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ABSTRACT
Objectives  To prevent the emergence of new waves 
of COVID-19 caseload and associated mortalities, it is 
imperative to understand better the efficacy of various 
control measures on the national and local development 
of this pandemic in space–time, characterise hotspot 
regions of high risk, quantify the impact of under-reported 
measures such as international travel and project the likely 
effect of control measures in the coming weeks.
Methods  We applied a deep recurrent reinforced learning 
based model to evaluate and predict the spatiotemporal 
effect of a combination of control measures on COVID-19 
cases and mortality at the local authority (LA) and national 
scale in England, using data from week 5 to 46 of 2020, 
including an expert curated control measure matrix, official 
statistics/government data and a secure web dashboard to 
vary magnitude of control measures.
Results  Model predictions of the number of cases and 
mortality of COVID-19 in the upcoming 5 weeks closely 
matched the actual values (cases: root mean squared 
error (RMSE): 700.88, mean absolute error (MAE): 453.05, 
mean absolute percentage error (MAPE): 0.46, correlation 
coefficient 0.42; mortality: RMSE 14.91, MAE 10.05, MAPE 
0.39, correlation coefficient 0.68). Local lockdown with 
social distancing (LD_SD) (overall rank 3) was found to 
be ineffective in preventing outbreak rebound following 
lockdown easing compared with national lockdown (overall 
rank 2), based on prediction using simulated control 
measures. The ranking of the effectiveness of adjunctive 
measures for LD_SD were found to be consistent across 
hotspot and non-hotspot regions. Adjunctive measures 
found to be most effective were international travel and 
quarantine restrictions.
Conclusions  This study highlights the importance of 
using adjunctive measures in addition to LD_SD following 
lockdown easing and suggests the potential importance 
of controlling international travel and applying travel 
quarantines. Further work is required to assess the effect 
of variant strains and vaccination measures.

INTRODUCTION
COVID-19 is a highly infectious disease that 
resulted in a global pandemic in just under 
a month.1 This pandemic has caused global 
disruptions to individuals, businesses and 

governments worldwide. The number of 
cases has continued to rise exponentially, 
from 80,239 in February 2020 to 69 million as 
of December 2020.1 COVID-19 is unlike other 
historic pandemics in terms of its rapid world-
wide spread, a substantial increase in infected 
and symptomatic people and a rapid devel-
opment of newly evolving strains. Recent 
cases of a new variant of COVID-19 have also 
been found.2 These problems are being faced 
worldwide despite global efforts to control 
this virus.

The spread of COVID-19 can be modelled 
as a four-stage process: (1) appearance 
of disease; (2) local transmission; (3) 
community transmission; and (4) epidemic 
outbreak.3 An area can be defined as a liberal 
zone, a surveillance zone or an infected zone, 
depending on regional infection patterns, 
and different levels of restriction measures 
can be applied.3 Studies have also focused on 
the effect of quarantine on COVID-19 spread 
and have found that it is more effective than 

Strengths and limitations of this study

	► The proposed deep recurrent reinforced learning 
(DRRL) based model takes into account of both re-
lationships of variables across local authorities and 
across time, using ideas from reinforcement learn-
ing to improve predictions.

	► While predicting the geographical trend in COVID-19 
cases based on the simulation of different measures 
in the UK at both the national and local levels in the 
UK has proved challenging, this study has provided 
a methodology by which useful predictions and sim-
ulations can be obtained.

	► The Office for National Statistics only released data 
on UK international travel up to March 2019 at the 
time of this study, and therefore, this study used 
the amount of UK tourists in Spain as a reference 
variable for understanding the effect of international 
travel on COVID-19 spread.
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control and combinations with other measures, for 
example, school closures, travel restrictions and social 
distancing had a synergistic effect.4

