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Machine learning improves mortality risk prediction after
cardiac surgery: Systematic review and meta-analysis
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ABSTRACT

Background: Interest in the usefulness of machine learning (ML) methods for out-
comes prediction has continued to increase in recent years. However, the advan-
tage of advanced ML model over traditional logistic regression (LR) remains
controversial. We performed a systematic review and meta-analysis of studies
comparing the discrimination accuracy between ML models versus LR in predicting
operative mortality following cardiac surgery.

Methods: The present systematic review followed the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis statement. Discrimination ability was as-
sessed using the C-statistic. Pooled C-statistics and its 95% credibility interval for
ML models and LR were obtained were obtained using a Bayesian framework.
Pooled estimates for ML models and LR were compared to inform on difference
between the 2 approaches.

Results: We identified 459 published citations of which 15 studies met inclusion
criteria and were used for the quantitative and qualitative analysis. When the
best ML model from individual study was used, meta-analytic estimates showed
that ML were associated with a significantly higher C-statistic (ML, 0.88; 95% cred-
ibility interval, 0.83-0.93 vs LR, 0.81; 95% credibility interval, 0.77-0.85; P ¼ .03).
When individual ML algorithms were instead selected, we found a nonsignificant
trend toward better prediction with each of ML algorithms. We found no evidence
of publication bias (P ¼ .70).

Conclusions: The present findings suggest that when compared with LR, ML
models provide better discrimination in mortality prediction after cardiac surgery.
However, the magnitude and clinical influence of such an improvement remains un-
certain. (J Thorac Cardiovasc Surg 2020;-:1-13)
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When compared to logistic
regression models, machine
learning appears able to provide
better discrimination power in
mortality prediction after cardiac
surgery.
PERSPECTIVE
Mortality risk prediction is of crucial importance,
especially when the benefit of surgery is difficult
to assess and when individualized decisionmaking
is complex. Interest in the usefulness of new ap-
proaches based on machine learning has
bloomed in recent years. We found that predic-
tion models based on machine learning were
associated with significantly better prediction
accuracy.

See Commentary on page XXX.
Cardiac surgery is at high risk of intraoperative and postop-
erative complications. The benefit of surgery is sometimes
difficult to predict and the decision to proceed on an individ-
ual basis is complex and therefore mortality risk evaluation
has been increasingly emphasized in cardiac surgery. The
aims of developing risk models include quality monitoring
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Abbreviations and Acronyms
AUC ¼ area under the receiver operating

characteristic curve
CABG ¼ coronary artery bypass graft
LR ¼ logistic regression
MHR ¼ medical health record
ML ¼ machine learning
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of surgical performance, counseling patients to aid with de-
cision making and cost-benefit analysis. Several risk strati-
fications models have been developed to support clinical
decision making such as the European System for Cardiac
Operative Risk Evaluation (EuroSCORE)1,2 and the North
American Society of Thoracic Surgeons.3 However, some
of these scores, such as the EuroSCORE have shown major
limitations as they tend to overestimate the actual risk.4,5

This can potentially translate into inappropriate risk adverse
practice that denies surgery to patients who would benefit
from surgery, falsely reassuring conclusions about surgeon
and center performance, patients and their doctors not being
fully informed during the process of shared decision
making.

All models in current use are based on logistic regression
(LR), which relies on the modeler input to manually specify
interactions, such as complex interactions. Missing those
relationships during the development of the scores may
result in model misspecification. In this context, machine
learning (ML) approaches automatically learn the relation-
ships from the data and do not require input from the
modeler to specify interactions.6 Interest on the usefulness
of these methods has continued to increase in the recent
years although ML has not been widely adopted in clinical
practice yet. Moreover, recent reports, including a variety of
clinical conditions have challenged the additional value of
ML in the development of clinical prediction models.6

The objective of this systematic review and meta-analysis
was to compare the accuracy of prediction methods using
ML with conventional models based on LR in predicting
operative mortality after cardiac surgery.
METHODS
The study was registered with PROSPERO (CRD42019155549). We

followed the Preferred Reporting Items for Systematic reviews and

Meta-Analysis (PRISMA) statement.

Search Strategy
We screened citations obtained from MEDLINE (1966 to October

2019), OVID Healthstar (1975 to October 2019), EMBASE (1980 to

October 2019), The Cochrane Library (all databases) (October 2019) and

SciSearch (1980 to October 2019). The search strategy is presented in

Appendix E1.

The reviewers screened reference lists of included studies. The search is

updated to October 17, 2019.
2 The Journal of Thoracic and Cardiovascular Surger
Selection of Studies
All abstracts were independently screened by 2 reviewers (AD and SS);

conflicts were resolved by a third reviewer (UB). The full text of selected

abstracts was independently assessed for eligibility by 3 reviewers (AD,

LC, UB), and conflicts were resolved by consensus.

Inclusion and Exclusion Criteria
Studies were eligible in the case that the article described the develop-

ment of a prognostic prediction model for individualized prediction of

operative mortality (in-hospital or within 30 days from surgery) in patients

undergoing cardiac surgery, the article compared prediction models based

on ML versus LR model. Studies were excluded if a new modelling

approach was introduced (ie, dynamicmodeling), no validation was carried

out, the models made predictions for individual images or signals rather

than participants, models were developed based on high-dimensional

data modalities, the primary interest was assessing risk factors rather

than prediction modeling, they were reviews of the literature, and full

text was not available. In the case of studies with overlapping population,

we predetermined that the study with the largest samplewas to be included.

