vectored vaccines and 
0.32 (0.23; 0.47) for mRNA vaccines. Mortality for GBS after vaccination was 0.10 per million doses and 4.6 per GBS cases.
Conclusions Adenovirus-vectored vaccines showed a 2.4 times increased risk of GBS that was about seven times higher 
compared with mRNA-based vaccines. The decreased GBS risk associated with mRNA vaccines was possibly due to an 
elicited reduction of infections, including SARS-CoV-2, associated with GBS during the vaccination period. How adenovirus-
vectored COVID-19 vaccines may trigger GBS is unclear and further studies should investigate the relationship between 
vaccine technologies and GBS risk.
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Introduction

Guillain–Barré syndrome (GBS), a rare but potentially 
fatal disorder, is thought to be an autoimmune, post-
infective polyradiculoneuropathy and is the most com-
mon cause of acute flaccid paralysis with an overall annual 
incidence of 1.1–1.8 cases per 100,000 [1, 2]. The GBS 
eponym is an umbrella term including a number of related 
autoimmune neuropathies including the GBS and Miller 
Fisher syndrome (MFS) variants with their subtypes [3]. 
In about two-thirds of patients, a gastrointestinal or res-
piratory infection precedes, within six weeks, the onset 
of GBS [1]. GBS has been also possibly associated with 
several vaccines and an excess of GBS cases was detected 
in the United States during the 1976/1977 “swine flu” 
(H1N1) vaccination campaign [4]. Epidemiological analy-
ses showed that the rate of GBS attributable to the vaccine 
was approximately 4.9–5.9 per million vaccinations and 
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greater from 14 to 28 days post-vaccination, with a 7.3-
fold increase in the risk of developing GBS [4, 5]. Since 
then, several studies have assessed the risk of GBS follow-
ing influenza vaccines with only two studies suggesting 
approximately one additional GBS case per one million 
vaccinations [6, 7]. An increased risk of GBS (3 excess 
cases per million of doses) has been also reported follow-
ing the administration of the recombinant zoster vaccine 
[8]. No other vaccines have been convincingly linked to 
GBS [9].

Several vaccines against COVID-19 pathology, includ-
ing the adenovirus-vectored Vaxzevria and the mRNA 
vaccine Comirnaty, have been approved for use in many 
countries since December 2020 and have been shown to 
reduce SARS-CoV-2 infections, viral transmission, patient 
hospitalizations and deaths in randomized controlled trials 
and real-world effectiveness studies [10–12]. However, the 
clinical trials were underpowered to detect rare adverse 
events such as GBS [11].

Soon after the start of large-scale vaccine programs, 
single cases and small series of GBS following vaccination 
with Vaxzevria were reported. In July 2021, both the FDA 
and the European Medicines Agency issued warnings of 
an increased GBS risk after adenovirus-vectored vaccines 
[13, 14]. In a UK-based cohort study, excess cases of GBS 
per one million people receiving Vaxzevria varied from 
2.3 to 2.9 [15]. On May 2023 the WHO declared the end of 
the SARS-CoV-2 public health emergency of international 
with a total of 13.42 billion vaccine doses administered 
worldwide [16]. The aim of this meta-analysis is to reap-
praise, two years after the introduction of vaccines, the 
epidemiological data regarding the association between 
COVID-19 vaccination and GBS.

Methods and materials

Study design, search strategy and inclusion criteria

An author (SC) performed a systematic search on all stud-
ies published from 1 January 2020 to 19 April 2023 via 
PubMed-MEDLINE. The search terms used are reported 
in Fig. 1. All available peer-reviewed papers published in 
English, French, Italian, and Spanish were included. Let-
ters, and commentaries that reported original data were also 
included. The reference lists of all relevant articles were 
also examined. No restriction on population gender, ethnic-
ity, age, and medical history was applied. For missing or 
unclear information, we obtained further data consulting the 
original authors. List of included vaccines is available in 
the supplementary materials (SM) (Table S3). When more 
cohorts from the same area were present, we included the 
one with the more numerous population sample for each 
type of vaccine.

The inclusion criteria were: COVID-19 vaccination; diag-
nosis of GBS, MFS and their subtypes according to a clinical 
classification [3]; occurrence of GBS within 42 days after 
vaccination [17]; hospitalized patients. Diagnostic criteria 
adopted in each included study are summarized in SM.

Quality assessment and publication bias

This study was registered in the International Prospective 
Register of Ongoing Systematic Reviews (PROSPERO) in 
2023 (CRD42023433398) and was conducted complying 
with the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses guidelines [18]. Eligible cohort studies 
were assessed for quality and risk of bias through the New-
castle–Ottawa Scale [19].

