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In this paper, we propose a new model for the joint evolution of the inflation rate, the
Central Bank official interest rate and the short-term interest rate. Our model takes
into account the fact that the Central Bank interest rate changes at random times,
inflation is measured at fixed, regular times, while the short-term interest rate evolves
essentially continuously. We derive the valuation equation for a contingent claim and
show that it has a unique solution. The payoff may depend on all three economic factors
of the model and the discount factor is allowed to include inflation. Our model is not
an affine model. Although in some special cases the solution of the valuation equation
might admit a closed form, in general it has to be solved numerically. This can be done
efficiently by the algorithm that we provide. Taking as a benchmark the model of [H. W.
Ho, H. H. Huang & Y. Yildirim (2014) Affine model of inflation-indexed derivatives and
inflation risk premium, European Journal of Operational Research 235, 159–169], we
show that our model performs better on European market data from 2008 to 2015. Our
model uses many fewer parameters than the benchmark model: This is advantageous
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from the numerical point of view and suggests that our model describes the behavior of
the economic factors more closely.

Keywords: Inflation; interest rates; inflation-linked derivatives.

1. Introduction

Ever since the 1980s, many models have been proposed to describe the short-term
interest rate dynamics. Only more recently, however, there have been attempts to
consider models that incorporate macroeconomic factors. In fact, there is an empir-
ical and theoretical evidence that bond prices, inflation, interest rates, monetary
policy, and output growth are related. See Akram & Li (2020) for a recent discus-
sion of the role of interest rates. In addition, since the early 2000s, many countries
have started issuing inflation-linked bonds and inflation-linked derivatives. Typical
examples are inflation indexed swaps, which allow to exchange the inflation rate for
a fixed interest rate, or inflation caps, which pay out if the inflation exceeds a certain
threshold over a given period (for a detailed introduction to inflation derivatives,
see, e.g. Deacon et al. (2004)).

In their much-cited work of 2003, Jarrow & Yildirim (2003) proposed an
approach to the evaluation of inflation indexed bonds and derivatives based on for-
eign currency and interest rate derivatives’ valuation. Many other models appeared
in the following years (Belgrade et al. (2004), Dodgson & Kainth (2006), Stew-
art (2007), Brody et al. (2008), Hinnerich (2008), just to mention a few). See also
Hughston (1998).

Singor et al. (2013) formulated a Heston-type inflation model in combination
with a Hull–White model for interest rates, with nonzero correlations. Eksi & Fil-
ipovic (2014) described the nominal and the real short rate, and the logarithm
of the price index with an affine Gaussian process, and they fit the model to the
U.S. bond market data. Grishchenko et al. (2016) also proposed a Gaussian process
model. D’Amico et al. (2009, 2018), Ho et al. (2014) and Waldenberger (2017) con-
sidered affine models with hidden stochastic factors. Chuang et al. (2018) provided
a study of U.S. Treasury Inflation-Protected Securities (TIPSs), based on building a
Heath–Jarrow–Morton forward-rate economy with inflation and interest-rate jumps.

Discrete time models have also been proposed: Hughston & Macrina (2008)
considered a discrete time model based on utility functions; Haubric et al. (2012)
developed a discrete time model of nominal and real bond yield curves based on
several stochastic drivers.

In this work, we propose a model for the joint evolution of the inflation rate,
the Central Bank (CB) official interest rate and the short-term interest rate. To the
best of our knowledge, ours is the first model that takes into account the interaction
among all these three factors. With the 2007–2008 financial crisis, it has become
clear that there is another risk factor underlying bond prices, namely credit risk,
but we leave the construction of a model that incorporates this factor for future
work.
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Our model is a continuous time one, with the CB interest rate jumping at random
times, inflation jumping at fixed, regular times and the short-term interest rate
evolving continuously. In fact, inflation measurements are usually available monthly,
while inflation-linked bond and derivative prices are available daily. Ho et al. (2014)
used weekly data as a compromise between the two different frequencies. One of the
novelties of this work is that, rather than artificially matching the two frequencies,
we keep both of them, approximating the daily time scale by continuous time.

More precisely, the CB interest rate evolves as a pure jump process with jump
intensity and distribution that depend both on its current value and on the current
value of inflation. The inflation rate is modeled as a piecewise constant process that
jumps at fixed times ti. The new value at ti is given by a Gaussian random variable
with expectation depending on the previous value of the inflation rate and on the
current value of the CB interest rate. Finally, the short-term interest rate follows a
CIR type model with reversion towards an affine function of the CB interest rate and
diffusion coefficient depending on the spread between itself and the CB interest rate.

Our model does not fall within the class of affine models, and does not reduce
to other known models. Therefore, some mathematical work is needed to study it,
in particular to derive the valuation equation for the price of a derivative and to
show that it has a unique solution. In fact the proof relies on a general result by
Costantini et al. (2012) on valuation equations for jump-diffusion underlyings. The
derivative payoff may depend on all three economic factors of the model and the
discount factor is allowed to include inflation (see Remark 3.1). Although in some
special cases the price might admit a closed form, or might be approximated by
a closed form (see, e.g. Antonacci et al. (2021)), in general it has to be computed
numerically, but this can be done efficiently by the numerical algorithm described
in Appendix C.

We compare our model to the well known model of D’Amico et al. (2009)–(2018)
and Ho et al. (2014). We calibrate both models using cross-sectional Zero-Coupon
Inflation-Indexed Swap (ZCIIS) prices from the European market for various matu-
rities, and we consider, for each model, the error between the prices computed with
the calibrated model and the market prices.

The error in our model is significantly lower (see Tables 1 and 2). Moreover,
our model requires many fewer parameters than the Ho et al. (2014) model: This
is advantageous from the numerical point of view and suggests that our model
describes more closely the behavior of the economic factors. In fact, our model is
not a “black box” one, but attempts to capture the interactions among the three
factors.

Besides valuating derivatives, our model can be used to estimate the short term
interest rate — which is not directly observable — from market data: the latter is
done in Antonacci et al. (2021).

This paper is organized as follows. In Sec. 2, we introduce the mathematical
model, specified under a risk neutral measure. In Sec. 3, we derive the valuation
equation. Proofs are postponed to Appendix B. The general result by Costantini
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et al. (2012) is recalled in Appendix A. In Sec. 4, we compare our model to the model
of Ho et al. (2014): We calibrate both models to the market prices of ZCIIS from
January 2008 to October 2015 and measure the performances of the two models
in fitting the market data (Table 1). We also carry out the same analysis for the
period January 2008–October 2011, when, due to the subprime crisis, interest rates
dropped drastically and rapidly (Table 2). In both periods, our model yields a
significant improvement in the error measures.

2. The Model

Figure 1 plots the European Central Bank interest rate together with the inflation
rate between 2007 and 2015. The primary goal of the CB is to maintain price
stability, i.e. to keep inflation within a desired range (close to 2%). The inflation
target is achieved through periodic adjustments of the CB official interest rate and,
consequently, of the short-term interest rate. The goal of this paper, and specifically
of this section, is to formulate a dynamical model that describes the interactions
among inflation, the CB and the short-term interest rates.

From now on, we fix the probability space (Ω,F ,P), where P is a martingale
measure.

2.1. Inflation

Inflation data are officially made known at regular, fixed dates, hence we model
the inflation rate as a stochastic process that jumps at fixed times, with jump sizes

Fig. 1. Evolution of the official European Central Bank interest rate and the Euribor interest rate
from March 2007 to October 2015.
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depending on its previous value and on the official CB interest rate, and is constant
between two jumps.

Specifically, with the usual convention that one year is an interval of length one,
let T := {ti}i≥0,...,M be the sequence of times at which the values of the inflation
rate process {Π(ti)}ti∈T are observed, where t0 = 0, t1 = 1

12 and, for i ≥ 2, ti = it1.
The evolution is then given by⎧⎪⎪⎨⎪⎪⎩

Π(0) = Π0,

Π(t) = Π(ti), ti ≤ t < ti+1,

Π(ti+1) = γ(Π(ti), R(t−i+1)) + εi+1, t = ti+1,

(2.1)

where γ is a linear function defined by

γ(π, r) = απ + kΠ(π∗ − π) + βr = (α− kΠ)π + kΠπ∗ + βr, (2.2)

with α, β ∈ R and kΠ, π∗ ∈ R+ constant parameters such that 0 < α− kΠ < 1.
The fluctuations {εi}i=1,...,M are i.i.d. random variables distributed according

to the N (0, v2) law, and R(t), for t ∈ [0, T ], is the interest rate process which will
be described in Sec. 2.2.