Data Extraction and Risk of Bias
Two reviewers (AD and UB) independently abstracted qualitative and

quantitative data from selected studies. The list of extraction items was based

on the CHARMS checklist7 and the QUADAS8 risk of bias tool. The ex-

tracted items included general study characteristics, applied algorithms and

their characteristics, data-driven variable selection, and model performance.

Model performance was primarily assessed in terms of discrimination

ability for operative mortality. Discrimination refers to a prediction

model’s ability to distinguish between subjects developing and not

developing the outcome and is quantified by the concordance (C)-statistic,

which corresponds to the area under the receiver operating characteristics

curve (AUC).9 The C-statistic is an estimated conditional probability that

for any pair of a subject who experienced and a subject who did not

experience the outcome, the predicted risk of an event is higher for the

former. C-statistics were from external validation (ie, validation

samplewas not used for model training) or from internal validation analysis

(ie, k-fold cross-validation or bootstrapping). The standard error (SE) of

C-statistic was calculated using the following formula:10

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1�cÞþðN1�1ÞðQ1�c2ÞþðN2�1ÞðQ2�c2Þ

N1N2

s

where:

Q1¼ c

2�c
Q2 ¼ 2c2

1þc

Based on the extracted data, we classified ML algorithms into 5 broad

groups11: classification trees/random forests, artificial neural networks,

support vector machines, Na€ıve Bayes, and other algorithms. We also

collected the c-statistic for LR models and traditional risk scores (ie,

EuroSCORE).

As proposed by Christodoulou and colleagues,6 from each article, we

defined 5 signalling items to indicate potential bias (Table E1): unclear

or biased validation of model performance, difference in whether data-

driven variable selection was performed (yes/no) before applying LR and

ML algorithms, difference in handling of continuous variables before

applying LR and ML algorithms, different predictors considered for LR

and ML algorithms, and whether corrections for imbalanced outcomes

where used only for LR or only for ML algorithms. Each bias item was

scored as no (not present), unclear, or yes (present). We considered a com-

parison at low risk of bias if the answer was no for all 5 signalling items. If

the answer was unclear or yes for at least 1 item, we assumed high risk of

bias.
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TABLE 1. Study characteristics

Author, y

Geographic

area Population Age (y)

Male

sex (%) Source of data

Sample

size

Operative

mortality

(%)

Nilsson, 200614 Europe Unselected 62.6 � 10.7 72 Retrospective

(EuroSCORE

database and MHR)

18,362 4.9

Ghavidel, 201415 Asia CABG and valve

surgery

45-60 (58.1%)

61-75 (39.5%)

>76 (2.4%)

86 Retrospective (MHR) 948 3.8

Allyn, 201716 Europe Unselected 63.4 � 14.4 68 Retrospective (MHR) 6520 6.3

Mejia, 201823 South

America

Rheumatic valve

disease

51.2 � 14.9 for

survivors

54.4 � 17.4 for

nonsurvivors

NR Prospective 2919 3.5

Chong, 200324 Asia CABG 64.0 � 10.4 for

training set

63.3 � 9.7 for testing

set

70 Retrospective (MHR) 563 7.5

Nouei, 201625 Asia CABG 58.24 � 9.74 for

survivors

62.07 � 9.47 for

nonsurvivors

70 Retrospective (MHR) 824 3.5

Nouei, 201426 Asia CABG 58.62 � 10.18 for

survivors

61.82 � 10.72 for

nonsurvivors

NR Retrospective (MHR) 1811 3.3

Lippman, 199727 North

America

CABG NR 73.4% survivors

62.3% nonsurvivors

Retrospective (STS

database)

80,606 3.4

Mendes, 201528 South America CABG 60.4 � 9.6 in the

training set

61.1 � 9.8 in the

testing set

68 Prospective 1315 8.6

Jamaati, 201517 Asia CABG 57 51 Prospective 2220 12.2

Tu, 199818 North

America

CABG NR NR Retrospective

(Cardiac Care

Network of

Ontario)

15,608 3.0

Rahman, 201219 Asia Unselected 18-40 (9.4%)

40-60 (53.2%)

>60 (37.3%)

77 Retrospective (MHR) 1209 17.3

Celi, 201220 Oceania Unselected >80 (100%) NR Retrospective

(Registry of

Cardiac Surgery

Patients in Dunedin

Hospital)

165 7.4

Macrina, 200921 Europe Acute aortic

dissection

61 � 12 for survivors

66 � 10 for

nonsurvivors

63% for survivors

66% for

nonsurvivors

Retrospective (MHR) 208 25.5

Peng, 200822 Asia Unselected 63.2 � 13.6 in the

training set

64.8 � 13.8 in the

testing set

76% in the

training set

70% in the

testing set

Retrospective (MHR) 952 10.7

EuroSCORE, European System for Cardiac Operative Risk Evaluation; MHR, medical health record; CABG, coronary artery bypass graft; NR, not reported; STS, Society of

Thoracic Surgeons.
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TABLE 2. Study methodological characteristics

Author,

y (reference no.)

Model

tested

No.

