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NADES can effectively extract bioactive compounds from natural sources without
damaging their structure and activity. They can also serve as solvents and catalysts in
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for separating and analyzing natural compounds. The review highlights the efficiency of
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Abstract 29 

Natural deep eutectic solvents (NADES) have gained significant attention as green solvents 30 

due to their unique properties, such as high solubility, low volatility, low toxicity, and 31 

tunability. Liquid phase microextraction (LPME) is a sample preparation technique that plays 32 

a crucial role in analytical chemistry, and the use of NADES as extraction solvents in LPME 33 

offers numerous benefits compared to traditional solvents. NADES can effectively extract 34 

bioactive compounds from natural sources without damaging their structure and activity. They 35 

can also serve as solvents and catalysts in organic reactions, enhancing the bioavailability of 36 

natural compounds. In addition, NADES can be utilized as mobile or stationary phases in 37 

chromatographic techniques for separating and analyzing natural compounds. The review 38 

highlights the efficiency of NADES in terms of extraction ability, analyte stabilization 39 

capacity, and detection compatibility. Moreover, the availability of their components, ease of 40 

preparation, low toxicity, cost-effectiveness, and biodegradability make NADES attractive for 41 

researchers in the field of analytical chemistry. The applications of NADES in LPME 42 

contribute to the principles of green analytical chemistry and green sample preparation by 43 

providing a sustainable and environmentally friendly approach to sample preparation. A 44 

comprehensive overview of the applications of NADES in liquid phase microextraction is 45 

provided, emphasizing their potential for advancing green practices in analytical chemistry. 46 

Keywords 47 

Natural deep eutectic solvents; Microextraction; Sample preparation; Analytical chemistry; 48 

NADES; Green analytical chemistry 49 

  50 
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1. Introduction 51 

There is a growing interest in the development of new solvents and procedures that are safer 52 

for both analysts and the environment [1,2]. This is related to the fact that current organic 53 

solvents are highly hazardous, easily vaporized, and combustible. This shift aligns with the 54 

principles of green analytical chemistry (GAC) and green sample preparation (GSP) [3–5], 55 

which aim to create sustainable solvents, particularly for sample preparation [6,7], a process 56 

that can generate significant amounts of waste [8–10]. Natural deep eutectic solvents (NADES) 57 

are a novel class of green solvents that captured significant interest in recent years for their 58 

potential applications in the domain of research related to natural products. (Fig. S1) illustrates 59 

the upward trend of NADES publications recently [11]. 60 

The term “NADES” was coined by Choi et al [12] in 2011. NADES are formed by 61 

mixing a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) of natural origin 62 

(Fig. 1) [13] to form a liquid mixture at room temperature or below [14]. The robust hydrogen 63 

bonding interactions between the components lower the melting point of the mixture and drive 64 

the formation of NADES. For this reasons, NADES have several unique properties that make 65 

them attractive as green solvents. Some of these properties are high solubility, low volatility, 66 

low toxicity and tunability. Also, they can dissolve a wide range of compounds, such as 67 

proteins, lipids, nucleic acids, metal ions and organic pollutants and bismuth oxide 68 

nanoparticles (BIONPs) that are not soluble in water [15–18]. NADES have very low vapor 69 

pressure, which reduces the risk of evaporation [19–21]. These solvents are derived from 70 

biodegradable compounds, which minimize the environmental and health impacts of solvent 71 

use and disposal [22]. Additionally, they can be tailored to suit different applications by 72 

changing the type and ratio of the components, which affects the viscosity, polarity, acidity and 73 

conductivity of the solvent [23]. 74 
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 75 

Fig. 1. Names and structures of the most common hydrogen bond donners and acceptors 76 

involved in NADES preparation. 77 

 78 

NADES have been used for various applications in different fields, such as extraction, 79 

synthesis, separation, electrochemistry and bioavailability enhancement [24]. They are also 80 

able to extract bioactive compounds from natural sources [25], such as plants, algae and fungi, 81 

without damaging their structure and activity [26]. NADES can also act as both solvents and 82 

catalysts for organic reactions, such as esterification, transesterification and aldol condensation 83 

[27–30]. They can improve the bioavailability of natural compounds by increasing their 84 

solubility, stability, permeability, and absorption in biological systems [31]. By creating 85 

complexes or micelles [32–34] with poorly water-soluble drugs, NADES can increase their 86 

solubility and bioavailability [35]. They can also serve as carriers or adjuvants for various drug 87 

delivery systems like nanoparticles, liposomes, or hydrogels. Additionally, NADES can 88 

regulate the absorption and release of drugs by modifying their phase behavior or viscosity 89 