We can see that

γ(π, r) = π + (kΠ − α+ 1)
[
kΠπ∗ + βr

kΠ − α+ 1
− π)

]
(2.3)

and hence the condition 0 < α − kΠ < 1 yields that the process Π satisfies the
mean-reversion property towards kΠπ∗+βr

kΠ−α+1 .

2.2. Central bank interest rate

Looking at Fig. 1, we can recognize some important facts about the CB interest
rate. The level of the rate is persistent, hence the sample path is a step function;
The changes are multiples of 25 basis points (bp); A change is often followed by
additional changes, frequently in the same direction. Therefore, we model the CB
interest rate, R(t), as a continuous time, pure jump process with finitely many
possible upward and downward jump values. These jumps occur at random times
{ϑi}, and their size is equal to kδ with δ = 0.0025 and k ∈ {−m, . . . ,−1, 1, . . . ,m}.
The jump intensity, λ, is a function of the current values of inflation and the CB
interest rate (when the level of the official interest rate is low, there is a tendency
to avoid further downward jumps). The probability of occurrence of a jump kδ also
depends upon the current values of inflation and the CB interest rate, i.e. it is a
function p(π, r, kδ).

Since, by definition, an interest rate is always larger than −1, we can assume,
without loss of generality, R(t) > r, r ≥ −1, for all t > 0. In addition, we suppose
that there exists a maximum value 0 < r < +∞ such that R(t) < r, for all t > 0.
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Consistently, we assume that

p(π, r, kδ) = 0 for r + kδ /∈ (r, r), (2.4)

and that

λ := sup
(π,r)∈R×(r,r)

λ(π, r) < +∞. (2.5)

Of course we suppose that∑
k∈{−m,...,−1,1,...,m}

p(π, r, kδ) = 1, ∀π ∈ R, r ∈ [r, r]. (2.6)

Moreover in view of Sec. 3, we will make the following additional assumptions on
p(·, ·, kδ) and λ = λ(·, ·): For k = −m, . . . ,−1, 1, . . . ,m,

p(·, ·, kδ) and λ = λ(·, ·) are continuous on R × [r, r] (2.7)

and

p(π, ·, kδ) has a finite left derivative at r − kδ,

p(π, ·,−kδ) has a finite right derivative at r + kδ.
(2.8)

An equivalent way of describing this jump process is to think that the process jumps
with constant intensity λ, but the jump can be zero with probability

q(π, r, 0) := 1 − λ(π, r)
λ

, (2.9)

or can be kδ with probability

q(π, r, kδ) :=
p(π, r, kδ)λ(π, r)

λ
, k = −m, . . . ,−1, 1, . . . ,m. (2.10)

Then we can consider the CB interest rate as the solution of the following stochastic
equation:

R(t) = R0 +
∫ t

0

J(Π(s−), R(s−), UN(s−)+1)dN(s), (2.11)

where N = N(t) is a Poisson process with intensity λ, {Un}n≥0 are i.i.d. [0, 1]-
uniform random variables, independent of N , and

J(π, r, u) := −mδ1(0,1](q(π, r,−mδ))1[0,q(π,r,−mδ)](u)

+
m∑

k=−m+1

kδ1(0,1](q(π, r, kδ))1(
Pk−1

h=−m q(π,r,hδ),
Pk

h=−m q(π,r,hδ)(u),

(2.12)

for all u ∈ [0, 1], the probabilities q being defined by (2.9), (2.10).
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2.3. Short-term interest rate

As in many interest rate models in the literature, we suppose that the evolution of
the short-term interest rate, Rsh, is a mean-reverting Ito process with coefficients
depending on the CB interest rate, R, and hence indirectly on the inflation Π as
well. More precisely, we suppose that Rsh satisfies the following equation:{

dRsh(t) = ksh(b(R(t)) −Rsh(t))dt + σ(|R(t) −Rsh(t)|2)
√
|Rsh(t)|dW (t),

Rsh(0) = Rsh
0 ,

(2.13)

where ksh ∈ R+ is a constant parameter and {Wt}t∈[0,T ] is a standard Wiener
process. The function b(r) is defined by

b(r) = b0 + b1r, (2.14)

where b0, b1 ∈ R are constant parameters and inf(r,r) b(r) > 0. The volatility coeffi-
cient σ is allowed to depend on the spread between Rsh and R, so as to model, for
instance, the fact that higher values of the spread may lead to higher volatility of
Rsh. In view of Sec. 3, the square of σ, σ2, satisfies the following assumptions:

σ2 ∈ C2([0,∞)), (2.15)

0 < σ2
0 ≤ σ2(q) ≤ σ1(1 +

√
q), q ∈ [0,+∞). (2.16)

For instance, one can take

σ(q) = (1 + q)1/4. (2.17)

We can assume, without loss of generality, that σ(q) > 0 for all q.
Finally, in analogy to the CIR model, we assume that

ksh inf
(r,r)

b(r) >
1
2
σ2(r − (r ∧ 0)). (2.18)

2.4. Well-posedness of the model

We suppose that the sources of randomness in (2.1), (2.11) and (2.13), that is
{εi}1≤i≤M , {N(t)}t≥0, {Un}n≥1 and {W (t)}t≥0, are mutually independent. All
information is given by the following filtration:

Ft := σ({Π0, R0, R
sh
0 , εI(s), N(s),W (s), UN(s), s ≤ t}), (2.19)

where I(s) is the number of jumps of inflation up to time s, namely,

I(s) := max{i ≥ 0 : ti ≤ s}, s ≥ 0. (2.20)

The model introduced in Secs. 2.1–2.3 is well posed, in the sense that there exists
one and only one stochastic process (Π, R,Rsh) verifying (2.1), (2.11) and (2.13),
as stated precisely in the following theorem, which is proven in Appendix B.

Theorem 2.1. For every triple of R× (r, r)× (0,+∞)-valued r.v.’s (Π0, R0, R
sh
0 ),

there exists one and only one stochastic process (Π, R,Rsh) defined on (Ω,F ,P),
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{Ft}-adapted, such that (2.1), (2.11) and (2.13) are P-a.s. verified. It holds Rsh(t) >
0 for all t ≥ 0, almost surely.

Proof. See Appendix B.

3. The Valuation Equation

In this section, we derive the valuation equation for a contingent claim with maturity
T and payoff

Y (T )pΦ(Π(T ), R(T ), Rsh(T )), p ≥ 0, (3.1)

where Y is the inflation index, i.e.

Y (t) = exp
(∫ t

0

Π(s)ds
)
. (3.2)

It is well known that, under a risk neutral measure, the price P (t) of such a con-
tingent claim can be expressed as the expected discounted payoff, namely,

P (s) = E

[
exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs

]
, (3.3)

where Fs is given by (2.19).

Remark 3.1. Note that the form (3.1)–(3.2) allows to consider a real discount
factor, i.e. a discount factor that takes into account inflation. In fact

E

[
exp

(
−
∫ T

s

(Rsh(u) − Π(u))du

)
Φ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs

]

=
1

Y (s)
E

[
exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )Φ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs

]
. (3.4)

Due to the Markov property of (Y,Π, R,Rsh),

P (s) = ϕ(s, Y (s),Π(s), R(s), Rsh(s)), (3.5)

where

ϕ(s, y, π, r, z)

= E

[
exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣∣(Y (s),Π(s), R(s), Rsh(s)) = (y, π, r, z)

]
. (3.6)

We assume that Φ is continuous and satisfies

|Φ(π, r, z)| ≤ C0e
C1|π|(1 + z), π ∈ R, r ∈ (r, r), z > 0, (3.7)
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for some constants C0, C1 ≥ 0. Supposing that tM ≤ T < tM+1, we are going to
show (Proposition 3.3) that

ϕ(s, y, π, r, z) =

⎧⎪⎪⎨⎪⎪⎩
ypep(T−s)πϕM (s− tM , π, r, z), tM ≤ s ≤ T,

ypep(ti+1−s)πϕi(s− ti, π, r, z), ti ≤ s < ti+1,

i = 0, . . . ,M − 1,

(3.8)

where (Theorem 3.4) for each inflation value, π, ϕi(·, π, ·, ·) is the unique solution of
a terminal value problem for an equation that can be viewed as a simple parabolic
Partial Integro-Differential Equation (with coefficients depending on the parameter
π). The equation is the same for all i’s, but the terminal value is different for each i:
it is Φ for ϕM and it is defined recursively from ϕi+1(0, ·, ·, ·), for ϕi, i = 0, . . . ,M−1.
As shown in Appendix C, this sequence of parametric terminal value problems can
be solved numerically in an efficient way.