Predictors

Handling of

missing data

Type of

validation

Split ratio of

training to

testing sample Calibration

Statistical

software

for ML

Nilsson, 200614 ANN

LR

EuroSCORE

34 Missing excluded

for

mandatory

variable

Imputation for

other variables

(statistical

mode or

mean

substitution)

Sample splitting

and k-fold

cross-validation

plus external

validation

75:25 Unclear MatLab 7, Neural

Network

Toolbox,

Stata

Ghavidel, 201415 EEF-DT

EEC-DT

LR

EuroSCORE

19 Missing excluded

for

the analysis

Sample splitting

and k-fold

cross-validation

70:30 NR MATLAB and

SPSS

Allyn, 201716 GBM

RF

NB

SVM

Ensemble

LR

EuroSCORE

EuroSCORE II

17 NR Sample splitting

and k-fold

cross-validation

70:30 NR SAS macro and R

packages

XGBoost,

ExtraTrees, and

e1071

Mejia, 201823 RF

ANN

SVM

NB

LR

EuroSCORE II

10 Missing

negligible,

imputation

not performed

K-fold cross-

validation

– NR R package caret

Chong, 200324 ANN

LR

18 Coded as missing

for

categorical

variables

and mean

substitution

for continuous

variables

Sample splitting

and k-fold

cross-validation

75:25 NR STATISTICA

Neural

Networks from

StatSoft Inc

Nouei, 201625 ANN

LR

40 Missing excluded

for the analysis

Sample splitting 70:30 NR NR

Nouei, 201426 ANN

LR

40 Missing excluded

for the analysis

Sample splitting 70:30 NR MATLAB

Lippman, 199727 ANN

Ensemble

LR

36 Imputation for

variables

(statistical

mode or

mean

substitution)

Sample splitting

and k-fold

cross-validation

50:50 Performed using

c2 for

comparison

LNKnet

software

Mendes, 201528 ANN

LR

12 NR Sample splitting 80:20 NR Accord NET

Framework

(Continued)
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TABLE 2. Continued

Author,

y (reference no.)

Model

tested

No.

Predictors

Handling of

missing data

Type of

validation

Split ratio of

training to

testing sample Calibration

Statistical

software

for ML

Jamaati, 201517 SVM

LR

17 NR NR - Hosmer-

Lemeshow

goodness-of-fit

statistic

SPSS

Tu, 199818 ANN

LR

17 NR Sample splitting

and k-fold

cross-validation

65:35 NR Stata

Rahman, 201219 ANN

DT

LR

12 NR Sample splitting NR NR SPSS PASW

Modeler 13

Celi, 201220 ANN

BN

LR

6 NR Sample splitting

and k-fold

cross-validation

70:30 Hosmer–

Lemeshow

goodness-of-fit

statistic

Weka and R

Macrina, 200921 ANN

LR

22 NR External

validation

- NR NCSS and

MedCalc

Peng, 200822 ANN

LR

16 NR Sample splitting 70:30 Hosmer–

Lemeshow

goodness-of-fit

statistic

STATISTICA

from StatSoft

Inc

ML, Machine learning; ANN, artificial neural networks; LR, logistic regression; EuroSCORE, European System for Cardiac Operative Risk Evaluation; EEFDT, entropy error

fuzzy decision tree; EECDT, entropy error crisp decision tree; NR, not reported; GBM, gradient boosting machine; RF, random forest; NB, naive Bayesian SVM, support vector

machine.
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Data Analysis
Once all relevant studies were identified and corresponding results were

extracted, the retrieved estimates ofC-statistic for ML and LRmodels were

summarized into aweighted average to provide an overall summary of their

performance. A Bayesian estimation framework was used to calculated

meta-analytic estimates (Appendix E1).12

For the main analysis, ML and LR models were extracted and pooled

from each study. For studies reporting on multiple ML models, the ML

model with best discrimination ability was selected. Pooled C-statistics

for ML models and LR were then compared using the method described

by Hanley and colleagues.13 As secondary analysis, we pooled C-statistics

from models based on same ML algorithm and these were compared with

pooled estimate from relative LR models. As a sensitivity analysis, we

repeated the main comparison including studies at low and high risk of

bias separately. We also stratified the analysis based on year of publication

(before 2010 vs 2010 and after), validation method (external vs internal),

and total sample size (�1000 vs < 1000 patients). Conventional risk

scoring systems (eg, EuroSCORE) pooled C-statistics was also reported.

The presence of small-study effects was verified by visual inspection of

the funnel plot and tested by fitting a regression directly to the data using

the treatment effect as the dependent variable, and standard error as the in-

dependent variable for ML models performance. All analyses were per-

formed using R version 3.5.1 and metamisc and rjags packages. All

statistical tests were 2-sided.
RESULTS
Our search identified 458 citations published between

June 1997 and July 2018, of which 295 studies were
excluded based on title or abstract (Figure E1). Thirteen
The Journal of Thoracic and C
studies were excluded during full-text screening, and 15
studies14-22 met inclusion criteria and were used for the
quantitative and qualitative analysis. No study was found
to have overlapping population with another study.

General Study Characteristics
Study characteristics are reported in Table 1 and Table 2.

Notably, the first article comparing ML methods versus LR
in a cardiac surgery setting was published in 199727 and it
used the Society o Thoracic Surgeons (STS) database for
training and testing. However, most studies were published
from 2014 to 2018. Study geographic areas were Europe
(n ¼ 3),14,16,21 Asia (n ¼ 7),15,17,19,22,24-26 North America
(n ¼ 2),18,27 South America (n ¼ 2),23,28 and New Zealand
(n ¼ 1).20 A total of 5 studies included unselected cardiac
procedures,14,16,19,20,22 7 studies focused on patients under-
going coronary artery bypass (CABG) only,17,18,24-28 and
the remaining 3 articles included only patients undergoing
heart valve surgery for rheumatic heart valve disease,23 a
combination of CABG and valve surgery,15 and type A
ascending aorta dissection surgery,21 respectively.
In 10 studies, data were retrospectively obtained from

medical health records14-16,19,21,22,24-26 or international
surgical databases (EuroSCORE or STS).14,27 One study
used data from the Cardiac Care Network of Ontario18

and another the Registry of Cardiac Surgery Patients in
ardiovascular Surgery c Volume -, Number - 5