Fig. 1  Flowchart of studies 
selection and search terms used
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Statistical analysis

All analyses were performed using Microsoft Office and R 
software version 4.1.0. Packages utilised are detailed in the 
Supplementary Material [20].

For the study of GBS incidence following vaccination 
we adopted both Freeman-Tukey Transformation (FTT) and 
General Linear Mixed Model (GLMM). Average effects 
for the outcomes and 95% confidence interval (CI) were 
obtained using a random–effect model. We adopted both 
methods since conflicting opinions persist on which is the 
optimal method for meta-analysis of rare events [21]. We 
adopted the Mantel–Haenszel (MH) method in a random-
effects model for calculating the Risk Ratio (RR) between 
observed and expected GBS cases after vaccination. Propor-
tion of total variability due to between-study heterogeneity 
was estimated by Cochrane Q  Chi2 statistics and I2 statistics 
[22]. Since our analysis dealt with rare events, we did not set 
a cut-off for homogeneity for Cochrane Q  Chi2 test p-value 
and/or for I2 statistics. I2 represents what proportion of the 
observed variance is attributed to the variance in true effects 
rather than to sampling error. For a qualitative interpretation, 
I2 values lower than 30% were considered to represent low 
variability due to between-study heterogeneity, while values 
higher than 75% indicated considerably high variability [20]. 
The Knapp–Hartung adjustment was applied to the calcu-
lation of confidence intervals when more than five studies 
were available, while Paule–Mandel estimator was used to 
calculate  tau2. Prediction intervals were based on t-distri-
bution [22] and were calculated when more than six studies 
were available, acknowledging that the statistical accuracy of 
prediction intervals is inflated when dealing with rare events 
[23]. We built forest plots for each meta-analysis endpoint 
and then assessed for the presence of small-study effects and 
possible publication bias using Egger’s and Peters’ method 
for assessment of funnel plot asymmetry when more than 10 
studies were available [24]. Wherever appropriate, we con-
ducted an influence analysis and plotted the results. Outlier 
analysis was also implemented (studies with low standard 
error that still deviate substantially from the pooled effect 
are classified as outliers) [20].

For incidence analyses, we reported only the FTT out-
comes in the main text; GLMM results and more detailed 
presentation of the meta-analyses is reported in "Methods 
and materials" section of in the supplementary information 
(SI).

Results

Figure 1 is the flowchart of the systematic review. A total of 
554 references were identified, of which 518, after reviewing 
the title and the abstract, were discarded as not pertinent.

Of 36 potentially relevant papers, we excluded 21 papers 
for the following reasons: uncertainty whether GBS was 
related to COVID-19 disease or vaccination (n = 1), GBS 
not related to a vaccine (n = 2), not sufficient data (n = 2), 
missing data on total COVID-19 vaccine doses (n = 7), pos-
sible overlapping patients (n = 9).

Overall, 15 studies were included [25–39]. The meta-
analysis only deals with adeno-vectored and mRNA vac-
cines since very few data are available for other vaccine 
technologies.

GBS incidence per COVID‑19 vaccine doses 
administered regardless of the vaccine technology

We included 17 cohorts from 13 studies, collecting 1450 
GBS cases over a total of 1,058,927,070 administered vac-
cine doses. The random-effects model yielded 1.25 GBS 
cases per million vaccine doses (95%CI 0.21; 2.83) (Fig. 2). 
The prediction interval yielded a range of 0 to 9.6 cases per 
million vaccine doses. Regional subgroup analyses showed 
for Asian countries 1.53 GBS cases per million vaccine 
doses (95%CI 0.00; 11.08), and for European countries 1.81 
GBS cases per million vaccine doses (95%CI 1.08; 2.71) 
(SI).

Risk ratio after first and second vaccination dose

We included five cohorts in the analysis of risk between 
GBS cases after the first and second doses of COVID-19 
vaccination. We excluded vaccines that required only one 
vaccine dose (e.g., Jcovden). The MH method yielded an 
RR of 2.60 (95%CI 0.42, 15.92) for the first dose (Fig. 3).

GBS incidence per COVID‑19 vaccine technology

For adenoviral-vectored vaccines, we included 11 cohorts 
from 7 studies, collecting 806 GBS cases over a total of 
127,355,745 vaccine doses. The random-effect model 
yielded 3.93 (95%CI 2.54; 5.54) GBS cases per million 
doses of adenovirus-based COVID-19 vaccine (Fig. 4A). 
More specifically, for Vaxzevria the random-effect model 
proportion was 2.23 GBS cases every million doses (95%CI 
0.00, 7.88). For Jcovden the random-effect model propor-
tion was 6.63 for every million doses (95%CI 4.75, 8.80) 
(SI, Section 2).