To carry out our program, we introduce the parametrized process (Rπ, Rsh,π),
obtained by “freezing” the inflation rate.

Proposition 3.2. Let (N, {Un},W ) be as in Theorem 2.1. For each π ∈ R, for each
(r, r) × (0,∞)-valued random variable (Rπ

0 , R
sh,π
0 ), independent of (N, {Un},W ),

there exists a unique strong solution of the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rπ(t) = Rπ
0 +

∫ t

0

J(π,Rπ(s−), UN(s−)+1)dN(s),

Rsh,π(t) = Rsh,π
0 +

∫ t

0

ksh(b(Rπ(s)) −Rsh,π(s))ds

+
∫ t

0

σ(|Rπ(s) −Rsh,π(s)|2)
√
|Rsh,π(s)|dW (s).

(3.9)

In addition, it holds

Rπ(t) ∈ (r, r), Rsh,π(t) > 0, ∀ t ≥ 0. (3.10)

The solution corresponding to (Rπ
0 , R

sh,π
0 ) = (r, z) will be denoted by (Rπ

r , R
sh,π
(r,z)).

Proof. The proof is analogous to the proof of Theorem 2.1.

The following property of (Rπ, Rsh,π) will be used for the recursion.

Lemma 3.1. For any continuous function f : R × (r, r) × (0,∞) → R satisfy-
ing (3.7) and any T > 0,

E[e−
R

T−t
0 Rsh,π

(r,z)(u)du|f(π,Rπ
r (T − t), Rsh,π

(r,z)(T − t))|] <∞,

∀(π, r, z), ∀ 0 ≤ t ≤ T (3.11)

and the function

F (t, π, r, z) = E[e−
R T−t
0 Rsh,π

(r,z)(u)duf(π,Rπ
r (T − t), Rsh,π

(r,z)(T − t))] (3.12)

2150042-9
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is continuous on [0, T ] × R × (r, r) × (0,∞) and satisfies (3.7) uniformly for
t ∈ [0, T ].

Proof. See Appendix B.

For a continuous function f : R × (r, r) × (0,∞) → R such that

|f(π, r, z)| ≤ C0e
C1|π|(1 + z), (3.13)

let ε be a Gaussian variable with mean zero and variance v2 and set

Bf(π, r, z) = E[f(γ(π, r) + ε, r, z)]

=
1√
2πv

∫
R

f(γ(π, r) + u, r, z) exp
(
− u2

2v2

)
du, (3.14)

where γ is defined in (2.2).
Note that

E[eC1|γ(π,r)+ε|] ≤ eC1|βr+kΠπ∗|eC1(α−kΠ)|π|
E[eC1|ε|] <∞, (3.15)

so that Bf is continuous, by dominated convergence, and verifies the growth con-
dition (3.7), i.e.

|Bf(π, r, z)| ≤ C′
0e

C′
1|π|(1 + z). (3.16)

Proposition 3.3. Let ϕ be the function defined by (3.6), tM ≤ T < tM+1. Then

ϕ(s, y, π, r, z) =

⎧⎪⎪⎨⎪⎪⎩
ypep(T−s)πϕM (s− tM , π, r, z), tM ≤ s ≤ T,

ypep(ti+1−s)πϕi(s− ti, π, r, z), ti ≤ s < ti+1,

i = 0, . . . ,M − 1,

(3.17)

where the functions ϕi are defined recursively in the following way:

ϕM (t, π, r, z)

= E

[
e
−

R T−tM −t

0 Rsh,π
(r,z)(u)duΦ(π,Rπ

r (T − tM − t), Rsh,π
(r,z)(T − tM − t))

]
,

0 ≤ t ≤ T − tM , (3.18)

ϕM−1(t, π, r, z)

= E

[
e
−

R t1−t
0 Rsh,π

(r,z)(u)du
B(ep(T−tM )·ϕM (0, ·, ·, ·))(π,Rπ

r (t1 − t), Rsh,π
(r,z)(t1 − t))

]
,

0 ≤ t ≤ t1, (3.19)

and

ϕi(t, π, r, z)

= E

[
e
−

R t1−t
0 Rsh,π

(r,z)(u)du
B(ept1·ϕi+1(0, ·, ·, ·))(π,Rπ

r (t1 − t), Rsh,π
(r,z)(t1 − t))

]
,

0 ≤ t ≤ t1 (3.20)

for i = 0, . . . ,M − 2.
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Proof. See Appendix B.

For an R-valued diffusion process X with time-independent coefficients b and
σ, we know, by the Feynman–Kac formula, under suitable assumptions, that the
function

ψ(t, x) = E

[
exp

(
−
∫ T−t

0

Xx(s)ds

)
Ψ(Xx(T − t))

]
, (3.21)

where Xx is the process starting at x, is of class C1,2 and satisfies

∂ψ

∂t
(t, x) + b(x)

∂ψ

∂x
(t, x) +

1
2
σ2(x)

∂2ψ

∂x2
− xψ(t, x) = 0, 0 ≤ t < T, x ∈ R,

(3.22)

ψ(T, x) = Ψ(x), x ∈ R. (3.23)

By analogy, we consider, for each fixed π, for each function ϕi(·, π, ·, ·) defined
in Proposition 3.3, the following equation, which reflects the dynamics of
(Rπ

(r,z), R
sh,π
(r,z)):

∂ψ

∂t
(t, r, z) + ksh(b(r) − z)

∂ψ

∂z
(t, r, z) +

1
2
σ2(|r − z|2)z ∂

2ψ

∂z2
(t, r, z)

+λ

m∑
k=−m

[ψ(t, r + kδ, z)− ψ(t, r, z)]q(π, r, kδ) − zψ(t, r, z) = 0, (3.24)

with terminal conditions

ψ(T − tM , ·, ·) = Φ, for ϕM ,

ψ(t1, ·, ·) = B(ep(T−tM )·ϕM (0, ·, ·, ·)), for ϕM−1,

ψ(t1, ·, ·) = B(ept1·ϕi+1(0, ·, ·, ·)), for ϕi, i = 0, . . . ,M − 2.

(3.25)

(3.24)–(3.25) is not a standard partial differential equation and it is not clear
whether it admits a classical solution. However it turns out that (3.24)–(3.25) admits
a unique viscosity solution, which is enough to solve it numerically with the algo-
rithm of Appendix C. As mentioned in the Introduction, we will obtain existence
and uniqueness of the viscosity solution to (3.24)–(3.25) from a general result for
valuation equations for contingent claims written on jump-diffusion underlyings
proved in Costantini et al. (2012) and summarized in Appendix A. Since the state
space of (3.24)–(3.25) is unbounded, as usual in the literature, uniqueness will hold
in the class of functions with a prescribed growth rate.

Theorem 3.4. Let ϕ be the function defined by (3.6), where the payoff is given
by (3.1)–(3.7), and let ϕi be the functions defined in Proposition 3.3. Then: For
i = 0, . . . ,M, for each π ∈ R, the function ϕi(·, π, ·, ·) is the unique viscosity solution
of Eqs. (3.24)–(3.25) satisfying the growth condition (3.7), uniformly in time.
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Proof. The proof can be found in Appendix B.

4. Calibration to ZCIIS and Comparison with a Benchmark Model

We consider the affine-based, stochastic factor model of Ho et al. (2014) as our term
of comparison. Actually, a setting such as theirs can be considered as a benchmark
in empirical studies, as suggested by Duffie et al. (2000).

The comparison is focused on Inflation-Indexed Swaps which are swap con-
tracts whose payoffs are linked to a specific inflation index. These instruments are
mainly used for an inflation-risk-exposed investor to hedge against (or exchange)
the inflation-risk undertaken. Among these derivatives, ZCIIS are the most actively
traded instruments and their quotations have been proven to provide additional
information on inflation expectation.

A ZCIIS contract is a bilateral agreement that enables an investor or a hedger
to secure an inflation-protected return with respect to an inflation index. The infla-
tion receiver pays a predetermined fixed rate, and receives from the inflation seller
inflation-linked payments. In the ZCIIS, starting at time t0, with final time T > t0,
and nominal amount N , the fixed-leg payer pays N [(1 + KZCIIS(t0, T ))T−t0 − 1]
when the contract matures, KZCIIS(t0, T ) being the contract fixed rate correspond-
ing to the quotation in the market. The floating-leg payer pays N [Y (T )/Y (t0)−1],
where Y (t) is the value of the inflation index at time t.