TABLE 3. Model performance characteristics

Study, y ML model Testing all Testing deaths C-statistic SE C-statistic

Nilsson, 200614 ANN

LR

EuroSCORE

1246

1246

1246

112

112

112

0.81

0.80

0.79

0.03

0.03

0.03

Ghavidel, 201415 DT/RF

DT/RF (2)

LR

EuroSCORE

298

298

298

298

12

12

12

12

0.90

0.86

0.78

0.77

0.06

0.07

0.08

0.08

Allyn, 201716 GBM

DT/RF

Na€ıve Bayes

SVM

Ensemble

LR

EuroSCORE

EuroSCORE II

1956

1956

1956

1956

1956

1956

1956

1956

123

123

123

123

123

123

123

123

0.78

0.79

0.75

0.74

0.80

0.74

0.72

0.74

0.02

0.02

0.03

0.03

0.02

0.03

0.03

0.03

Mejia, 201823 DT/RF

ANN

SVM

Na€ıve Bayes

LR

EuroSCORE II

584

584

584

584

584

584

20

20

20

20

20

20

0.98

0.95

0.95

0.93

0.89

0.86

0.02

0.03

0.04

0.04

0.05

0.05

Chong, 200324 ANN

LR

140

140

11

11

0.89

0.81

0.07

0.08

Nouei (ii), 201625 ANN

LR

247

247

8

8

0.82

0.62

0.09

0.11

Nouei (i), 201426 ANN

LR

543

543

20

20

0.91

0.72

0.05

0.07

Lippman, 199727 ANN

Na€ıve Bayes

Ensemble

LR

40,126

40,126

40,126

40,126

1374

1374

1374

1374

0.76

0.75

0.76

0.76

0.01

0.01

0.01

0.01

Mendes, 201528 ANN

LR

262

262

22

22

0.85

0.86

0.05

0.05

Tu, 199818 ANN

LR

5517

5517

173

173

0.78

0.77

0.02

0.02

Jamaati, 201517 SVM

LR

2220

2220

270

270

0.98

0.84

0.01

0.02

Peng, 200822 ANN

LR

315

315

37

37

0.87

0.85

0.04

0.04

Macrina, 200921* ANN

LR

87

87

20

20

0.93

0.88

0.05

0.06

Celi, 201220 ANN

Na€ıve Bayes

LR

EuroSCORE

165

165

165

165

12

12

12

12

0.94

0.93

0.85

0.65

0.05

0.06

0.07

0.09

Rahman, 201219y ANN

DT/RF

LR

1209

1209

1209

209

209

209

0.91

0.91

0.89

0.01

0.01

0.02

ML, Machine learning; SE, standard error; ANN, artificial neural networks; LR, logistic regression; EuroSCORE, European System for Cardiac Operative Risk Evaluation;

DT/RF, decision tree/random forests; GBM, gradient boosting machine; SVM, support vector machine. *Derived from Gini coefficient as reported in original article. yDerived
from sensitivity and specificity as reported in original article.
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TABLE 4. Meta-analytic estimates

Variable No. studies

ML pooled C-statistic

(95% credible interval)

LR pooled C-statistic

(95% credible interval) Net benefit (%) P value

Best ML model overall 15 0.88 (0.83-0.93) 0.81 (0.77-0.85) þ7 .03

Artificial neural network 12 0.86 (0.81-0.91) 0.81 (0.76-0.86) þ5 .15

Decision trees/random forest 4 0.89 (0.76-0.98) 0.80 (0.63-0.90) þ9 .30

Support vector machine 3 0.92 (0.75-1.00) 0.82 (0.65-0.96) þ10 .27

Na€ıve Bayes 4 0.81 (0.69-0.96) 0.78 (0.68-0.91) þ3 .8

Other 2 0.77 (0.70-0.87) 0.76 (0.54-0.96) þ1 .92

Best ML model-low risk of bias 10 0.85 (0.79-0.91) 0.79 (0.73-0.85) þ6 .15

Best ML model-high risk of bias 5 0.92 (0.82-0.98) 0.84 (0.79-0.90) þ8 .10

Best ML model �2010 9 0.91 (0.84-0.97) 0.81 (0.74-0.88) þ10 .02

Best ML model<2010 6 0.81 (0.75-0.89) 0.78 (0.74-0.85) þ3 .5

Best ML model EV 2 0.85 (0.64-0.99) 0.82 (0.61-0.99) þ3 .8

Best ML model IV 13 0.88 (0.82-0.94) 0.80 (0.76-0.85) þ8 .04

Best ML model �1000 patients 9 0.89 (0.79-0.95) 0.80 (0.75-0.86) þ9 .07

Best ML model<1000 patients 6 0.88 (0.82-0.94) 0.82 (0.70-0.90) þ6 .13

ML, Machine learning; LR, logistic regression; EV, external validation; IV, internal validation.
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Dunedin Hospital.20 Data were prospectively collected only
in 3 studies.17,23,28 Sample size ranged from 165 to 80,606
patients and operative mortality from 3.0% to 25.5%. ML
models developed were artificial neural network
(n ¼ 12),14,18-28 decision tree analysis (n ¼ 2),15,19 random
forest (n ¼ 2),16,23 support vector machine (n ¼ 3),16,17,23

na€ıve Bayes (n ¼ 3),16,20,23 gradient boost machine
(n ¼ 1),16 and ensemble of models (n ¼ 2).16,27 ML models
are described in Table E2. With the exception of 1 study,24

all studies performed LR model using the same set of vari-
ables to compare its performance with ML models. The
only traditional scoring systems for cardiac surgery evalu-
ated was EuroSCORE either the original (n ¼ 3)14-16 or
the updated version (EuroSCORE II) (n ¼ 2).16,23 C-statis-
tic was the performance measure used in 13 studies,14-
18,20,22-28 sensitivity and specificity,19 and Gini coefficient21

were used in the remaining 2 studies, and C-statistic was
derived using conversion equations (details are in
Appendix E1).