Epidemic models developed so far have aimed at 
understanding the effect of various quarantine factors 
and mostly applied Newtonian calculus approaches.5 
One study modelled the strictness of lockdown interven-
tions using a contact factor F (ranging from 3 to 8), with 
three being the strongest and eight being the weakest.6 
In another study, researchers used a COVID-19 decision-
making system based on differential formulas and 
stochastic methods to model transitions between popu-
lation phase states such as susceptible, exposed, infected, 
hospitalised, recovered and died. The study was extended 
to incorporate demographics and social status variables 
using data from official statistics and the literature.7 In 
time-series data analysis and forecasting, deep learning 
(DL) shows promise. DL models can automatically learn 
temporal connections and patterns in the data, such as 
trends and seasonality.8 Time series and geographical 
data analysis have been applied to study and inform on 
optimal energy sector management policies to mitigate 
the effect of COVID-19.9 Another study also visualised 
the geographical distribution of COVID-19 cases.10 For 
forecasting worldwide COVID-19 incidence as well as 
for country-specific and city-specific predictions, one 
study employed statistics measures to sort the most effec-
tive model for medium-term prediction using ARIMA, 
LSTM, Stacked LSTM (SLSTM) and Prophet models.11 
NAR and FITNET neural networks were combined as an 
ensemble using a fuzzy weighted approach to predict 10 
days ahead of 12 Mexican states.12 Fuzzy rules have been 
applied, along with fractal dimension as transformation 
criteria, to account for linear and non-linear dimension-
ality in order to forecast the COVID-19 trend.13 Following 
this approach, expert knowledge was used to define rules 
and class memberships with a different set of countries.14 
To model the effect of control measures, a control loop 
system was used with a novel set of fuzzy logic, with the 
error between the observed and desired number of infec-
tions and the linear fractal dimension of the country as 
input.15

Research gap
From the literature review, we can determine that there 
are a range of time-series prediction models, each of 
which outperforms in distinct situations and has its own 
set of limitations. Although LSTM variants have been 
used, there have been limited reports of the gated recur-
rent units (GRUs) DL model. In addition, no DL model 
results have been mapped to a two-dimensional (2D) 
choropleth map in order to visualise the effect of control 
measures. Besides, no application of reinforcement 
theory has been used for DL analysis. Furthermore, the 
DL models have not been linked directly to the govern-
ment website. To add to this, there is a lack of DL models 
that apply a combination of expert designed matrices and 
official statistics/government data to incorporate social 

demographic risk factors for modelling the effects of 
implementing various restriction measures.

In order to address the limitations of the existing 
system, the proposed work focuses on the analysis 
mapping of results from a reinforcement-based DL GRU 
model (trained with data including longitude and lati-
tude coordinates) onto 2D choropleth maps in order to 
understand the effectiveness of various control measures. 
The proposed model is also linked to the Government 
UK website and an expert-curated matrix to incorporate 
effects of control measures and social demographic risk 
factors.16 A web dashboard for the DL model was built. To 
the best of our knowledge, this is the first study to apply 
these techniques to include the examination of hotspot 
(high incidence) areas in the UK.

Here, the proposed work examines the 2D geographic 
trend based on simulations of various control measures 
at both the national and local authority (LA) levels in 
the UK in order to have a detailed understanding of the 
factors affecting the spread of COVID-19 at these levels 
as well as the potential impact of future policy measures. 
This knowledge would allow the UK government, LAs 
and individual citizens to make informed decisions about 
regional policies and personal exposure risks.

METHODS
Patient and public involvement
This research was done without patient and public 
involvement.

Model development
The proposed model enables predictions of the incidence 
and mortality related to COVID-19 in the upcoming 
5 weeks and simulates the effect of control measures 
targeting the COVID-19 spread, that is, the number of 
facilities available for accommodation and food, pubs, 
retail shops, education, transport and storage, art, enter-
tainment and recreational services, within each LA region. 
The model also accounts for international migration 
inflow, internal migration inflow and outflow within the 
UK, thus simulating control measures that affect travel.

The proposed model is a deep recurrent reinforced 
learning (DRRL) based model (online supplemental 
material Part I) named National Coronavirus Global 
Forecast System (NCGFS) that combines the synergistic 
properties of GRU17 and reinforcement deep learning.18 
Like other DL models, GRU has the ability to model non-
linear and temporal relationships between and within 
high dimensions of variables. However, GRU is also 
expected to be well suited in small dataset scenarios and 
is computationally more efficient.19 The reinforcement 
learning element of NCGFS enables it to adapt to newly 
inputted data and make more accurate forecasts.

All available LA data were split 80:20 into training and 
validation data subsets. Data were preprocessed using 
scaling—subtracting their corresponding mean and 
dividing by the SD values. Following the completion of 
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predictions, the prediction outputs are then scaled back 
to their original scale.