Following Ho et al. (2014) and also Mercurio (2005), by normalizing the nominal
amount of the contract to be 1, under the usual no arbitrage condition, the fair swap
rate for the ZCIIS starting at time t0, with maturity T , is given by

KZCIIS(t0, T ) =
[
PR(t0, T )
PN (t0, T )

]1/(T−t0)

− 1, (4.1)

where PN (t0, T ) denotes the price of the nominal zero-coupon, i.e. the zero-coupon,
starting at t0, that pays 1 at the maturity T , and PR(t0, T ) denotes the price of the
real zero-coupon, i.e. the zero-coupon, starting at t0, that pays Y (T )/Y (t0) at the
maturity T .

4.1. Valuation of a ZCIIS in the benchmark model

In Ho et al. (2014), the authors assume an affine-based model with an n-dimensional
latent state vector X(t) specified by a vector Vasicek process (see Duffie et al.
(2000)):

dX(t) = K(μ−X(t))dt+ ΣdW (t), (4.2)

where K, Σ are n×n constant matrices, μ is a n×1 vector andW is an n-dimensional
Wiener process. This implies that the state variable vector is mean-reverting with
constant volatility. Following the specifications of D’Amico et al. (2018), the price of
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the real zero-coupon bond from t to T and its nominal counterpart can be expressed
as

PJ (t, T ) = exp(AJ (T − t) + 〈BJ(T − t), X(t)〉), J = R,N, (4.3)

where AJ (τ), BJ(τ) solve a system of Riccati-type differential equations, whose
coefficients involve the parameters K, μ and Σ in (4.2) and other ones. We refer
readers to Sec. 2.2, p. 161 in Ho et al. (2014) for a detailed description of their
model. By (4.3), (4.1) takes the form

KZCIIS(t0, T ) = exp
(
AR(T − t0) −AN (T − t0)

T − t0

+
〈
BR(T − t0) −BN (T − t0)

T − t0
, X(t0)

〉)
− 1. (4.4)

Thus, for each set of values of the parameters of the model, the ZCIIS rate can be
computed by solving numerically the systems of Riccati-type differential equations.

4.2. Valuation of a ZCIIS in our model

In order to implement the comparison, we deduce the ZCIIS rate under our modeling
technique. We shall use the notation (·)model to refer to our model and we assume
that the nominal value of the contract is 1. In our model, the nominal zero-coupon
bond price is given by

Pmodel
N (t0, T ) = E[e−

R
T
t0

Rsh(s)ds | Ft0 ] (4.5)

and the real zero-coupon bond price is given by

Pmodel
R (t0, T ) =

1
Y (t0)

E[e−
R T

t0
Rsh(s)ds

Y (T ) | Ft0 ]. (4.6)

With the notation of Sec. 3, Pmodel
N (t0, T ) is the price of a derivative with payoff

of the form (3.1)–(3.2) with p = 0 and Φ(π, r, z) = 1, while Pmodel
R (t0, T ) is 1

Y (t0)

times the price of a derivative with payoff of the form (3.1)–(3.2) with p = 1 and
Φ(π, r, z) = 1. Therefore, for each set of values of the parameters of the model, both
Pmodel

N (t0, T ) and Pmodel
R (t0, T ) can be computed by solving numerically the system

of partial differential equations (3.24)–(3.25). Kmodel
ZCIIS (t0, T ) can then be evaluated

by (4.1).
An efficient numerical scheme to solve the system of partial differential equa-

tions (3.24)–(3.25) is described in Appendix C.

4.3. Numerical tests

We use financial market data for ZCIIS swap rates, which exist for the biggest Euro-
pean Monetary Union countries, and provide a valuable source of information. The
dataset is provided by the Bloomberg platform and covers the period of time Jan
2008 to Oct 2015 with a wide range of maturities (from 1 to 30 years). Specifically,
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we consider a ZCIIS for the aggregate euro area which uses the Harmonized Index
of Consumer Prices (HICP) as an indicator of inflation (excluding tobacco). The
HICP index is available monthly and is obtained by Eurostat. For each month in
the sample period, we consider the day where the HICP index is observed and we
perform a cross-sectional estimation against the market swap rates for all maturities
available in the dataset.

We use two discrepancy measures documented in several works in the litera-
ture: the root mean-square error (RMSE) and the average relative prediction error
(ARPE). They are defined as follows:

ARPE(tj) =
1
I

I∑
i=1

|K(tj, tj + Ti) −Kmarket
ij |

Kmarket
ij

, (4.7)

RMSE(tj) =

√√√√ I∑
i=1

|K(tj , tj + Ti) −Kmarket
ij |2

I
, (4.8)

where K(tj , Ti) is the model implied swap rate at day tj , for the maturity tj + Ti,
for i = 1, . . . , I, for j = 1, . . . , J .

For each model and for every tj , we find an estimate for the model parameters
by minimizing RMSE + (tj).

In order to compare the performances of the two models, for each of them, we
compute the above error measures using the estimated parameters and we take the
average value over {tj}:

ARPE =
1
J

J∑
j=1

ARPE(tj), (4.9)

RMSE =
1
J

J∑
j=1

RMSE(tj). (4.10)

Concerning the parameters, for the Ho et al. (2014) model, following D’Amico et al.
(2018) we use the following specification of the coefficients for the latent factor
process X(t):

μ =

⎡⎢⎣0

0

0

⎤⎥⎦, Σ =

⎡⎢⎣0.01 0 0

σ21 0.01 0

σ31 σ32 0.01

⎤⎥⎦, K =

⎡⎢⎣κ11 0 0

0 κ22 0

0 0 κ33

⎤⎥⎦. (4.11)

Hence, σ21, σ31, σ32, κ11, κ22, κ33 are the parameters to be estimated. In addition, in
the Riccati-type equations to be solved numerically, there are 11 more parameters.
As usual in a cross-sectional estimation, the value of the state variable X(tj) is
considered as a parameter in the model and is estimated jointly with all other
parameters. Thus, altogether there are 20 parameters to be calibrated.
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In our model, for the inflation index, in Eq. (2.2), we set

α = 1, π� = ln(1.02), v = σΠ, (4.12)

where σΠ is the historical standard deviation of the monthly increments of the
inflation rate determined by the HICP index, and we estimate the parameters

β, kΠ. (4.13)

For the CB rate (Sec. 2.2), we choose

r = 0.05%, r = 4.5%, m = 1, δ = 0.25%, (4.14)

and the probabilities q as

q(π, r, δ) =
[(

1
0.3σΠ

(
π − (π∗ + 0.2σΠ)

))
+

∧ 1
][(

1
3δ
(
(r − δ) − r

))
+

∧ 1
]
,

(4.15)

q(π, r,−δ) =
[(

1
0.3σΠ

(
(π∗ − 0.2σΠ) − π

))
+

∧ 1
][(

1
3δ
(
r − (r + δ)

))
+

∧ 1
]
,

(4.16)

q(π, r, 0) = 1 − q(π, r, δ) − q(π, r,−δ), (4.17)

and we estimate λ. Finally, for the short-term interest rate, we take the function σ
constant, σ = σ0, and we estimate all the parameters of equation (2.13):

ksh, σ0, b0, b1, (4.18)

with the constraints

ksh > 0, σ0 > 0, ksh
(
b0 + b1r

)
>

1
2
σ2

0 , ksh
(
b0 + b1r

)
>

1
2
σ2

0 . (4.19)

In addition, the value of Rsh(tj) is considered as a parameter in the model and
is estimated jointly with all other parameters. Thus altogether, there are eight
parameters to be calibrated.

We compare the performances of our model and of the model of Ho et al. (2014)
in two periods: the whole period ranging from January 2008 to October 2015, and
the period from January 2008 to November 2011, when, due to the subprime crisis,
interest rates dropped from over 5% to less than 0.5% (see Fig. 1). The results are
summarized in Tables 1 and 2, respectively.

Table 1. Error measures ARPE and RMSE for
the period January 2008–October 2015 evalu-
ated for our model and the Ho et al. (2014)
model. The inflation swap rates in the sample
are expressed in percentage.

RMSE ARPE

Our model 0.1679 0.01098
Ho et al. model 0.3146 0.02101
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Table 2. Error measures ARPE and RMSE for
the period January 2008–October 2011 evalu-

ated for our model and the Ho et al. (2014)
model. The inflation swap rates in the sample
are expressed in percentage.

RMSE ARPE

Our model 0.19741 0.004972
Ho et al. model 0.4271 0.01076

5. Conclusions

We have proposed a new model for the joint evolution of the inflation rate, the CB
interest rate and the short-term interest rate. We have derived a valuation equation
that allows us to price inflation-linked derivatives by a numerical algorithm. We have
compared our model to one of the best known models in the literature (D’Amico
et al. (2018) and Ho et al. (2014)): Calibrating both models to the same market
data (ZCIIS from 2008 to 2015), the performance of our model in fitting the data
appears to be significatively better than the model of Ho et al. (2014). Moreover,
our model involves only factors with a clear economic interpretation and employs
far fewer parameters than the benchmark model.