For ML models, the C-statistic ranged from 0.736 to 0.982
(Figure E2) and for LR from 0.620 to 0.890. The number of
variables included in the models ranged from 6 to 40. Valida-
tion was performed using both sample splitting and k-fold
cross-validation in 6 studies15,16,18,20,24,27 and sample splitting
only in 519,22,25,26,28 studies. Other validationmethods adopted
were k-fold cross-validation only (n ¼ 1),23 combination of
sample splitting and k-fold cross-validation and external vali-
dation (n ¼ 1),14 and external validation only (n ¼ 1).21 In 1
study, the validation method was not reported.17 Calibration
was reported only in 4 studies17,20,22,27 (details regarding cali-
bration assessment are presented in Table E3).

Information on handling of missing data was lacking or
unclear in 8 studies.16-22,28 In the remaining studies, missing
The Journal of Thoracic and C
data were handled using complete case analysis
(n ¼ 4),15,23,25,26 single imputation (n ¼ 2),24,27 and a com-
bination of complete case for mandatory variables and single
imputation for other variables (n ¼ 1).14 Statistical software
used for ML modeling was reported in all but 1 study.

Methodological Quality
Ten (67%) studies were at low risk of bias,14-16,18-20,23,25-27

whereas the remaining 5 (33%) were classified as at high risk
of bias (Table E1). In the study by Chong and colleagues,24

although the original number of input variables included in
ML and LRmodels was 21, it was unclear why the final num-
ber of input variable predictors in the ML model was 18. In
the study byMendes and colleagues,28 it was unclear whether
input variables scaling into centered unit interval and
correction for imbalanced outcomes was used to develop
ML methods but no LR. In the study by Jamaati and
colleagues,17 it was unclear to assess any validation
methodology used. Peng and colleagues22 ran a data-driven
variable selection for LR model but not for ML and similarly,
the study by Macrina and colleagues.21

Comparison Between Performance of ML and LR
Models
Individual study reported or derived C-statistics with

relative standard error are presented in Table 3.
Meta-analytic estimates with relative 95% credibility
interval (CrI) for ML and LR models across different
analyses are reported in Table 4. The main analysis based
on best-performing ML models from each study, showed
that when compared to LR, ML models were associated
with a statistically significant improvement in C-statistic
(ML, 0.88; 95% CrI, 0.83-0.93 vs LR, 0.81; 95% CrI,
ardiovascular Surgery c Volume -, Number - 7



Prediction Interval
Summary Estimate

Rahman ANN
Celi ANN

Macrina ANN
Peng ANN

Jamaati SVM
Tu ANN

Mendes ANN
Lippman Ensemble

Nouei (i) ANN
Nouei (ii) ANN

Chong ANN
Mejia DT/RF

Allyn Ensemble
Ghavidel DT/RF

Nilsson ANN

0.00 0.25 0.50
c-statistic

0.75 1.00

Best ML Models

Prediction Interval
Summary Estimate

Rahman LR
Celi LR

Macrina LR
Peng LR

Jamaati LR
Tu LR

Mendes LR
Lippman LR
Nouei (i) LR
Nouei (ii) LR

Chong LR
Mejia LR
Allyn LR

Ghavidel LR
Nilsson LR

0.00 0.25 0.50
c-statistic

0.75 1.00

LR Models

FIGURE 1. Forest plot comparing discrimination accuracy (ie, C-statistic) in mortality prediction by selecting machine learning (ML) models (top) with

best performance versus logistic regression (LR) (bottom). ANN, Artificial neural networks; DT, decision tree; RF, random forests; SVM, support vector

machine.
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0.77-0.85; P ¼ .03) (Figure 1). When the analysis was
stratified by individual ML categories, artificial neural
networks (0.86; 95% CrI, 0.81-0.91 vs LR, 0.81; 95%
CrI, 0.76-0.86; P ¼ .15), decision trees/random forest
(0.89; 95% CrI, 0.76-0.98 vs LR, 0.80; 95% CrI,
0.63-0.90; P ¼ .30), support vector machine (0.92; 95%
CrI, 0.75-1.00 vs LR, 0.82; 95% CrI, 0.65-0.96; P ¼ .27),
and na€ıve Bayes (0.81; 95% CrI, 0.69-0.96 vs LR, 0.78;
95% CrI, 0.68-0.91; P ¼ .8) achieved higher C-statistics
but improvement was non statistically significant
(Figure 2).