For mRNA vaccines, we included 14 cohorts from 8 stud-
ies, collecting 534 GBS cases over a total of 823,793,743 
vaccine doses. The random-effect model proportion yielded 
0.69 (95%CI 0.38; 1.06) GBS cases per million doses of 
mRNA-based COVID-19 vaccine with a prediction interval 
from 0.00 to 2.18 (Fig. 4B).

Specifically, for Comirnaty the random-effect model pro-
portion was 0.64 GBS cases every million doses (95%CI 
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0.12, 1.45), and for Spikevax the random-effect model 
proportion was 0.66 every million doses (95%CI 0.27, 
1.21) with a prediction interval between 0.0 and 2.6 (SI, 
Section 2).

Risk ratio between observed and expected GBS 
cases after COVID‑19 vaccination

We included 15 cohorts from 5 studies in the analysis of risk 
between observed and expected GBS cases after COVID-
19 vaccination regardless of the vaccine employed. The 
quantification method for expected cases for each study is 
summarised in SI. We identified 1690 observed and 2190 
expected GBS cases over a total of 706,234,418 vaccine 
doses. The MH method yielded an RR of 1.09 (95%CI 0.68; 
0.90) (Fig. 5).

Regarding GBS after adenovirus-based vaccination, 
we included ten cohorts from 5 studies. The MH method 
yielded an RR of 2.37 (95%CI 1.67, 3.36) (Fig. 6A). For 

GBS after mRNA-based vaccination, we included nine 
cohorts. The MH method yielded an RR of 0.32 (95%CI 
0.23, 0.47) (Fig. 6B).

GBS mortality per COVID‑19 vaccine doses 
administered and among GBS cases

We included six cohort studies in the analysis of mortality 
among people who developed GBS after being vaccinated 
against COVID-19 regardless of the vaccine technology. 
We identified 28 deaths in 524 GBS cases for a total of 
696,978,860 vaccine doses. The random-effect model pro-
portion yielded 0.10 deaths with GBS per million doses of 
COVID-19 vaccine (95%CI 0.00; 0.75) (Fig. 7A). Consid-
ering the mortality among GBS the random-effect model 
proportion yielded 4.6 deaths for every 100 GBS cases 
after COVID-19 vaccination (95%CI 1.23, 5.45) (Fig. 7B).

Fig. 2  Forest plot of GBS incidence with respect to COVID-19 vaccine doses administered regardless of the vaccine technology. Events: number 
of GBS cases; Total: number of vaccine doses

Fig. 3  Forest plot about risk ratio between GBS cases linked to first and second doses of COVID-19 vaccine. Events: number of GBS cases; 
Total: number vaccine doses
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Assessment of study quality, publication bias, 
heterogeneity, and sensitivity analyses

The overall quality of the included studies was deemed 
high (SI, Table S2). Assessment of funnel plot asymmetry 
with visual inspection and Egger’s and Peter’s test showed 
potential asymmetry for the following analyses: all vaccine 
technologies and adenoviral-vectored incidence, risk ratio 
between observed and expected for all vaccine technolo-
gies. Both FTT and GLMM methods showed similar results, 
with GLMM giving greater asymmetry in funnel plots and 
slightly wider prediction intervals (SI, Section 2). Leave-
one-out sensitivity analysis was performed for some analyses 
(SI, Section 2). No single study significantly affected the 
computed effect size for each outcome, as shown by influ-
ence analysis and outlier remotion (SI, Section 2). Baujat 
plots were also produced when feasible to elucidate the 

contribution of a single study to the overall random-effect 
model heterogeneity (SI, Section 2).

Discussion

This meta-analysis showed, regardless of the vaccine tech-
nology, a rate of 1.25 GBS cases per million of COVID-
19 vaccine doses. However, the GBS rate for adenovirus-
vectored vaccines was five times higher than for mRNA 
vaccines.

Overall COVID-19 vaccination was not associated with 
an increased risk of GBS but, disaggregating the data, the 
GBS risk with adenovirus-vectored vaccines (regardless 
of whether the vector was simian or human) was 2.4 times 
increased and about seven times higher compared with 
mRNA vaccines.