In the future, we hope to look for faster numerical methods and for special cases
in which a closed valuation formula are available.

Some research perspectives opened by our model are evaluating more sophisti-
cated fixed-income derivative instruments, for example credit risk derivatives, and
embedding parts of our model in a model where the CB interest rate is viewed as
part of a strategy of the monetary policy decision maker.

Appendix A. Viscosity Solutions of Integro-Differential Valuation
Equations

For the convenience of the reader, we summarize here a general result of Costantini
et al. (2012), on which the proof of Theorem 3.4 relies. Connections between vis-
cosity solutions of certain equations and the characterization of Markov processes
have been studied in Costantini & Kurtz (2015) and in Costantini & Kurtz (2019).

Costantini et al. (2012) considered a general equation of the form{
∂tψ(t, x) + Lψ(t, x) − c(x)ψ(t, x) = g(t, x), (t, x) ∈ (0, T )×D,

ψ(T, x) = Ψ(x), x ∈ D,
(A.1)

with

Lf(x) = ∇f(x)b(x) +
1
2
tr(∇2f(x)a(x)) +

∫
D

[f(x′) − f(x)]m(x, dx′), (A.2)
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where D is a (possibly unbounded) starshaped open subset of R
d. The coefficients

and data are assumed to satisfy the following conditions:

(H1) a : D → R
d×d is of the form a = σσT , with a = (ai,j)i,j=1,...,d, where ai,j ∈

C2(D), and b : D → R
d is Lipschitz continuous on compact subsets of D.

(H2) Denoting by M(D) the space of finite Borel measures on D, endowed with
the weak convergence topology, m : D → M(D) is continuous and

sup
x∈D

∣∣∣∣∫
D

f(x′)m(x, dx′)
∣∣∣∣ <∞, ∀ f ∈ Cc(D). (A.3)

(H3) There exists a nonnegative function V ∈ C2(D), such that∫
D

V (x′)m(x, dx′) < +∞, ∀x ∈ D,

LV (x) ≤ C(1 + V (x)), ∀x ∈ D,

(A.4)

lim
x∈D,x→x0

V (x) = +∞, ∀x0 ∈ ∂D, lim
x∈D,|x|→+∞

V (x) = +∞, (A.5)

(H4) g ∈ C([0, T ] ×D), c, ψ ∈ C(D), and c is bounded from below. There exists a
strictly increasing function l : [0,+∞) → [0,+∞), such that

s 
→ sl(s) is convex, lim
s→+∞

l(s) = +∞, (A.6)

(s1 + s2)l(s1 + s2) ≤ C(s1l(s1) + s2l(s2)), ∀ s1, s2 ≥ 0, (A.7)

and the following holds:

|g(t, x)|l(|g(t, x)|) ≤ CT (1 + V (x)), (A.8)

|Ψ(x)|l(|Ψ(x)|) ≤ C(1 + V (x)), (A.9)

for all (t, x) ∈ [0, T ]×D.

We recall the definition of viscosity solution, in the present set up.

Definition A.1. A viscosity solution of equations (A.1) to (A.2) is a continuous
function ψ defined on [0, T ]×D such that

ψ(T, x) = Ψ(x), x ∈ D, (A.10)

and, for each x ∈ D, t ∈ [0, T ):

• for every f ∈ C1,2([0, T ]×D) such that

sup
(et,ex)∈[0,T ]×D

(ψ(t̃, x̃) − f(t̃, x̃)) = (ψ(t, x) − f(t, x)) = 0, (A.11)

it holds
∂f

∂t
(t, x) + Lf(t, x) − c(x)ψ(t, x) ≥ g(t, x); (A.12)
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• for every f ∈ C1,2
(
[0, T ]×D

)
such that

inf
(et,ex)∈[0,T ]×D

(ψ(t̃, x̃) − f(t̃, x̃)) = (ψ(t, x) − f(t, x)) = 0, (A.13)

it holds
∂f

∂t
(t, x) + Lf(t, x) − c(x)ψ(t, x) ≤ g(t, x). (A.14)

The result proved in Costantini et al. (2012) is the following.

Theorem A.2 (Costantini et al. (2012)). Assume (H1)–(H4). Then for every
x ∈ D, there exists one and only one stochastic process, Xx, that solves the martin-
gale problem for L, D(L) = C2

c (D), with initial condition x. The function

ψ(t, x) = E

[
Ψ(Xx(T − t))e−

R T−t
0 c(Xx(r))dr

−
∫ T−t

0

g(t+ s,Xx(s))e−
R

s
0 c(Xx(r))drds

]
, (t, x) ∈ [0, T ]×D,

(A.15)

is the only viscosity solution of (A.1)–(A.2) satisfying

|ψ(t, x)|l(|ψ(t, x)|) ≤ CT (1 + V (x)), ∀ (t, x) ∈ [0, T ]×D. (A.16)

Appendix B. Proofs

Proof of Theorem 2.1. Setting t0 := 0 and (Π(0), R(0), Rsh(0)) := (Π0, R0, R
sh
0 ),

we claim that, given a triple of R × [r, r] × R-valued, {Fti}-measurable r.v.’s
(Π(ti), R(ti), Rsh(ti)), (Π, R,Rsh) is pathwise uniquely defined on the inter-
val [ti, ti+1] and (Π(ti+1), R(ti+1), Rsh(ti+1)) is {Fti+1}-measurable. To see this,
observe, first of all, that the probability that N jumps at any of t1, . . . , tM is zero.
Therefore, denoting by {ϑn} the jump times of N , R can be defined simply in the
following way: If N(ti+1) > N(ti),

R(ϑN(ti)+n) := R(ϑN(ti)+n−1 ∨ ti) + J(Π(ti), R(ϑN(ti)+n−1 ∨ ti), UN(ti)+n),

for 1 ≤ n ≤ N(ti+1) −N(ti), (B.1)

R(t) := R(ϑN(ti)+n−1 ∨ ti), for ϑN(ti)+n−1 ∨ ti ≤ t < ϑN(ti)+n,

1 ≤ n ≤ N(ti+1) −N(ti), (B.2)

R(t) := R(ϑN(ti+1)), for ϑN(ti+1) ≤ t ≤ ti+1. (B.3)

If N(ti+1) = N(ti),

R(t) := R(ti), for ti ≤ t ≤ ti+1. (B.4)
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Note that R(ϑN(ti)+n ∧ ti+1) is {FϑN(ti)+n∧ti+1}-measurable for all n ≥ 1, and that
R(ti+1) is {Fti+1}-measurable. Denote

ϑi
0 := ti, and ϑi

n := ϑN(ti)+n ∧ ti+1, (B.5)

for n ≥ 1. In each subinterval [ϑi
n−1, ϑ

i
n], we can write Eq. (2.13) as

Rsh(ϑi
n−1 + t) = Rsh(ϑi

n−1) +
∫ t

0

ksh(b(R(ϑi
n−1)) −Rsh(ϑi

n−1 + s))ds

+
∫ t

0

σ(|R(ϑi
n−1) −Rsh(ϑi

n−1 + s)|2)
√
|Rsh(ϑi

n−1 + s)|dWϑi
n−1(s)

0 ≤ t ≤ ϑi
n − ϑi

n−1, (B.6)

where

Wϑi
n−1(s) := W (ϑi

n−1 + s) −W (ϑi
n−1). (B.7)

Since W is independent of N , Wϑi
n−1 is a standard Brownian motion,

independent of ϑi
n − ϑi

n−1. Moreover, if Rsh(ϑi
n−1) is {Fϑi

n−1
}-measurable

(hence (R(ϑi
n−1), R

sh(ϑi
n−1)) is {Fϑi

n−1
}-measurable) Wϑi

n−1 is independent of
(R(ϑi

n−1), Rsh(ϑi
n−1)). The diffusion coefficient in (B.6) is locally Holder contin-

uous by (2.15), and has sublinear growth by (2.16). Therefore, by the corollary
to Theorem 3.2, Chap. 4, of Ikeda & Watanabe (1981), there exists one and only
one strong solution to (B.6) (the corollary to Theorem 3.2 of Ikeda & Watanabe
(1981) assumes global Holder continuity, but, as pointed out in the comment imme-
diately preceding Theorem 3.2, its statement can be localized and it yields existence
and uniqueness of the strong solution up to the explosion time; (2.15) and Theo-
rem 2.4, Chap. 4 of Ikeda & Watanabe (1981) ensure that the explosion time is
infinite). Then Rsh(ϑi

n−1 + t) is pathwise uniquely defined for 0 ≤ t ≤ ϑi
n − ϑi

n−1

and Rsh(ϑi
n) is {Fϑi

n
}-measurable. Since Rsh(ϑi

0) = Rsh(ti) is {Fti}-measurable, i.e.
{Fϑi

0
}-measurable, we see, by induction, that Rsh is pathwise uniquely defined on

[ti, ti+1] and Rsh(ti+1) is {Fti+1}-measurable. By setting

Π(ti+1) = γ(Π(ti), R(ti+1), Rsh(ti+1)) + εi+1, (B.8)

our claim is proved. Finally, let us show that

Rsh(t) > 0 ∀t ≥ 0, almost surely. (B.9)