[36]. These solvents could also be used as antibacterial and antifungal agents [37].  90 

In the field of analytical chemistry, NADES can separate mixtures of compounds based 91 

on their solubility and affinity to the solvent as mobile phases or stationary phases in 92 
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chromatographic techniques for separating natural compounds [38–41]. They are also 93 

presented as a green alternative in analytical chemistry, showing high extraction ability [42], 94 

analyte stabilization capacity [31], and detection compatibility [43] [44]. These advantages 95 

make NADES suitable solvent for LPME, which is principally considered green due to the 96 

huge reduction in solvent and sample consumption. So, finding the most suitable solvent took 97 

massive effort along the years [45]. One major advantage, besides the previously mentioned 98 

benefits, is their high polarity, which allows them to dissolve a wide range of substances that 99 

are typically insoluble in conventional solvents such as cellulose [46]. 100 

Several review articles on the microextraction techniques utilizing deep eutectic solvents can 101 

be found. Makoś et al. provided an article concentrating in hydrophobic deep eutectic solvents 102 

in different microextraction techniques [47]. Nakhle et al. focused on microextraction methods 103 

employing deep eutectic solvents as extraction solvents, and exploring the impact of these 104 

solvents' properties on extraction efficiency [48]. Andrade et al.  presented an overview on the 105 

utilization of deep eutectic solvents for the analysis of biological matrices, with a particular 106 

emphasis on urine, blood, plasma, and oral fluid. The focus was placed on microextraction 107 

techniques, highlighting the various analytical features [49]. Santos et al. explored the 108 

application of deep eutectic solvents in LPME and their significant contributions to the field of 109 

green chemistry [50]. To the best of our knowledge, this is the first review article to highlight 110 

the applications of NADESs in liquid phase microextraction. 111 

 112 

2. Preparation and characterization of NADES 113 

NADES are prepared by blending specific natural metabolites at specific molar ratios 114 

to create a clear liquid at room temperature. Common components of NADES include amino 115 

acids, sugars, organic acids, choline salts, essential oil ingredients, and inorganic salts [51–53]. 116 

The preparation techniques include thermal mixing, vacuum evaporation, ultrasound-based 117 

methods, and microwave-based methods. In the thermal mixing method, two components are 118 

heated and stirred with or without a predetermined amount of water to obtain a clear liquid 119 

[44,54–60]. Vacuum evaporation involves heating the NADES components under reduced 120 

pressure to remove excess water [44,54]. Ultrasound-based methods utilize ultrasonic waves 121 

to create cavitation and facilitate the formation of NADES [61]. Microwave-based methods 122 

use microwave energy to induce molecular agitation and collisions between the components 123 

[62,63]. 124 

The characterization of NADES involves several analytical techniques. Nuclear magnetic 125 

resonance (NMR) [23,64], Fourier transform infrared spectroscopy (FTIR)[23], Raman 126 
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spectroscopy [65,66], and mass spectrometry (MS) [67] are also used to determine the chemical 127 

composition of NADES. NMR, in combination with FTIR, helps identify the constituents and 128 

purity of components [68,69]. FTIR can also be employed to determine NADES' structures 129 

[70,71] while thermogravimetric analysis and differential scanning calorimetry are used to 130 

assess density, thermal features, and stability [44,72]. Density and viscosity measurements 131 

provide important physical property information for designing processes and evaluating 132 

solvent suitability and to determine the best ratio between HBD and HBA [73–75].  133 

 134 

3. Application of NADESs in liquid phase microextraction 135 

Despite obvious developments in analytical science and technology, sample preparation 136 

remains the bottleneck of all analytical procedures. Miniaturizing the analytical scale and/or 137 

using safer alternatives instead of hazardous solvents can be used to mitigate the negative 138 

environmental effect of analytical procedures [76,77]. Both hydrophilic and hydrophobic 139 

NADES have been employed in different modes of LPME, as shown in (Fig. 2). In this section, 140 

the role of NADES in liquid phase microextraction approaches are discussed in details. 141 

 142 

Fig. 2: Modes on LPME in which NADESs were employed  143 

 144 

3.1. Applications of NADES in HF–LPME  145 

Sample preparation trends tend to minimize the amount of organic solvent and extraction time. 146 