The NCGFS neural network model used an input layer, 
numerous hidden layers and an output layer. A complex 
series of non-linear matrix computations are applied to 
the input data to relate the target output (ie, cases and 
mortality) and to the other data columns (eg, amount 
of international migration inflow or internal migra-
tion inflow and outflow within UK, number of retail 
shops, etc). The model is first trained using the existing 
data subsets provided through a data generator. Each 
column of the data is assigned a specific weight at each 
of the nodes in the hidden layers, and these weights are 
progressively updated to minimise the mean absolute 
error (MAE) between the predicted and actual values, 
using the RMSProp optimisation algorithm.20 Selection 
for RMSProp is further detailed in online online supple-
mental material Part I, recurrent optimisation algorithms. 
During the prediction process, an input data matrix of 
the same dimension as the training data is then passed 
into the input layer. The neural network’s hidden layers 
then use the weights learnt during the training process 
to predict the most likely incidence and mortality based 
predictor variables from each corresponding week.

The final model consists of two components, model-M 
(master model) and model-R (reinforced model) that 
serve different purposes. Model-M accounts for the rela-
tionships of variables across different LAs, while model-R 
provides improved forecasting performance for each 
individual LA that are selected for analysis. For detailed 
specifications of model parameters, please see online 
supplemental material, part I neural network architec-
ture and configuration. This model is particularly apt 
at generalisation and is capable of forecasting a wide 
range of LA simultaneously. The model uses model-R to 
increase forecast performance for the individual LA that 
are selected for analysis. Model-M is updated with several 
additional epochs of training data from the selected 
LA to reinforce and optimise the predictions. Software 
code is available through https://githubcom/s0810110/
Cvd_NCGFS_TrendAnalysis.

Data linkage
The data used to train the deep learning model is based 
on various datasets that have the potential to influence 
the trend in the number of COVID-19 cases and mortality 
at the national and local level (refer to online supple-
mental materials, part II. A for more details), including 
domains of deprivation,21 number of bars and pubs,22 
business size,23 population estimate (male, female, by age 
and overall),24 etc.25–27 We use the R language and the 
R software development kit (SDK) for COVID-19, that 
is, a set of software commands to retrieve data remotely, 
as published by Public Health England, to automatically 
extract the latest daily cases and mortality figures for all 
LA within the UK. Using this approach, we are able to 
automate and dynamically predict the cases and mortality 
as new data are generated by GOV.UK. We use R to 

convert these data from daily figures into weekly counts 
and link these data to the data described in online supple-
mental materials, Part II. A.

Specifically, knowledge from experts in risk model-
ling is used to curate a matrix containing three indices 
that together are named the COVID-19 General Policy 
indices: LockdownScore, QuarantineMeasures28 and 
SchoolOpening.27 29 The main dataset is connected to 
these index scores based on the weeks each of the associ-
ated policies was implemented and the relative effects at 
each time period.

Furthermore, the number of tourists arriving in Spain 
from January 2020 to July 2020 were obtained and adjusted 
by the proportion of UK tourists in Spain from the year 
2019. As data on international travel is not readily avail-
able for the period affected by COVID-19, the rationale is 
to use the amount of UK travel to Spain as an indicator 
for the impact of international travel on the spread of 
COVID-19,30 31 since Spain is a frequent UK tourist desti-
nation. Our GRU model is trained on the above data and 
includes the longitude and latitude of each LA as part of 
the model.32

A secured web dashboard was developed that enables 
users to explore the adjustment effects of risk factors and 
control measures on the spread of COVID-19 and can be 
made available on request (http://137.222.198.54:8081/).

While the LA boundaries data are not included in the 
training process, the main dataset is also linked to these 
data following forecast generation, so the deep learning 
model will also provide the prediction of the incidence or 
mortality in the next 5 weeks in a geographical map view. 
Furthermore, the model has the capability to toggle the 
map view by LA or Public Health England regions. These 
views will be useful for the government to see the future 
effects of different control measures changes and for the 
individual citizens to understand their risk of movement 
within and between local regions in the upcoming future.

For analysis in the map view, the geographical regions 
from the top to bottom of England is divided into four 
equidistant slices, which we shall name slice n2, n1, s1 
and s2, respectively. These categories will be applied to all 
other geographical plots hereafter to facilitate discussion. 
The areas with a higher number of cases are shown in 
darker colours with 6 grades of severity (I–VI) covering the 
ranges 0–250 (I); 250–500 (II); 500–750 (III); 750–1000 
(IV); 1000–1250 (V); and 1250–1500 (VI). Any number 
outside of this range is shown in grey and is classed as 
grade VII.