Let

αn := inf
{
t ≥ 0 : Rsh(t) ≤ 1

n

}
. (B.10)

Then it will be enough to show, for every z0 > 0, for Rsh
0 = z0, that

P(αn ≤ t) →n→∞ 0, ∀ t > 0. (B.11)
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To see this, consider, for z > 0, the function

V1(z) := z2 − ln(z). (B.12)

We have

ksh(b(r) − z)V1(z)′ +
1
2
σ2(|r − z|2)V1(z)′′

= ksh
(
b(r) − z

)(
2z − 1

z

)
+

1
2
σ2
(
|r − z|2

)(
2z +

1
z

)

= 1{z≤r}
1
z

(
1
2
σ2(|r − z|2) − kshb(r)

)
+ 1{z>r}

1
z

(
1
2
σ2(|r − z|2) − kshb(r)

)

+ kshb(r) + 2z
(

1
2
σ2(|r − z|2) + kshb(r) − kshz

)
≤ 1

2r
σ2(|r − z|2) + kshb(r) + 2z

(
1
2
σ2
(
|r − z|2

)
+ kshb(r)

)
≤ C(1 + z2), (B.13)

where the last but one inequality follows from (2.18) and z > 0, and the last one
follows from (2.16). Let

βk := inf{t ≥ 0 : Rsh(t) ≥ k}. (B.14)

By applying Ito’s formula and taking expectations, we obtain

E[V1(Rsh(t ∧ αn ∧ βk)]

≤ V1(z0) + CE

[ ∫ t∧αn∧βk

0

(
1 +Rsh(s)2

)
ds

≤ V1(z0) + C

∫ t

0

(1 + E[V1(Rsh(s ∧ αn ∧ βk)])ds, (B.15)

which implies, by Gronwall’s Lemma and by taking limits as k → ∞,

E[V1(Rsh(t ∧ αn)] ≤
(
V1(z0) + Ct

)
eCt, (B.16)

and hence,

ln(n)P(αn ≤ t) ≤
(
V1(z0) + Ct

)
eCt. (B.17)

Proof of Lemma 3.1. Let us show preliminarily that, for any T > 0,

E[Rsh,π
(r,z)(t)] ≤ CT (1 + z), 0 ≤ t ≤ T, π ∈ R, r ∈ (r, r), z > 0, (B.18)

and, for every q ≥ 2,

E[Rsh,π
(r,z)(t)

q] ≤ CT (1 + zq), 0 ≤ t ≤ T, π ∈ R, r ∈ (r, r), z > 0. (B.19)
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In order to prove (B.19), consider a sequence of bounded, nonnegative C2 functions
{fn} such that

fn(z) = zq for 0 < z ≤ n and fn(z) ≤ zq for all z > 0, (B.20)

and let

αn := inf{t ≥ 0 : Rsh,π
(r,z)(t) ≥ n}. (B.21)

By applying Ito’s Lemma to the semimartingale Rsh,π
(r,z), and to the function fn, and

taking expectations, we obtain

E[Rsh,π
(r,z)(t ∧ αn)q]

= E[fn(Rsh,π
(r,z)(t ∧ αn))]

= fn(z) + ksh
E

[ ∫ t∧αn

0

(
[(Rπ

r (s)) −Rsh,π
(r,z)(s)]R

sh,π
(r,z)(s)

q−1)

+
q(q − 1)

2
σ2(|Rπ(s) −Rsh,π(s)|2)Rsh,π(s)q−1

)
ds

]

≤ zq + CE

[ ∫ t∧αn

0

(1 +Rsh,π
(r,z)(s))

q)ds
]

≤ zq + C

∫ t

0

(1 + E[Rsh,π
(r,z)(s ∧ αn))q])ds, (B.22)

where the last but one inequality follows from (2.16).
Therefore, by Gronwall’s lemma and Fatou’s lemma, we have

E[Rsh,π
(r,z)(t)

q] ≤ (zq + CT)eCT, 0 ≤ t ≤ T. (B.23)

Equation (B.18) can be proved in an analogous manner. (B.18) yields

E

[
e−

R T−t
0 Rsh,π

(r,z)(s)ds|f(π,Rπ
r (T − t), Rsh,π

(r,z)(T − t))|
]
<∞,

|F (t, π, r, z)| ≤ C′
0e

C1π(1 + z), (B.24)

for (t, π, r, z) ∈ [0, T ] × R × (r, r) × (0,∞). We are left with proving continuity of
F . Let (tn, πn, rn, zn) → (t, π, r, z). Then {Rπ

rn
} converges to Rπ

r uniformly over
compact time intervals, almost surely. In addition {Rsh,π

(rn,zn)} is relatively compact
by Theorems 3.8.6 and 3.8.7 of Ethier & Kurtz (1986), the Burkholder–Davies–
Gundy inequality and (B.19) with q = 4, and every limit point is continuous
by Theorem 3.10.2 of Ethier & Kurtz (1986). Therefore {(Rπ

rn
, Rsh,π

(rn,zn))} is rel-
atively compact. By Theorem 2.7 of Kurtz & Protter (1991), every limit point of
{(Rπ

rn
, Rsh,π

(rn,zn))} satisfies (3.9) with (Rπ
0 , R

sh,π
0 ) = (r, z). Since the solution to (3.9)

is (strongly and hence weakly) unique, we can conclude that {(Rπ
rn
, Rsh,π

(rn,zn))} con-

verges weakly to (Rπ
r , R

sh,π
(r,z)). The assertion then follows by observing that (B.19)
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implies that the random variables

{e−
R

T−tn
0 Rsh,π

(rn,zn)(s)ds
f(πn, R

π
rn

(T − tn), Rsh,π
(rn,zn)(T − tn))} (B.25)

are uniformly integrable.

Proof of Proposition 3.3. Recall that tM ≤ T < tM + 1. For tM ≤ s ≤ T ,

E

[
exp

(
−
∫ T

s

Rsh(u)du
)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs

]

= E

[
exp

(
−
∫ T

s

Rsh(u)du
)
Y (s)pep(T−s)Π(s) Φ(Π(s), R(T ), Rsh(T ))∣∣∣∣(Y (s),Π(s), R(s), Rsh(s))

]
. (B.26)

Therefore,

ϕ(s, y, π, r, z) = E

[
exp

(
−
∫ T

s

Rsh(u)du
)
Y (s)pep(T−s)Π(s)

×Φ(Π(s), R(T ), Rsh(T ))
∣∣∣∣(Y,Π, R,Rsh)(s) = (y, π, r, z)

]

= ypep(T−s)π
E

[
exp

(
−
∫ T

s

Rsh,π(u)du
)

Φ(π,Rπ(T ), Rsh,π(T ))
∣∣∣∣

(Rπ, Rsh,π)(s) = (r, z)
]

= ypep(T−s)π
E

[
exp

(
−
∫ T−s

0

Rsh,π(u)du
)

Φ(π,Rπ(T − s),

Rsh,π(T − s))
∣∣∣∣(Rπ, Rsh,π)(0) = (r, z)

]
= ypep(T−s)πϕM (s− tM , π, r, z), (B.27)

where the last but one equality follows from the fact that (Rπ, Rsh,π) is time homo-
geneous.

For tM−1 ≤ s < tM ,

E

[
exp

(
−
∫ T

s

Rsh(u)du
)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs

]

= E

[
E

[
exp

(
−
∫ T

s

Rsh(u)du
)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣FtM

]∣∣∣∣Fs

]
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= E

[
exp

(
−
∫ tM

s

Rsh(u)du
)

E

[
exp

(
−
∫ T

tM

Rsh(u)du
)

×Y (T )pΦ(Π(T ), R(T ), Rsh(T ))
∣∣∣∣FtM

]∣∣∣∣Fs

]

= E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
ϕ(tM , Y (tM ),Π(tM ), R(tM ), Rsh(tM ))

∣∣∣∣Fs

]
.