Fig. 4  Forest plot of GBS incidence with respect to A adenoviral-
vectored COVID-19 vaccine doses administered, and B with respect 
to mRNA-based COVID-19 vaccine doses administered. Events: 

number of GBS cases; Total: number of A adenoviral-vectored or B 
mRNA-based vaccine doses
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The increased GBS risk with adenovirus-vectored vac-
cines is not easily explainable. An antecedent adenovirus 
infection was found to be not more frequent in GBS cases 

than in controls [40]. Adenoviruses, commonly used to 
deliver vaccination antigens to the host, are thought to be 
safe and only a single observational study suggested a link 

Fig. 5  Forest plots of risk ratio between observed and expected GBS 
linked to COVID-19 vaccine doses administered regardless the vac-
cine technology; B with respect to vector-based vaccines; C with 
respect to mRNA vaccines. For vaccinated, Events: number of GBS 

cases; Total: number of vaccine doses. For expected, Events: number 
of expected GBS cases; Total: number of subjects in the population 
considered. AdV: adenoviral-vectored vaccines

Fig. 6  Forest plot about risk ratio between GBS cases linked to 
COVID-19 vaccine doses administered; A with respect to adenoviral-
vectored vaccines; B with respect to mRNA vaccines. For vaccinated, 

Events: number of GBS cases; Total: number of vaccine doses. For 
expected, Events: number of expected GBS cases; Total: number of 
subjects in the population considered
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between adenovirus oral vaccination and GBS in a military 
population [41]. However, 10 out of the 12 GBS-reported 
cases had also a preceding upper respiratory infection, as a 
possible GBS trigger, and received multiple vaccines mak-
ing the association unlikely. Adenovirus-vectored vaccines 
contain the SARS-CoV-2 gene to codify the spike protein, 
but the reduced GBS risk associated with mRNA vaccines, 
which also codify the spike protein, makes unlikely that the 
spike protein is the causative factor for the increased GBS 
risk. A non-specific immune activation in susceptible indi-
viduals can be hypothesized but, if this is the case, it should 
occur with all adenovirus-vectored vaccines.

Regarding the reduced GBS risk with the mRNA vac-
cines, it should be underlined that the SARS-CoV-2 pan-
demic was characterized by unique and drastic public health 
measures that, by reducing the circulation of infective agents 
known to trigger GBS, likely decreased the background risk 
of GBS. Indeed, most respiratory and common gastrointes-
tinal infections, including C. jejuni, decreased significantly 
in incidence during the pandemic [42, 43]. On the other 
hand, SARS-CoV-2 infection has been associated in some 
countries with a higher GBS risk during the early pandemic 
period and in European cohorts, during the first pandemic 
wave, the pooled rate of GBS with SARS-CoV-2 infection 
was 61.3% of the total [44, 45]. A recent study from Israel 

confirms that GBS risk after Comirnaty vaccine was about 
15 times reduced compared with the risk after SARS-CoV-2 
infection [46]. These observations suggest that the reduced 
GBS risk associated with mRNA vaccines represents prob-
ably the background GBS risk due to the combined effect of 
health measures and vaccination.

Our meta-analysis shows that the occurrence of GBS 
is more than twice as frequent after the first vaccine dose 
compared to the second one, confirming previous findings 
[39]. This may be explained by an individual susceptibil-
ity triggering GBS with the very first dose and because 
patients experiencing serious adverse effects from the first 
dose might have preferred not to undergo the second one. 
Interestingly, only one patient experiencing GBS after both 
the first and the second dose of Vaxzevria was reported in 
the UK [39]. The mortality rate in GBS after COVID-19 
vaccination is about 5%, which is in line with the previously 
reported range (3–10%) [1].

Conclusions

This meta-analysis confirms an increased, although overall 
low, risk of GBS following adenovirus-vectored COVID-
19 vaccines. The incidence of GBS cases per million 

Fig. 7  Forest plots of GBS mortality after COVID-19 vaccination. A with respect to administered doses; B with respect to GBS cases after vac-
cination. Events: number of deaths; Total: number of total COVID-19 vaccine doses (A) and GBS cases (B)
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vaccinations is lower than the estimated incidence for the 
1976/1977 “swine flu” vaccination but is higher than for the 
modern influenza vaccine. mRNA vaccines were associated 
with decreased GBS risk, possibly because of a reduction 
in infections, including SARS-CoV-2, that may be associ-
ated with GBS during the vaccination period. Overall, the 
established epidemiological benefits of COVID-19 vacci-
nation in reducing viral transmission, hospitalization, and 
deaths, greatly overtake, in our opinion, the risk of devel-
oping GBS even after adenovirus-vectored vaccines. How 
adenovirus-vectored COVID-19 vaccines may trigger GBS 
is unclear and further studies should investigate the rela-
tionship between vaccine technologies and GBS to optimise 
patients’ safety.
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