Model validation
The model is internally validated for the whole of 
England, whereby the model is trained using all data 
except for weeks 41–46. The data from this interval are 
evaluated using root mean squared error (RMSE), mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and correlation coefficient.11 12 Average ranking 
of performance metrics were performed as per eqs. 24 
and 25.11
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At the time of this work, only data up to week 46 are 
available. The risk and control parameters are adjusted 
within the web dashboard from week 40 onwards to 
enable predictions to simulate a full/national lockdown 
(FLD) from week 45 onwards. This is because it is known 
that a FLD had been applied in the UK from week 45 
(00.01 on Thursday, 5 November 2020), and prior to that, 
local lockdown with social distancing (LD_SD) had been 
implemented.33

During the revision of this work, data for week 51 had 
become available and was downloaded from GOV.UK to 
enable external validation of simulated results. This was 
performed for top 21 hotspots using LD_SD and FLD 
separately. The same statistic metrics were used as that 
for internal validation. The following section explains the 
model simulation process in more details.

Model simulation
Simulations are performed using the final model that is 
trained using the approach described in the model devel-
opment section. All data, that is, from week 5 to 46 are 
included for training this model. The model is used to 
simulate the effects of numerous different COVID-19 
prevention measures on the number of cases at week 51, 
that is, 5 weeks ahead of the latest available data. The risk 
and control parameters that model the corresponding 
measures are set from week 40 onwards to enable predic-
tions to simulate the implementation of various measures 
from week 45 onwards, rather than FLD, which was what 
the government actually implemented. The measures 
simulated are: (A) No lockdown versus LD_SD; (B) LD_
SD versus FLD; (C) LD_SD versus LD_SD with interna-
tional travel −50%; (D) LD_SD versus LD_SD with closing 
school −50%; (E) LD_SD with travel quarantine 5.5 (see 
online supplemental material, part II. A., 11) versus LD_
SD with full travel quarantine 10; (F) LD_SD with 100% 
pubs open versus LD_SD with −50% pubs; (G) LD_SD 
with 100% food and accommodation services open versys 
LD_SD with −50% food and accommodation services 
open; (H) LD_SD with −50% retail services open versus 
LD_SD with 100% retail services open. For details on the 
implementation of these measures, please refer to online 
supplemental material, part II. A.

These measures are simulated first for individual LA by 
selecting a baseline LA with a relatively low case count 
and comparing the effect of the measures when applied 
to a LA with a very high number of cases, that is, a hotspot 
area. The measures are then ranked by order of effec-
tiveness. This is so that the relative effectiveness of each 
measure can be understood at the local level. Second, 
the measures are simulated for all the LA in England to 
visualise the relative effectiveness of each measure at a 
national level. For the 21 LAs with the highest cases when 
using a LD_SD measure, the predicted cases counts at 
week 51 are extracted and plotted to analyse the efficacy 
of each measure across these nationally ‘hard’ to tackle 
areas. This comparison also enabled the ranking of the 
relative effectiveness of each measure at these hotspots.

RESULTS
Model validation of predictions against actual results for 
week 46 showed a good match between the simulation 
and an actual number of cases across all the LA concerned 
(figure 1). The model distinguished the LA with high cases 
from the areas with a low number of cases (figure 2A,B). 
Furthermore, the model performs especially well for low-
grade LA (table 1). The tendency towards better perfor-
mance in low degree LA, maybe because data from weeks 
41 to 46 containing sharp changes in the trend have 
not been included. Good performance was achieved in 
terms of RMSE, MAE, MAPE, correlation coefficient and 
ranking when benchmarked against Devaraj et al11 and 
Melin et al12 (online supplemental tables S2 and S3, part 
III). FLD simulation performed better than LS_SD in 
external validation using the top 21 hotspots. Results from 

Figure 1  Validation of cases for week 46 with weeks 41–46 
excluded from data.

Figure 2  Geographical level of cases for actual and 
predicted results based on different measures. (A) Exemplifies 
the use of geographical slices n2, n1, s1 and s2. Additional 
results are available in online supplemental materials, part II. 
B. FLD, full/national lockdown; LD_SD, local lockdown with 
social distancing.
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Table 1  Validation model: number of actual and predicted cases and mortalities