(B.28)

E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
Y (tM )p

× ep(T−tM)Π(tM )ϕM (0,Π(tM ), R(tM ), Rsh(tM ))
∣∣∣∣Fs

]

= E

[
E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
Y (tM )p

× ep(T−tM)Π(tM )ϕM (0,Π(tM ), R(tM ), Rsh(tM ))
∣∣∣∣Ft−M

] ∣∣∣∣Fs

]

= E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
Y (tM )p

×B(ep(T−tM )·ϕM (0, ·, ·, ·))(Π(s), R(tM ), Rsh(tM ))
∣∣∣∣Fs

]

= E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
Y (s)pep(tM−s)Π(s)

×B(ep(T−tM )·ϕM (0, ·, ·, ·))(Π(s), R(tM ), Rsh(tM ))
∣∣∣∣ (Y,Π, R,Rsh)(s)

]
.

(B.29)

Therefore,

ϕ(s, y, π, r, z)

= E

[
exp

(
−
∫ tM

s

Rsh(u)du
)
Y (s)pep(tM−s)Π(s)

×B(ep(T−tM )·ϕM (0, ·, ·, ·))
∣∣∣∣ (Y,Π, R,Rsh)(s) = (y, π, r, z)

]

= ypep(tM−s)π
E

[
exp

(
−
∫ tM

s

Rsh,π(u)du
)

×B(ep(T−tM )·ϕM (0, ·, ·, ·))(π,Rπ(tM ), Rsh,π(tM ))
∣∣∣∣(Rπ, Rsh,π)(t) = (r, z)

]
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= ypep(tM−s)π
E

[
exp

(
−
∫ tM−s

0

Rsh
(r,z)(u)du

)
×B(ep(T−tM )·ϕM (0, ·, ·, ·))(π,Rπ

r (tM − s), Rsh,π
(r,z)(tM − s))

]
= ypep(tM−s)πϕM−1(s− tM−1, π, r, z).

(B.30)

For ti−1 ≤ s < ti, i ≤M − 1, assuming inductively that

ϕ(ti, y, π, r, z) = ypept1πϕi(0, π, r, z), (B.31)

the same computations as for i = M (with tM replaced by ti and T replaced by
ti+1) yield

ϕ(s, y, π, r, z) = ypep(ti−s)πϕi−1(s− ti−1, π, r, z). (B.32)

Proof of Theorem 3.4. In order to adjust to the general formulation of Costantini
et al. (2012), we note first of all that (3.24) can be viewed as a simple Partial Integro-
Differential Equation, namely,

∂ψ

∂t
(t, r, z) + ksh(b(r) − z)

∂ψ

∂z
(t, r, z) +

1
2
σ2(|r − z|2)z ∂

2ψ

∂z2
(t, r, z)

+
∫

(r,r)

[ψ(t, r′, z) − ψ(t, r, z)]μ(π, r, dr′) − zψ(t, r, z) = 0, (B.33)

where

μ(π, r, A) := λ
m∑

k=−m

1A(r + kδ)q(π, r, kδ), A ∈ B((r, r)). (B.34)

Therefore, for each fixed π, (B.33) is of the form (A.1)–(A.2) with

Lπψ(t, r, z) = ksh(b(r) − z)
∂ψ

∂z
(t, r, z) +

1
2
σ2(|r − z|2)z ∂

2ψ

∂z2
(t, r, z)

+
∫

(r,r)

[ψ(t, r′, z) − ψ(t, r, z)]μ(π, r, dr′), (B.35)

g(r, z) = 0, c(r, z) = z. (B.36)

The proof thus consists in verifying the assumptions of Costantini et al. (2012).
Assumptions (H1), (H2) of theorem A.2 are satisfied by (2.7) and (2.15).
As far as (H3) is concerned, it is sufficient to find, for each fixed π, V π

0 ∈ C2(r, r),
V π

1 ∈ C2((0,∞)) nonnegative and such that

lim
r→r+

V π
0 (r) = ∞, lim

r→r−
V π

0 (r) = ∞, LπV π
0 (r, z) ≤ Cπ (1 + V π

0 (r)), (B.37)

lim
z→0+

V π
1 (z) = ∞, lim

z→∞
V π

1 (z) = ∞, LπV π
1 (r, z) ≤ Cπ(1 + V π

1 (z)). (B.38)
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Then Assumption (H3) will be verified by

V π(r, z) = V π
0 (r) + V π

1 (z). (B.39)

By the same computations as in the proof of Theorem 2.1, and by (2.16), (2.18),
we can see that

V π
1 (z) = z2 − ln(z). (B.40)

satisfies (B.38). For each fixed π, V π
0 can be constructed in the following way.

By (2.8), there exist βπ = β ∈ C1([r, r]), β
π

= β ∈ C1([r, r]) such that

β(r) = 0, β(r) > 0 for r > r, β is nondecreasing, (B.41)

β(r) ≥ max
h=1,...,m

p(π, r + hδ,−hδ), (B.42)

and

β(r) = 0, β(r) > 0 for r < r, β is nonincreasing, (B.43)

β(r) ≥ max
h=1,...,m

p(π, r − hδ, hδ). (B.44)

Setting

V π
0 (r) :=

∫ r

r

1
β(s)

ds+
∫ r

r

1
β(s)

ds, (B.45)

we have, for k = 1, . . . ,m, r − kδ ∈ (r, r),

λ[V π
0 (r − kδ) − V π

0 (r)]q(π, r,−kδ)

= λ(π, r)
[∫ r

r−kδ

1
β(s)

ds−
∫ r

r−kδ

1
β(s)

ds

]
p(π, r,−kδ)

≤ λ
mδ

β(r − kδ)
p(π, r,−kδ)

≤ λmδ. (B.46)

Analogously, for k = 1, . . . ,m, r + kδ ∈ (r, r),

λ[V π
0 (r + kδ) − V π

0 (r)]q(π, r, kδ)

= λ(π, r)

[
−
∫ r+kδ

r

1
β(s)

ds+
∫ r+kδ

r

1
β(s)

ds

]
p(π, r, kδ)

≤ λ
mδ

β(r + kδ)
p(π, r, kδ)

≤ λmδ. (B.47)

Thus (B.37) is satisfied.
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We now turn to assumption (H4). The conditions on c(z) := z and g(z) ≡ 0
are clearly satisfied (note that the lower bound of c needs not be positive). The
terminal values are

ΨM = Φ,

ΨM−1 = B(ep(T−tM )·ϕM (0, ·, ·, ·)),

Ψi = B(ept1·ϕi+1(0, ·, ·, ·)), for i = 0, . . . ,M − 2.

(B.48)

Taking the function l as

l(s) =
√
s, (B.49)

the condition on the terminal value Ψi becomes

|Ψi(π, r, z)|3/2 ≤ Ci,π(1 + V π(r, z)). (B.50)

Suppose first that tM < T . ΨM = Φ verifies the growth condition (3.7). Since

(1 + z)3/2 ≤ 4(1 + z2 − ln(z)) ≤ 4(1 + V π(r, z)), (B.51)

ΨM satisfies (B.50) as well. Assuming inductively that Ψi+1 satisfies (B.50), by
Theorem A.2, ϕi+1(·, π, ·, ·), defined in Proposition 3.3, is the unique viscosity solu-
tion of (3.24)–(3.25) satisfying (B.50) uniformly in time. On the other hand, by
Lemma 3.1, ϕi+1(·, π, ·, ·) verifies also (3.7) uniformly in time, and hence, by (B.51),
is the unique viscosity solution of (3.24)–(3.25) verifying (3.7) uniformly in time.
Moreover, by (3.25) and (3.16), Ψi satisfies (3.7) and hence, by (B.51), (B.50) as
well.

If tM = T , ΨM−1 = BΦ satisfies (B.50) by (3.16) and (B.51), and the induction
starts from M − 1.

Appendix C. Numerical Scheme

In this section, we present a finite difference scheme to solve numerically the pricing
problem of an interest rate financial derivative under our model of Sec. 2. Let us
remind that in recent years a great deal has been done for the numerical approxi-
mation of viscosity solutions for second order problems. In particular, we refer the
reader to the fundamental paper by Barles & Souganidis (1991) who first showed
convergence results for a large class of numerical schemes to the solution of fully
nonlinear second order elliptic or parabolic partial differential equations. In addi-
tion, we refer to Briani et al. (2004) for the extension of their arguments to the
class of numerical schemes for integro-differential equations.