The liquid-phase microextraction (LPME) approach offers an alternative to typical preparation 147 

procedures [78]. There are different modes of LPME including dispersive liquid-liquid 148 
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microextraction (DLLME) [79], single drop microextraction (SDME) [80], and hollow fiber–149 

LPME (HF–LPME) [81]. Among these techniques, the HF-LPME has distinct benefits such as 150 

low cost, high preconcentration factor, low solvent consumption, and environmental 151 

friendliness. The HF-LPME technique is based on the use of different materials such as porous 152 

polypropylene hollow fiber, polyvinylidene difluoride, or PTFE, which first extract analytes 153 

from an aqueous sample as the donor phase and then back-extract them into the acceptor phase 154 

situated in the HF lumen [82]. Organic solvents are often used in the HF-LPME technique, but 155 

they have various drawbacks, including volatility, toxicity, instability, and deleterious effects 156 

on laboratory workers. Nia et al [83] prepared amino acids hydrophobic NADES in two phase 157 

HF-LPME. In this application, NADES was prepared by mixing amino acids (as an HBA) with 158 

lactic acid (as an HBD) using a hollow fiber's supported liquid membrane. The lumens were 159 

impregnated with extremely stable NADESs (serine: lactic acid). The developed method was 160 

successfully applied to extract caffeic acid from green tea, tomato samples and coffee.  The 161 

enrichment factor was in the range of 418–438. Morelli et al. [84] investigated both hydrophilic 162 

and hydrophobic NADESs  hollow fiber-microporous membrane liquid-liquid microextraction 163 

(HF-MMLLE). The best NADES was composed from thymol and camphor. Selected NADESs 164 

were introduced into the porous polypropylene membrane for 10 minutes, substituting widely 165 

used solvents (for example, hexane and octanol). The developed method was successfully 166 

applied and verified for 11 emergent contaminants from various classes, demonstrating the 167 

method's adaptability.  168 

Analytical method automation, commonly employed to minimize reagent and sample usage, is 169 

a highly effective tool for integrating all stages of necessary analytical procedures onto a single 170 

manifold while minimizing human and environmental hazards. Shakirova et al. [85] developed 171 

an automated liquid-liquid microextraction process for determining sulfonamides 172 

(sulfamethoxazole, sulfamethazine, and sulfapyridine) in urine samples utilizing NADES. The 173 

extraction of sulfonamides was based on the synthesis of colored Schiff bases in the presence 174 

of vanillin, which served as a derivatization reagent as well as a precursor of NADES (an 175 

extractant). Thymol was utilized in this process as both a medium for Schiff base synthesis and 176 

a second precursor of the NADES. Mass spectrometry verified the production of the Schiff 177 

bases. The microextraction method was automated using the Lab-In-Syringe approach as 178 

indicated in (Fig. 3). 179 
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 180 

Fig. 3: manifold for the determination of sulfonamides in urine samples with permission from 181 

[85]. 182 

 183 

The developed approach had enough sensitivity to determine the concentration of sulfonamides 184 

at therapeutic levels. In addition to that, this method was ecologically benign, providing full 185 

automation with a sample throughput of six samples/h. 186 

 187 

3.2. Applications of NADES in DLLME 188 

DLLME is a miniaturized sample preparation process used in many analytical chemistry 189 

applications [86,87]. In this mode, an immiscible organic solvent is used with an organic 190 

disperser, the two solvents are combined. The organic extractant is dispersed as tiny droplets 191 

by manual shaking resulting in a homogeneous hazy solution.  DLMME has several benefits 192 

over other sample preparation approaches in terms of simplicity, affordability, convenience of 193 

use, and speed. However, the right selection of dispersing and extracting solvents (µL scale) is 194 

quite difficult [88]. The pioneers of DLLME mode (Rezaee et al. [89]) developed this mode as 195 

a modification of LLME in an attempt to boost the recovery rate in LLME. DLLME results in 196 

extending the contact surface between the extractant and the sample, and this dispersion 197 

procedure greatly increases extraction kinetics. The sample is then centrifuged to separate the 198 

extractant and break up the emulsion. It worth mentioning that dispersion could be achieved 199 

by using a disperser solvent or by using external mechanical force such as manual shaking, 200 
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vortex agitation, magnetic stirrer power, ultrasonic power, and microwave irradiation. 201 