Local authority
Number of actual cases 

for week 46
Cases forecast for week 

46
Number of actual mortalities 

for week 46
Mortality forecast for 

week 46

Intervention Full lockdown

Wolverhampton 438 482 4 5

Gedling 179 196 6 2

Welwyn Hatfield 119 130 0 2

Wiltshire 201 219 1 4

Portsmouth 220 239 0 3

Bromley 217 232 2 3

Stockton-on-Tees 467 498 7 7

Stockport 517 550 13 8

South Kesteven 153 162 6 1

Hammersmith and Fulham 166 175 1 2

Kingston upon Thames 150 158 4 2

Ribble Valley 93 98 4 2

East Cambridgeshire 34 36 1 1

Redcar and Cleveland 380 396 7 4

Sedgemoor 55 57 3 1

Cheshire East 496 514 6 7

Wealden 76 79 1 2

Charnwood 371 382 3 3

South Somerset 72 74 1 1

Southend-on-Sea 137 140 0 3

Chelmsford 110 112 2 2

Rushcliffe 124 126 4 2

Merton 146 148 0 2

Shropshire 426 428 6 6

Harrogate 253 253 1 2

Central Bedfordshire 226 225 5 4

Sutton 155 154 5 3

Oldham 735 732 15 8

Hillingdon 325 323 3 3

Basildon 168 167 4 3

Plymouth 196 192 2 3

Test Valley 59 58 1 1

Walsall 605 590 15 6

Southampton 187 182 0 2

Selby 129 124 2 1

South Holland 105 100 2 1

Chiltern 57 54 0 1

Derbyshire Dales 82 78 1 2

Chichester 58 54 0 1

Barnet 378 354 5 4

Tameside 447 417 18 12

Salford 577 537 17 7

Havant 77 71 1 1

Waverley 97 89 0 1

Nuneaton and Bedworth 247 226 4 3

New Forest 92 84 6 1

Ryedale 67 61 1 1

Continued
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simulation of cases and mortality up to week 51, using 
data from weeks 41 to 46, are further discussed further.

The effects of different measures were first observed 
at a local level. Southampton was selected as a baseline 
for observing the effects of measure changes. As South-
ampton is a grade I LA with a low case number of 187 
in week 46, the effects of measure changes were readily 
perceived with effectiveness ranked from most effective 
to least effective (online supplemental figure S6, part IV): 
(b) full lockdown; (c) LD_SD and international travel 
−50%; (e) LD_SD and 100% quarantine; (d) LD_SD 
and closing school −50%; and (f) LD_SD and closing 
pubs −50%. There were negligible differences observed 
between LD_SD and (g) LD_SD & −50% food and accom-
modation and (h) LD_SD and −50% retail.

As Leeds was in the highest grade (VII) for both week 
46 (actual) and week 51 (predicted), it was selected for 
observing the effects of different measures on ‘hard’ to 
tackle areas. As the number of cases for Leeds was approx-
imately five times higher than Southampton, the effect 
of measures relative to the number of cases in any week 
were much smaller in the former than the latter. For 
Leeds, no difference was observed for predicted cases at 
week 51 between no lockdown and LD_SD. Full lockdown 
(online supplemental figure S7b, part IV) was the most 
effective, followed by LD_SD with a reduction in interna-
tional travel by 50%, although the effects were much less 
in proportion to the number of cases than Southampton. 
There was a negligible impact on the number of cases 
at week 51 for the remaining measures (online supple-
mental figure S7e-h).

Figure 2C shows the predicted cases in week 51 using 
LD_SD. At a national level, it can be seen that there 
would be a rapid rise in the number of cases, especially 
in the horizontal ‘belt’ along the n1 region. In addition, 
there is at least one LA in each of the other slices n2, s1 
and s2 that are expected to rise to grade VI or above. The 
majority of LA locations elsewhere, which were mostly at 
grade I in week 46, are expected to rise to grade II or 
III. The top 21 hotspots at week 51 using LD_SD were 
selected for subsequent analysis (table 2).

LD_SD was shown (figure  3) to be effective in 
suppressing the increase in cases for Birmingham 
(−17%), Bradford (+0.98%), Kirklees (−6.6%) and 
Leicester (−1.3%). LD_SD was shown to be ineffective 
for suppressing the increase in cases for the remaining 
17 LA, with the highest predicted rises for Wirral (325%), 

Stockport (163%), Tameside (188%), Rotherham (158%) 
and Derby (130%).

LD_SD with −50% international travel was the most effec-
tive measure after full lockdown (blue vs brown, figure 4). 
One hundred per cent quarantine (pink) was the next most 
effective supplementary measure, with similar effectiveness to 
international travel −50% except for three LA. Notably, LD_
SD with 100% quarantine resulted in higher cases than LD_
SD with international travel −50% for Bradford (+9.1%) and 
Leicester (+7.6%). As an exception, Manchester had −41% 
fewer cases when using the quarantine measure compared 
with international travel restrictions.