Our numerical scheme is applied to the sequence of partial differential equations
and their final conditions (3.24)–(3.25) and is a modification of the scheme proposed
in Zhu & Li (2003). An important point is that we do not impose any artificial
condition at the boundary z = 0: This is appropriate because of assumption (2.18)
and makes the scheme more accurate.
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For each interval [ti, ti+1] and for every fixed value for the inflation rate π, we
compute the solution of problem (3.24)–(3.25) by the following method. We convert
the problem into an initial-value problem letting τ = t1 − t, and we compute the
approximate value of the solution at t1 − τn,

τn = nΔτ, for n = 0, . . . , N, (C.1)

rh = r + hδ, for h = 1, . . . , H − 1, (C.2)

and

zj = jΔz, for j = 0, . . . , J, (C.3)

where Δτ = t1/N , Δz = zmax/J , N , H , J , being positive integers, such that

H ≥ (r − r)
δ

> H − 1, (C.4)

and

zmax � 0. (C.5)

Therefore, the numerical domain of the problem is [0, t1]× [0, zmax]. Let ψn
h,j denote

the approximate value of the solution at the point (t1 − τn, rh, zj).
With r discretized as above, the nonlocal term in Eq. (3.24) reduces to a linear

operator in R
H−1.

As far as the partial differential equation in (3.24) is concerned, at a point
(τn, rh, zj) with zj > 0, it can be discretized by the following second-order approx-
imation:

ψn+1
h,j − ψn

h,j

Δτ
=
ksh(b(rh) − zj)

4Δz
(ψn+1

h,j+1 − ψn+1
h,j−1 + ψn

h,j+1 − ψn
h,j−1)

+
1

4Δz2
zjσ

2(|rh − zj|2)(ψn+1
h,j+1 − 2ψn+1

h,j + ψn+1
h,j−1 + ψn

h,j+1

− 2ψn
h,j + ψn

h,j−1) + λ

min(m,H−h−1)∑
k=−min(m,h−1)

[ψn
h+k,j − ψn

h,j]q(π, rh, kδ)

− zj

2
(ψn+1

h,j + ψn
h,j), (C.6)

for any h = 1, . . . , H − 1, j = 1, . . . J − 1, n = 0, . . . , N − 1. At the boundary
z = 0, the partial differential equation in (3.24) becomes a hyperbolic equation
with respect to z, with a nonlocal term:

∂ψ

∂t
(t, r, z) = kshb(r)

∂ψ

∂z
(t, r, z) + λ

m∑
k=−m

[ψ(t, r + kδ, z) − ψ(t, r, z)]q(π, r, kδ).

(C.7)
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Since b(r) > 0, the value of ψ on the boundary z = 0 should be determined by the
value of ψ inside the domain. Hence, we approximate (C.7) by the following scheme:

ψn+1
h,0 − ψn

h,0

Δτ
=
kshb(rh)

4Δz
(−ψn+1

h,2 + 4ψn+1
h,1 − 3ψn+1

h,0 − ψn
h,2 + 4ψn

h,1 − 3ψn
h,0)

+λ

min(m,H−h−1)∑
k=−min(m,h−1)

[ψn
h+k,0 − ψn

h,0]q(π, rh, kδ), (C.8)

for any h = 1, . . . , H − 1, n = 0, . . . , N − 1. Here ∂ψ/∂z is discretized by a one-side
second order scheme so that all the node points involved are in the computational
domain. Moreover, we assign the initial datum at

ψ0
h,j = ψ(t1, rh, zj) = Ψi(π, rh, zj), (C.9)

for any j = 0, . . . , J . At the boundary z = zmax we adopt the Neumann boundary
condition

ψn
h,J = ψn

h,J−1, (C.10)

for any n = 0, . . . , N . When ψn
h,j, h = 1, . . . , H − 1, j = 0, . . . , J are known

from (C.6) and (C.8), we can determine ψn+1
h,j , for any h and j. Therefore, we

can perform this procedure for n = 0, . . . , N − 1 successively and finally find ψN
h,j,

for any h and j. Since truncation errors are second order everywhere, at least for a
smooth enough solution it may be expected that the global error is O(Δτ,Δz) (see
Marcozzi et al. (2001) and Zhu & Li (2003)). We can rewrite Eqs. (C.6) and (C.8)
throughout using the following quantities:

νh,j =
ksh

4
(b(rh) − zj)

Δτ
Δz

, h = 1, . . . , H − 1, j = 0, . . . J − 1, (C.11)

ξh,j =
zj

4
σ2(|rh − zj |2)

Δτ
(Δz)2

, h = 1, . . . , H − 1, j = 1, . . . J − 1, (C.12)

ξh,0 =
3
4
kshb(rh)

Δτ
Δz

, (C.13)

ηh,j = ξh,j + νh,j, θh,j = νh,j − ξh,j , wh,j = 2ξh,j +
Δτ
2
zj + 1. (C.14)

In addition, for every n = 0, . . . , N −1, h = 1, . . . , H−1, j = 1, . . . , J−1, we define

Qn
h,j = ψn

h,j + νh,j(ψn
h,j+1 − ψn

h,j−1) + ξh,j(ψn
h,j+1 − 2ψn

h,j + ψn
h,j−1)

+ Δτλ(π, rh)
min(m,H−h)∑

k=−min(m,h)

[ψn
h+k,j − ψn

h,j ]p(π, rh, kδ) −
zjΔτ

2
ψn

h,j , (C.15)

Qn
h,0 = ψn

h,0 + νh,0(−ψn
h,2 + 4ψn

h,1 − 3ψn
h,0)

+ Δτλ(π, rh)
min(m,H−h)∑

k=−min(m,h)

[ψn
h+k,0 − ψn

h,0]p(π, rh, kδ), (C.16)
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Ah =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + ξh,0 −4νh,0 νh,0 0 · · · 0

θh,1 wh,1 −ηh,1 0 · · · 0

0 θh,2 wh,2 −ηh,2 · · · 0
...

...
...

...
...

...

0 0 0 0 θh,J−1 (wh,J−1 − ηh,J−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C.17)

Kn
h =

⎡⎢⎢⎢⎢⎢⎢⎣
Qn

h,0

Qn
h,1

...

Qn
h,J−1

⎤⎥⎥⎥⎥⎥⎥⎦, (C.18)

Ah is a J × J matrix independent of ψn+1
h,. and ψn

h,., whereas Kn
h ∈ R

J depends on
the values of the numerical solution at the time step n. Therefore, keeping the terms
which involve ψn+1

h,j , for j = 0, . . . , J − 1, on the left-hand side of equation (C.6),
(C.8) and bringing all the other terms on the right-hand side, we easily obtain the
following linear system:

Ahψ
n+1
h = Kn

h (C.19)

for the computation of the numerical solution at the time step n+ 1, given by

ψn+1
h =

⎡⎢⎢⎢⎢⎢⎢⎣
ψn+1

h,0

ψn+1
h,1

...

ψn+1
h,J−1

⎤⎥⎥⎥⎥⎥⎥⎦, (C.20)

for any h = 1, . . . , H − 1. We observe that the coefficients in (C.14) satisfy

wh,j > |θh,j | + |ηh,j |, for all j = 1, . . . J − 1, (C.21)

and the same holds for the coefficients in the first row of Ah. Therefore, Ah is strictly
diagonally dominant, implying that Ah is invertible; moreover, since wh,j > 1, for
any j = 1, . . . , J − 1, the real parts of its eigenvalues are positive (these results
follow from the well-known Gershgorin’s circle theorem). Therefore, system (C.19)
admits a unique solution.

For each discretized value π of the observed inflation rate at time ti, the numer-
ical procedure allows to obtain ψN

h,j = ψN
h,j(π), i.e. the approximate value of

ϕi(0, π, rh, zj), for each h = 1, . . . , H − 1, j = 0, . . . , J , from the initial datum
Ψi evaluated at (π, rh′ , zj′), h′ = 1, . . . , H−1, j′ = 0, . . . , J . For i = M−1, for each
discretized value of π and for each h′ = 1, . . . , H−1, j′ = 0, . . . , J , ΨM−1(π, rh′ , zj′)
is obtained from the payoff Φ by applying a standard quadrature method for the
evaluation of the integral operator B defined in (3.14). For i < M−1, Ψi(π, rh′ , zj′)
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is obtained analogously from the approximate values of ept1π′
ϕi+1(0, π′, rh′ , zj′),

where π′ ranges over all discretized values of the inflation rate (the grid for the
variable u in the integral operator B can be chosen so that γ(π, rh′ , zj′) + u corre-
sponds to a discretized value of the inflation rate).
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