Sensitivity analysis showed that in studies at high risk of
bias, both ML model and LR showed a higher c-statistic
(ML, 0.92; 95% CrI, 0.82-0.98 vs LR 0.84; 95% CrI,
0.79-0.90; P ¼ .15) than studies low risk of bias (ML,
8 The Journal of Thoracic and Cardiovascular Surger
0.85; 95% CrI, 0.79-0.91 vs LR, 0.79; 95% CrI, 0.73-
0.85; P ¼ .10) (Figure E1). Furthermore, when compared
with LR, ML models achieved a better discrimination accu-
racy in studies published from 2010 onward (ML, 0.9; 95%
CrI, 0.84-0.97 vs LR, 0.81; 95% CrI, 0.74-0.88; P ¼ .02)
than in studies published before 2010 (ML, 0.81; 95%
CrI, 0.75-0.89 vs LR, 0.78; 95% CrI, 0.74-0.85; P ¼ .5).
We found a trend toward better ML model performance
when the models were developed using internal validation
and larger samples. Funnel plot and regression test showed
no evidence of small study effect (P ¼ .70) (Figure E3). In-
formation on original EuroSCORE and EuroSCORE II per-
formance was available in 4 and 2 studies, respectively, and
pooled C-statistics was 0.74 (95% CrI, 0.61-0.86) and
(0.78; 95% CrI, 0.53-0.99), respectively. Assessment of
y c - 2020
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FIGURE 2. Forest plot comparing discrimination accuracy (ie,C-statistic) in mortality prediction by selecting machine learning (ML) models based on the

same algorithm versus logistic regression (LR). ANN, Artificial neural networks, DT, decision tree; RF, random forests, SVM, support vector machine;

NB, naive Bayesian.
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FIGURE 3. Machine learning (ML) algorithms (ie, random forest, neural networks, and support vector machine) were compared with traditional

logistic regression in the prediction of mortality after cardiac surgery using a Bayesian meta-analysis of 15 studies. Model performance was estimated using

C-statistics. ML models achieved a better prediction than logistic regression. ANN, Artificial neural networks; DT, decision tree; RF, random forests;

SVM, support vector machine.
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model calibration was reported only by a limited number of
studies and different methodologies were used preventing
any meta-analytic estimation. A descriptive summary of
assessment of model calibration for studies reporting on
this information is presented in Table E3.

DISCUSSION
The present meta-analysis showed that ML models can

achieve significantly better discrimination ability than LR
when both models are on the same features (Figure 3). A
significant improvement could be demonstrated only
when the best performing ML model among all ML models
investigated was selected from individual studies; however,
we could not demonstrate a superiority from a specific ML
10 The Journal of Thoracic and Cardiovascular Surge
model.We also found a trend toward improved performance
with ML models over LR in more recently published
studies. This may be related to recent improvement in ML
algorithms and increased popularity of dedicated statistical
software. There has been a growing interest in risk-
prediction models for clinical use to aid in multidisciplinary
shared decision making. They are also used for both bench-
marking outcomes and monitoring innovations. The clinical
use is gaining increasing importance, especially in an era of
expanding multimodal therapy for coronary artery and
aortic valve disease; risk prediction plays an important
role in determining which patients would benefit most
from surgery or percutaneous therapy. National cardiac sur-
gical registries have been established in many countries and
ry c - 2020
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have developed risk prediction models suitable for local
populations.

Risk stratification in cardiac surgery patients is usually
performed using EuroSCORE II2 and the STS-Predicted
Risk of Mortality Score,3 which were developed based on
LR. However, EuroSCORE II, as well as the logistic Euro-
SCORE have been shown to overestimate the actual risk
especially in high-risk but also in low-risk subgroups and
therefore they offer little information and guidance to the
clinicians’ judgment.4,5,29 Poor performance of current
models can be partially attributed to the fact that these
models require modeler input to specify complex interac-
tions among variables. For instance, the contribution of a
feature; for example, age, to the risk of mortality may not
be equal and constant across the spectrum of coexisting co-
morbidities and surgical procedures. Although simplified
models are associated with lower variance, they may also
result in miscalibrated estimates. Due to the need for
more precise and accurate risk predictions, the application
of ML approaches for the development of clinical predic-
tion rules has been increasingly investigated. Risk models
based on ML have mainly focused on mortality prediction
after cardiac surgery, but also on the development of other
adverse events such as acute kidney injury,30 major
bleeding,31 and prolonged ventilation.32

The potential advantage fromMLmodels over traditional
LR is their ability to capture nonlinearity and the
interactions among features without the need for the
modeler to manually specify all interactions, as needed
with LR. Moreover, compared with traditional statistical
methods, ML algorithms can handle missing data more
efficiently because they do not rely on data distribution as-
sumptions and are capable of more complex calculation.33

The present findings support the hypothesis that MLmodels
can achieve better discrimination in the prediction of
mortality after cardiac surgery when compared with LR.
However, a significant improvement with ML models was
demonstrated only when the best ML model from each
study was selected, thus pooling different type of ML
algorithms. When the analysis focused on individual ML
model categories, such an improvement was not significant.
This can be partially related to lower power of subgroup
analysis. However, this also support the so-called No
Free-Lunch theorem in ML,34 which states that there is no
1 model that works best for every problem or every dataset.
The assumptions of a good model for 1 problem may not
hold for another problem, so it is common in ML to try
multiple models and find 1 that works best for a problem.
This is because ML algorithms make some assumptions
(known as learning bias) about the relationships
between the predictor and target variables, introducing
bias into the model. The assumptions made by ML
algorithms mean that some algorithms will fit certain data
sets better than others.
The Journal of Thoracic and C
Therefore, the magnitude and clinical influence of
improvement using ML remains uncertain. ML
modeling needs far more events per variable to achieve a
stable C-statistic than LR and should only be considered
if very large data sets with many events are available.35