The supplementary effect of school closing −50% was less 
than international travel restrictions for all 21 LA, with the 
number of cases being (+9.2%) higher on average using the 
former measure. Closing pubs −50% had a similar, although 
slightly lower level of effectiveness compared with school 
closing, with a higher number of cases (+2.2%) on average 
using the former measure compared with the latter. Again, 
reducing the number of food and accommodation services, 
−50% had a similar but a slightly lower level of effective-
ness compared with pubs closing, with the number of cases 
(+2.0%) being higher on average using the former measure. 
In addition, a reduction in the number of retail services 
−50% resulted in a similar effect to food and accommoda-
tion services −50%, with on average a minimal increase in the 
number of cases (+0.29%) using the former measure. It can 
be seen that, on average, the ranking of measure effective-
ness for the national hotspots are the same as the local base-
line, that is, Southampton.

DISCUSSION
Previous studies have evaluated the prediction perfor-
mances of DL and non-DL based models without 2D 
choropleth analysis and found that SLSTM outper-
formed other models because of better hyperparameter 
tuning and reduction in bias. In addition, it was found 
that ARIMA outperforms LSTM model.11 Using the same 
average ranking metrics, we found that NCGFS (overall 
rank 1–3) outperformed SLSTM (overall rank 4), ARIMA 
(overall rank 5) and LSTM (overall rank 6). However, 
there are several limitations of this comparison: (1) 
predictions are for different countries; (2) lower mortality 
rates in England compared with India may bias better 
ranking towards NCGFS; and (3) comparison does not 
account for recovered cases. NCGFS also demonstrated 

Local authority
Number of actual cases 

for week 46
Cases forecast for week 

46
Number of actual mortalities 

for week 46
Mortality forecast for 

week 46

Peterborough 224 204 2 4

North Hertfordshire 89 81 1 1

Epping Forest 130 118 2 1

The results show that there is a close match between the actual and predicted number of cases, especially for LA at grade III or below.
Only 50 LAs are displayed. For validation data on all LA, please contact the authors.

Table 1  Continued
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good performance in terms of case prediction when 
benchmarked against Modular Neural Network with 
Fuzzy (MNNF) in terms of RMSE (700.88 vs 1554.03).12 
While a few studies have analysed 2D geospatial predic-
tions, for example, by converting to heatmaps,34 and 
considered hotpot regions, these have mainly been using 
either modified regression or differential equation tech-
niques rather than DL-based techniques.10 35 36 Although 
interactive dashboards have been developed for tracking 
COVID-19,37 these typically do not enable prediction 
through simulation of control measures. Furthermore, 

although reinforcement learning has been applied, it 
has not typically been combined with 2D map analysis 
or lack external validation.38 39 In this article, we demon-
strate the use of a reinforcement-based DL GRU model 
with 2D choropleth maps to analyse spatial represen-
tation of results in order to rank the efficacy of various 
control measures. The proposed model is embedded in 
an interactive dashboard linked to the Government UK 
website and an expert-curated matrix to incorporate 
effects of control measures and social demographic risk 
factors. This combination of techniques has not yet been 

Table 2  Final model: number of actual and predicted cases and mortalities

Local authority (LA)
Number of actual 
cases for week 46

Number of actual 
mortalities for week 46

Cases forecast 
for week 51

Mortality forecast for 
week 51

Cases forecast for 
week 51

Mortality forecast 
for week 51

Intervention Full lockdown  � Local lockdown with social distancing Full lockdown

Leeds 1801 17 1881 21 499 17

Sheffield 948 36 1784 32 275 14

Birmingham 1957 35 1627 25 537 17

Wigan 759 34 1554 24 346 10

Manchester 1067 13 1550 20 427 13

Bradford 1534 24 1549 20 722 17

Stockport 517 13 1529 17 218 7

Liverpool 750 29 1509 22 234 8

Rotherham 561 20 1448 22 257 7

Kingston upon Hull 1011 21 1368 18 584 12

Oldham 735 15 1336 17 509 11

Wirral 311 13 1324 19 65 4

Bolton 635 18 1299 17 447 11

Bristol 763 8 1296 14 444 13

Tameside 447 18 1288 20 255 7

County Durham 1161 23 1252 26 377 7

Derby 537 11 1234 15 335 8

Walsall 605 15 1233 21 288 7

Kirklees 1292 25 1207 29 557 14

Leicester 1006 7 993 15 581 11

Sandwell 762 21 969 25 398 10

Results are shown for the top 21 LA with the highest predicted cases observed at week 51 using LD_SD.
LD_SD, local lockdown with social distancing.