Traditional DLLME procedures use hazardous halogenated organic solvents such as 202 

chloroform, carbon tetrachloride, and chlorobenzene, which can be harmful to human health 203 

and the environment. In addition to using long chain alcohols as extractant and hazardous 204 

dispersers such as acetonitrile (ACN), methanol, acetone, tetrahydrofuran (THF), ethanol. 205 

Therefore, one of the GAC principles that should be adopted in method development is the 206 

replacement of harmful solvents with more benign ones. As a result, more environmentally 207 

friendly NADESs have recently been offered as a sustainable alternative in DLLME [90]. In 208 

general, NADES is made up of two or more natural components (HBD and HBA) blended in 209 

a certain ratio to generate a homogeneous mixture with a eutectic point at a lower temperature 210 

than the separate substances. The most common components used in synthesis of NADESs are 211 

monoterpenes (menthol, thymol, and camphor) [91–102]. These solvents are biodegradable, 212 

less hazardous, widely accessible, and simple to make. Monoterpenes such as are considered 213 

an ideal choice of extractant because of their poor water solubility [103]. In general, 214 

hydrophobic NADESs were used as extractants in DLLME mode however, hydrophilic 215 

NADESs could be used as a disperser in the same mode. As reported in Table 1, the use of 216 

NADESs in DLLME was successfully applied for the extraction of different analytes from 217 

different matrices including water [102], biological samples [104], foods [105], beverages [94] 218 

and personal care products [93].  219 
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Table 1: Application of NADES in DLLME 220 

Analyte Sample 

Sample 

volume 

(mL) 

NADES component 
Dispersion 

mode 

Extractant 

volume 

(µL) 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Tetracyclines Water 5 [ChCl]: [thymol]: [nonanoic acid] 
Air assisted 

DLLME 
400 HPLC/UV 18.2-500 ≤11.2 [102] 

Warfarin Biological samples 10 Borneol: decanoic acid 
Air assisted 

DLLME 
60 HPLC/UV 5–500 ˂5.87 [104] 

Vanadium Food stuff 2 ChCl: phenol 
Ultrasound 

assisted DLLME 
1000 

Electrothermal 

atomic absorption 

spectrometry 

(ETAAS) 

N/A 3.4% [106] 

Tert-

Butylhydroquino

ne 

Soybean Oils 0.2 g ChCl: sesamol 
Ultrasound 

assisted DLLME 
400 HPLC/UV 

5-500 

mg/kg 
˂2.3% [107] 

NSAIDs 
Water and milk 

samples 
10 

1,1,3,3-tetramethylguanidine chloride: 

thymol 

Ultrasound 

assisted DLLME 
200 HPLC/UV 5–2000 

1.11% 

to 

16.9%. 

[91] 

Parabens 
Personal care 

products 
5 Menthol: formic acid 

Vortex assisted 

DLLME 
80 UHPLC/UV 20–4000 ≤3.33% [93] 

Mercury Water samples 9 Decanoic acid: DL-menthol 
Vortex assisted 

DLLME 
50 LC/UV–Vis 10–200 ≤19% [92] 

Alkylphenols, 

bisphenols and 

alkylphenol 

ethoxylates 

Microbial-fermented 

functional beverages 

and bottled water 

10 Methanol: octanoic acid 
Vortex assisted 

DLLME 
100 UHPLC-MS 0.4-50 ≤19.5% [95] 

Sudan I Food samples 0.2 g ChCl: sesamol 
Vortex assisted 

DLLME 
800 HPLC/UV 

0.2–100 

mg /kg 
˂4.5% [105] 

Beta-blockers Water samples 9.5 Azelaic acid: thymol 
Vortex assisted 

DLLME 
55 HPLC/DAD 0.5-100 ˂6% [108] 

Phthalate Esters Soft drinks 10 Thymol: octanoic acid 
Vortex assisted 

DLLME 
125 UPLC-MS/MS 0.10−5.00 ˂11.5% [94] 

Phthalate esters 
Grape-based 

beverages 
7.5 ChCl: acetic acid 

Vortex assisted 

DLLME 
500 Nano-LC/UV 5-403 ˂17% [109] 

Benzoic acid and 

sorbic acid 
Condiments 10 L-Menthol Acetic acid: decanoic acid 

Vortex assisted 

DLLME-SFOD 
800 HPLC/DAD 70-100000 ≤5.66% [96] 

Phthalates and 

one adipate 
Water samples 10 Thymol: menthol 

Vortex assisted 

DLLME 
100 

UHPLC-QqQ-

MS/MS 
0.100–250 ˂14% [97] 