Both ML and LR models can perform poorly when the pre-
diction tool is developed using a data set that is small and/or
has a low incidence of events. Substantial gain in prediction
is unlikely to be determined by the application of ML
algorithms alone, in particular when we can rely on a small
subset of structured clinical data. Moreover, ML algorithms
tend to produce unsatisfactory classifiers when faced with
an imbalanced dataset, when the number of observations
belonging to 1 class is significantly lower than those
belonging to the other classes. This is because ML algo-
rithms are designed to maximize accuracy (ie, proportion
of correct predictions) and reduce error. However, in the
presence of class imbalance, ML models can predict the
value of the majority class for all predictions and achieve
a high classification accuracy, but this model may present
a high probability of misclassification of the minority class.
This is called accuracy paradox.36 In these cases, it may be
desirable to select a model with a lower accuracy because it
has a greater predictive power on the problem. Class imbal-
ance can be tackled with different strategies such as over-
and undersampling or algorithm-centered approaches that
modify the algorithm to favor its prediction toward the
less-represented class.37 The problem of class imbalance
may be particularly relevant whenML is applied for predic-
tion in cardiac surgery because the incidence of adverse
events is very low. For LR models, unbalanced training
data affects only the estimate of the model intercept which
can be corrected using a rare events correction to the inter-
cept.38 Moreover, traditional risk models are developed us-
ing structured dataset (ie, EuroSCORE or STS score).2,3

These databases contain only a restricted number of prespe-
cified variables limiting the capability of ML that may
perform best by exploiting high dimensional data from elec-
tronic medical records.39

Better quantification of mortality risk is likely to be asso-
ciated with the identification of other variables that explain
more of the variance observed. Moreover, as a significant
amount of patient data are available in unstructured formats
like images and clinical notes, modeling approaches (such
as deep learning) that can automatically extract novel fea-
tures from these sources represent an emerging and attrac-
tive strategy to significantly improve risk prediction and
provide reliable and objective tool in decision making.

Limitations
We focused on the performance of individual ML and LR

algorithms based on the same set of variables, all predictive
of the outcome of interest. Limiting the number of variables
in the ML models may have reduced their discrimination
ardiovascular Surgery c Volume -, Number - 11
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power. In fact, it is possible that some ML models can
further improve prediction using many variables without
incurring in overfitting, which is more frequent and detri-
mental for parametric models, such as LR.

Studies included a range of different cardiac surgical pro-
cedures and different populations from different continents
and this can cause significant variation in model
performance.

Five out of 15 studies had poor methodology and report-
ing.17,21,22,24,28 When studies at high risk of bias were
removed from the analysis the advantage from ML models
over LR was further reduced. Four studies out of 15 evalu-
ated model performance in terms of calibration (whether
risk estimates are accurate)17,20,22,27 and only 1 study as-
sessed clinical utility for decision making by decision curve
analysis,16 which is increasingly used in medical
applications.40

Also, all studies involving the use of ML to derive infor-
mation from images/signals were excluded and this may
have limited the benefit from applying ML approaches.

Moreover, reporting of articles that compare both types of
algorithms needs to improve. Correct validation procedures
are needed, with assessment of calibration and clinical utility
in addition to discrimination, to define situations where mod-
ern methods have advantages over traditional approaches.

CONCLUSIONS
The present meta-analysis showed that when compared

with LR, ML models achieved better discrimination ability
in predicting operative mortality after cardiac surgery.
However, the clinical implication of this finding remains
unclear.
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APPENDIX E1. METHODS
Search Strategy

The search strategy was the following: (cardiac surgery
or heart surgery) and (risk OR prediction OR mortality)
and (machine learning OR artificial intelligence OR deep
learningOR neural networkOR random forestOR decision
tree OR support vector machine). An AND statement was
used to connect 3 searches: 1 capturing artificial intelli-
gence, 1 cardiac surgery topic, and the last capturing risk
prediction and mortality. There was no restriction on the
publication date, but only articles written in English were
included.

Derivation of C-statistic When Not Reported
We derivedC-statistics fromGini coefficient (G) with the

following formulaE1):

c� statistic ¼ Gþ1

2

When only sensitivity and specificity were reported, we
first calculated the diagnostic odds ratio (DOR)E2:

DOR¼ sensitivity3specificity

ð1�sensitivityÞ3ð1�specificityÞ

and then derived the C-statisticE3:

c� statistic¼ DOR

ðDOR�1Þ2 ½ðDOR� 1Þ� lnðDORÞ�

Details of Bayesian Estimation Framework
Bayesian methods use formal probability models to ex-

press uncertainty about parameter values. This is particu-
larly relevant when confronting sparse data (ie, case-mix
variation) or multiple comparisons. Bayesian inference
consists of repeatedly sampling from a posterior distribu-
tion to get parameter estimates and their variance. Just
Another Gibbs SamplerE4 and Markov Chain Monte Carlo
simulation were used for sampling (details in Tables E1
to E3). TheMarkov ChainMonte Carlo sampling procedure
was based on the following parameters: number of
interactions ¼ 10.000, burn-in period ¼ 5000, number of
chains ¼ 4, nonuninformative normal prior for the mean
equal to 0 and a uniform prior for the between study vari-
ance of the pooled effect size bounded between 0 and
100. The convergence of all estimated Bayesian meta-
analysis models was verified by calculating the potential
scale reduction factor of the Gelman-Rubin statistic auto-
correlation of the sample (>1.05 indicative of nonconver-
gence).E4 Pooled C-statistics and 95% credibility interval
were directly obtained from the corresponding posterior
quantiles for machine learning and logistic regression;

models from the same validation sample. We also calcu-
lated a 95% prediction interval to depict the extent of
between-study heterogeneity. This interval provides a range
that likely contains a future prediction when the model is
applied to a new dataset.
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Additional records identified
through other sources

(n = 1)

Record abstract screened
after duplicates removed

(n = 323)

Records excluded due to
no use of machine

learning or no
pertinent topic

(n = 295)

Full-text articles assessed
for eligibility

(n = 28)

Full-text articles excluded, with reasons
(n = 13):

⁃ ML was not compared to LR (n = 8);
⁃ Outcome other than operative
   mortality (n = 4);
⁃ not specific to cardiac surgery (n = 1)