Figure 3  For the top 21 LA with the highest predicted cases observed at week 51 using LD_SD, plots were generated to 
compare the effects of full lockdown against LD_SD in terms of cases (A) and mortalities (B). LA, local authority; LD_SD, local 
lockdown with social distancing.
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widely used, and it provides a number of advantages over 
each individual formulation alone. The NCGFS model 
can be used to make inferences into the effectiveness of 
different measures at both the national and local levels. 
The model suggests that there is variation in the effect 
of each measure across different regions. Notably, our 
results indicate that the protective effects of lockdown 
measures benefit some local authorities more than others 
(online supplemental material fig S6 and S7, part IV) 
and that local lockdown with social distancing is ineffec-
tive compared with national lockdown in suppressing the 
increase in cases for most of the LA areas. That is, if the 
government had kept the same local lockdown with social 
distancing policies, which they had implemented from 
week 40 onwards rather than switching to a national lock-
down policy at week 45, then we would have seen a rapid 
rise in cases nin the n1 belt region and in areas such as 
County Durham (n2), Bristol (s2) and Birmingham (s1), 
as well as in many other areas across England.

Local lockdown with social distancing and without 
additional measures may be inefficient in stopping rapid 
rise of hotpot regions due to the geographical properties 
of hotspot regions. Hotspots along the middle of the n1 
geographical slice constitute a tight cluster of large metro-
politan cities. The high number of cases may be partly 
attributed to the high number of services such as pubs and 
schools available and the amount of travel in these areas. 
We expect that this effect could possibly be enhanced by 
the fact that the n1 slice contains a large number of LA 
areas with many boundary links to other hotspots, which 
agrees with another study that highlighted influences of 

neighbouring small areas and found continuous bands of 
hotspot regions.36

Since the government is only able to impose a national 
lockdown for a limited period, follow-up measures should 
incorporate LD_SD with additional measures as LD_SD 
alone is likely not to be sufficient. The actual FLD had 
lasted only up to 2 December 2020 (week 49), after which 
LD_SD was implemented by the government. The UK 
Government had implemented LD_SD for 2 weeks in 
between week 49 and week 51. As a substantially larger 
proportion of weeks between week 45 and week 51 were 
implemented using FLD rather than LD_SD, we found 
the FLD simulation (overall rank 2) better predicted 
actual results than LD_SD (overall rank 3) as expected. 
Trend and 2D map analysis showed that introduction 
of additional measures on top of local lockdown with 
social distancing can help to suppress the increase of or 
even decrease the number of cases in national hotspots 
as well as local areas where cases are not very high. Our 
model shows that the ranking of the average effectiveness 
of each supplementary measure is consistent across the 
national hotspots and local baseline, and this ranking 
can be used to prioritise those interventions according 
to an order of effectiveness. Nonetheless, it was also 
observed that specific measures are more effective for 
some LA compared with others. In these cases, it is neces-
sary to adjust the priorities of the measures implemented 
accordingly.

The model has highlighted the importance of reducing 
the amount of international travel, the number of open 
schools and pubs as well as the implementation of travel 

Figure 4  For the top 21 LA with the highest predicted cases observed at week 51 using LD_SD, a plot is generated to 
compare the effect on the number of cases using a combination of LD_SD with other ‘supplementary’ measures. LA, local 
authority; LD_SD, local lockdown with social distancing

https://dx.doi.org/10.1136/bmjopen-2020-048279
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quarantine procedures in controlling the spread of 
COVID-19 over other measures, such as reducing the 
number of food and accommodation and retail services, 
which seemed less relevant on the virus spread (figure 4 
and online supplemental figure S6). Our finding of the 
usefulness of restricting international travel and applying 
travel quarantine is in contrast with another study, which 
found that quarantine of travel from endemic countries 
was not effective.4 One explanation for international 
travel being more impactful than travel quarantine is that 
while travel quarantine provides the government with 
some control over which countries to enforce a 14-day 
self-isolation on travellers’ return, it provides little control 
over the activities of travelling individuals once they arrive 
at their destinations as well as the level of preventative 
health measures at those destinations. Furthermore, 
the individuals who travel are more likely to encounter 
places of gathering while abroad. In addition, even with 
COVID-19 testing in place, the journey from the airport 
back to the home of the traveller allows an increased 
opportunity of spreading the virus, particularly if public 
transport such as taxis or buses are used.4 8 Therefore, 
these measures are not as direct as limiting the amount of 
international travel.