Chloramphenico

l 
Honey sample 5 Menthol: acetic acid 

Vortex assisted 

DLLME 
100 LC/UV 

1–100 µg 

/kg 
≤4.5% [98] 

Triarylmethane) 

dyes 

Shrimp and water 

samples. 
10 Thymol and camphor 

Vortex assisted 

DLLME 
200 HPLC/DAD 0.2 -200 ≤2.3 [99] 

Acaricides Egg samples 5 Choline chloride-acetic acid-n-octanol 
In-syringe 

DLLME 
74 GC/FID 2.7–4000 ≤11% [110] 

Phthalic acid 

esters 

Soft drinks and 

infusions 
20 Menthol: acetic acid 

Manual agitation 

assisted 

DLLME-SFO 

100 HPLC/UV 6-1190 1-22 % [100] 

Phthalic acid 

esters 

Water and beverage 

samples 
20 Menthol: acetic acid 

Manual agitation 

assisted DLLME 
100 HPLC/UV 4-425 ≤ 20% [101] 

221 
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3.3. Applications of NADES in HLLME 222 

HLLME is a method of sample preparation that involves the formation of a homogeneous phase 223 

between an aqueous sample and a small amount of a water-miscible extractant, such as 224 

acetonitrile, acetone or tetrahydrofuran. The separation of phases is achieved using a phase 225 

separating agent (PSA), which may be a salt, sugar, or hydrophobic substance. Depending on 226 

the type of PSA used, HLLME can be classified into three categories: salt-assisted LLME 227 

(SALLME) [111,112], sugar-assisted LLME (SULLME) [113,114], and hydrophobic 228 

substance-assisted  or aprotic solvent assisted HLLME [115,116].  The manipulation of 229 

physical conditions such as temperature or pH, and the introduction of gas bubbles into the 230 

homogeneous system could achieve phase separation [117,118]. It is worth mentioning that 231 

HLLME is characterized by infinite contact surface area between the aqueous and organic 232 

phases, which permits highly quick and effective extraction [119]. Another advantage of this 233 

microextraction process is that there is no need for an evaporation/reconstitution step due to 234 

the hydrophilicity of the donor phase. In the standard HLLME approach, hydrophilic organic 235 

solvents such as acetonitrile, acetone, ethanol, and propanol are frequently used as extractants. 236 

NADESs have recently attracted a lot of attention as a more eco-friendly alternative to the 237 

poisonous and volatile organic solvents used in the HLLME process. The most common mode 238 

that was used in HLLME is the aprotic solvent-assisted HLLME, which depends on using a 239 

water miscible extractant and an aprotic solvent a PSA such as THF, ACN and acetone. Unlike 240 

other HLLME modes, this mode gives the ability to use a large sample volume, enhancing 241 

sensitivity of the proposed method. Khezeli et al. [120] were the pioneers of this mode. In this 242 

work, the NADESs used were prepared by combining choline chloride (ChCl) as an HBA with 243 

phenol as an HBD. The developed method was used to successfully extract several organic 244 

chemical components from water samples. This procedure produced a homogeneous solution 245 

by adding the extraction solvent (the hydrophilic NADES) to the aqueous sample solution 246 

(donor phase). Finally, an aprotic solvent (THF) was used to produce phase separation. It has 247 

been proposed that introducing an aprotic solvent into a homogeneous solution can greatly 248 

diminish the interactions between DES and water molecule because of the π- π and hydrogen 249 

bonding interactions between the DES ingredients. Therefore, the DES molecules can self-250 

aggregate and migrate out of the water phase. Shishov et al. [121] proposed another theory in 251 

the mechanism of phase separation. They investigated the solvent-assisted HLLME process 252 

with hydrophilic DES based on choline and phenol utilizing gas chromatography-mass 253 

spectrometry analysis and coulometric Karl-Fischer titration. The results of this study 254 

supported the instability of a hydrophilic DES in aqueous conditions. Thus, they hypothesize 255 
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that hydrophilic DESs based on choline and phenol breaks down in the aqueous phase in the 256 

solvent-assisted HLLME process. The findings of this study revealed that the organic phase 257 

recovered comprised phenol, THF, and water. As indicated in Table 2 , this mode was 258 

successfully applied for extraction various compound from different matrices including water 259 

[122], food [123], biological samples [124] and beverages [125]. The most common water 260 

miscible NADES used in aprotic solvent-assisted HLLME was composed of phenol and ChCl 261 