Studies included in
qualitative and qualitative

synthesis
(n = 15)

Records research updated
until Oct. 17th 2019

FIGURE E1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow chart of search strategy. ML, Machine learning; LR, logistic

regression.
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FIGURE E2. Funnel plot for assessment of small-study effect, obtained by plotting the C-statistics and the standard error for each study included.
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FIGURE E3. Forest plot comparing discrimination accuracy (ie, C-statistic) in mortality prediction by selecting machine learning (ML) models (top) with

best performance versus logistic regression (LR) in studies with high (left) and low risk of bias (right). ANN, Artificial neural networks; SVM, support vector

machine; DT, decision tree; RF, random forests.
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TABLE E1. Assessment of study risk of bias*

Author, y Item 1 Item 2 Item 3 Item 4 Item 5 Risk of bias

Nilsson, 2006E5 NO NO NO NO NO LOW

Ghavidel, 2014E6 NO NO NO NO NO LOW

Allyn, 2017E7 NO NO NO NO NO LOW

Mejia, 2018E8 NO NO NO NO NO LOW

Chong, 2003E9 NO NO NO UNCLEAR NO HIGH

Nouei, 2016E10 NO NO NO NO NO LOW

Nouei, 2014E11 NO NO NO NO NO LOW

Lippman, 1997E12 NO NO NO NO NO LOW

Mendes, 2015E13 NO NO UNCLEAR NO UNCLEAR HIGH

Tu, 1998E14 NO NO NO NO NO LOW

Jamaati, 2015E15 YES NO NO NO NO HIGH

Peng, 2008E4 NO YES NO NO NO HIGH

Macrina, 2009E16 NO YES NO NO NO HIGH

Celi, 2012E17 NO NO NO NO NO LOW

Rahman, 2012E18 NO NO NO NO NO LOW

*We considered a comparison at low risk of bias if the answer was NO for all 5 signalling items. If the answer was UNCLEAR or YES for at least 1 item, we assumed high risk of

bias. Item 1: Unclear or biased validation of model performance, item 2: Difference in data-driven variable selection before applying machine learning versus logistic regression,

item 3: Difference in handling of continuous variables before applying machine learning versus logistic regression, item 4: Different predictors considered for logistic regression

and machine learning algorithms; and item 5: Corrections for imbalanced outcomes where used only for logistic regression or only for machine learning algorithms.M
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TABLE E2. Description and graphical representation of machine learning (ML) model included in the studies

Model Description Graphical representation

Artificial neural networks The algorithm learns from processing many labeled

examples (ie, data with answers) that are supplied

during training and uses this answer key to learn what

characteristics of the input are needed to construct the

correct output. The basic unit of computation in a

neural network is the neuron, often called a node or

unit. It receives input from some other nodes, or from

an external source and computes an output. Each input

has an associated weight, which is assigned on the

basis of its relative importance to other inputs. Nodes

are arranged in layers. Neural network consists of 3

types of nodes that fall within 3 corresponding layers:

input layers (these nodes take input data [ie, numbers

and texts]); hidden layers (responsible for number

crunching [ie, mathematical operation] to detect

patterns data. There can be one or multiple hidden

layers), and output layer (takes input from the hidden

layer[s] to generate the desired output).E19

Decision trees Each decision tree is composed of nodes and branches.

The topmost decision node in a tree corresponds to the

best predictor called root node, which splits the

records into mutually exclusive classes. After the root

node, there are internal nodes, which lead to other

internal nodes or to�2 terminal leaf nodes. An item is

classified according to which leaf node is reached.E20
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TABLE E2. Continued

Model Description Graphical representation

Gradient boosting machine This model represents an ensemble of learning

algorithms combining multiple weak learners to build

a strong predictor tool to minimize the

misclassification between the predicted and the

observed values. The weak learners included in this

model can take any functional forms (eg, neural

networks, decision tree), but most commonly are tree-

based learners.E21

Support vector machine This model works by creating a decision boundary

between 2 classes and this enables classification

prediction. Each item from the training test is plotted

as a dot and the decision boundary, also called

“separating hyperplane” is identified. This line is

orientated so that it is as far as possible from the

closest data points of each class. Then, the lines

passing for the closest data to the hyperplane define

the maximum-margin hyperplane. The separating

hyperplane acts as the classifier and the testing data is

classified according to on which side of the line it

lands.E22
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TABLE E2. Continued

Model Description Graphical representation

Na€ıve Bayes This model is based on the Byes theorem. It is called

na€ıve because it assumes each feature contributes

independently to the probability of classification. The

final prediction of the model is the a priori probability

modified by the likelihood of each predictor.E23

Random forest This model represents an ensemble learning method that

aggregates a large number of decision trees. When

new input data are presented, each tree votes for a

category and the forest prediction is based on the

category that obtains the majority of the votes.E24
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TABLE E3. Description of calibration analysis

Study, y Calibration method Comment

Lippman, 1997E12 c2 test All machine learning and logistic regression models achieved a good calibration

with the exception in high risk patients, which was less represented

Jamaati, 2015E15 Hosmer-Lemeshow test of goodness of fit Both machine learning and logistic regression models proved to have a good

calibration

Celi, 2012E17 Hosmer-Lemeshow test of goodness of fit Both machine learning and logistic regression models proved to have a good

calibration

Peng, 2008E4 Hosmer-Lemeshow test of goodness of fit Both machine learning and logistic regression models proved to have a good

calibration
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When compared to logistic regression models, machine learning appears able to provide better

discrimination power in mortality prediction after cardiac surgery.
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