While closing schools were not as effective as interna-
tional travel and quarantine restrictions, we found this 
measure to be more effective than closing pubs. One 
potential explanation for this is that schools are more 
crowded places and are subject to a more frequent 
number of close contact scenarios in comparison with the 
pub. The view that schools contribute to the spread of 
COVID-19 has been supported by the literature.40 41 While 
the virus may pose a low risk of mortality to the children 
themselves, these frequently asymptomatic carriers can 
also lead to the spread of the virus to their households, 
teachers and communities.

The reason why minimal effects were found for food and 
accommodation and retail restrictions may be because in 
these sectors, people generally associate with others that 
they are closely associated with. For example, families are 
more likely to sit with each other in restaurants or walk 
together when shopping rather than with people they are 
less familiar with. This is not the case in pubs as anyone 
from the communal area can be present.

It is unexpected that in the s2 slice that Bristol has higher 
predicted cases than the LA in the London area as one 
would have thought the latter comprising a total popula-
tion of 9 million (2019) and a high traffic volume owing 
to its large underground network system would result in 
much higher case numbers. We expect that this may be 
because the London region LA generally has less health 
and disability deprivation (deciles: Wandworth: 7; Barnet: 
8.9; Brent: 7.3; and Waltham Forest: 6.1) compared with 
Bristol (decile: 4.4). This is supported by the findings that 
suggest that existing comorbidities are associated with an 
increased likelihood of COVID-19 hospital admission.42

In light of evidence given by the comparison between 
the LA within the London region and Bristol, we expect 

the effect of LA boundary connections to be adjusted by 
the degree of health and disability deprivation. Indeed, 
we found that regions with a high number of cases along 
the horizontal ‘belt’ in the n1 region had a high degree of 
health and disability deprivation (decile: Manchester: 1.9; 
Leeds: 4.1; Bradford: 3.3; Liverpool: 1.8; Sheffield: 3.9; 
and Wigan: 3.4). Another study reports a similar result.36 
This also applies to County Durham (n2), which has a 
high degree of health and disability deprivation (decile: 
2.9) and was seen to have a significant increase in cases at 
week 51 using a LD_SD measure.

One limitation of our study is that for simulated week 
51, there was an LA in Kent that was coloured grey on 
the map but were, in fact, reporting negative values. A 
future improvement would be to transform or limit the 
prediction outputs to retain meaningful information 
while preventing negative values. Nonetheless, the result 
is interesting and giving the LA a grade of VII may still 
be valid, since the highly infectious Kent variant emerged 
in week 39 (20 September).43 The present study has not 
specifically dealt with the modelling of variants. In addi-
tion, vaccination effects could not be accounted for as 
these were only beginning to be rolled out (2 December 
2, week 49) at the point of this study.44 While a variety of 
data sources have been used, this study has not analysed 
the effect of in-hospital admission or clinical comorbidity. 
These are issues that deserve to be further explored. 
Future work could be done to compare the current 
model against those found in similar studies, for example, 
ARIMA, LSTM, SLSTM and Prophet,11 Bayesian hierar-
chical space–time SEIR model,36 NAR and FITNET neural 
networks, using the same dataset.12 Furthermore, a Hybrid 
Q-learning based algorithm could be used whereby these 
models represent potential actions to update the Q cumu-
lative reward matrix.39 While the current model takes a 
risk factor matrix as one of its inputs and this was built 
with expert input, a fuzzy logic approach with function-
ally modelled inputs and outputs was not used.15 Incorpo-
rating such methods could enhance the interpretability 
of the risk factor matrix.

CONCLUSION
This study highlights the importance of simulating the 
effects of various control measures using map and non-
map-based analyses to prioritise COVID-19 preventative 
measures. This was demonstrated for both local hotspot 
zones and on a nationwide scale. Furthermore, at the LA 
level, we demonstrated the utility of geographical slicing 
for comparative analysis of interventional effects across 
time periods and thereby can also allow governments to 
assess the optimal measures to apply. It is advisable to 
assess the effectiveness of lockdown with social distancing 
alone against that when combined with other adjunctive 
measures and implement periodic monitoring at both 
trend and map dimensions to reduce the risk of outbreak 
rebound following lockdown easing. Lastly, this study 
highlights the importance of controlling international 
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travel, and this should be further explored with the 
comparative analysis of effectiveness against newly devel-
oped vaccine measures.
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