[123,126–130]. In addition to that, THF was widely used in this mode as PSA 262 

[123,126,131,132]. It is worth mentioning that other aprotic solvent were used as PSA in 263 

aprotic solvent assisted HLLME such as ACN [133] and acetone [134]. The applications of 264 

NADES in HLLME have high potential because of being greener, simpler, cheaper, and more 265 

sensitive in comparison with other conventional extraction modes.  266 
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Table 2: Applications of NADES in HLLME 267 

Analyte Sample 

Sample 

volume 

(mL) 

NADES 

component 
HLLME PSA 

Extractant 

volume 

(µL) 

PSA(vol 

/amount) 

µL 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Copper 
olive oil and 

water samples 
15 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 450 450 FAAS NA ˂5.0% [126] 

Arsenic and antimony Water samples 125 
ChCl: oxalic 

acid 

Aprotic solvent 

assisted 

HLLME 

THF 700 300 

Hydride 

generation-atomic 

absorption 

spectrometry 

15-570 

ng/L 

2.1% and 

2.7% 
[122] 

Benzotriazole derivatives 

and benzothiazole 

derivatives 

Surface water 5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 1000 500 
UHPLC-ESI(+)-

QToF-MS 
5 -200 1 -8% [127] 

Pesticides 
Chinese 

medicine 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 650 550 HPLC/DAD 50-107000 4.7% [128] 

Methyl mercury and total 

mercury 

Water and fish 

sample 
2.5 

betaine-

sorbitol 

Aprotic solvent 

assisted 

HLLME 

ACN 600 375 Spectrophotometer 0.7–340 1.9–5.5% [133] 

Caffeine Turkish coffee 5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 400 800 HPLC/UV 500-100000 2.20% [129] 

Curcumin 
Tea and honey 

samples 
5 

ChCl: 

Maltose 

Aprotic solvent 

assisted 

HLLME 

THF 762.5 107.5 Spectrophotometer 0.4–120 ≤4.3% [135] 

Curcumin 
Food and herbal 

tea 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 400 400 Spectrophotometer NA 1.8 %. [123] 

Malachite green 
Aquarium fish 

water 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 Spectrophotometer 45-900 2.7 %. [130] 

Sulfonamides Water samples 1.5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 193 100 HPLC/UV 
500–

100000 
≤2.10 [131] 

Thiophenols Water samples 1.5 ChCl:p-cresol 

Aprotic solvent 

assisted 

HLLME 

Acetone 50 50 GC/FID 2-100000 ˂4.1% [134] 
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Polycyclic aromatic 

hydrocarbons 
Water samples 1.5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 100 100 HPLC/UV 0.1-400 ˂4.5 [120] 

Antidepressants 

Pharmaceutical 

and water 

samples 

6 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 200 430 HPLC/UV 10-8000 3.6-5.7% [136] 

Selenium species 
Water and food 

samples 
25 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.2-8 ≤4.1 [137] 

Phenoxy acid 

herbicides 

Paddy field and 

water samples 
1.5 

ChCl:2-

chlorophenol 

Aprotic solvent 

assisted 

HLLME 

THF 50 100 HPLC/UV 5–100 ≤4.6 [138] 

Phthalate Beverages 10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 440 440 HPLC/DAD 170-2700 ˂11% [125] 

Caffeine Beverages 1 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 50 50 HPLC/UV 100-200000 ≤6% [139] 

Mercury 

Water and 

biological 

samples 

10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.3-10 ≤–5.72% [124] 

Cadmium 
Food and water 

samples 
50 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 600 ETAAS 5–150 ng/ L 3.1% [132] 

268 
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3.4. Applications of NADES in single drop microextraction 269 

Single-drop microextraction (SDME) is a highly effective and environmentally 270 

sustainable sample pretreatment technique that involves the immersion of an organic solvent 271 

microdroplet into the sample with the aid of a microsyringe needle. SDME has gained 272 

widespread use in fields such as environmental monitoring, food quality control, and biological 273 

analysis, owing to its minimal solvent consumption and high sample-to-extractant phase ratio 274 

[140,141]. This technique has streamlined the analytical workflow by integrating extraction 275 

and enrichment processes. Furthermore, SDME is particularly well-suited for fluorescence 276 

spectroscopy, as the solvent used is transparent in the visible region and does not interfere with 277 

direct visual readout or spectral analysis [142,143]. The realm of green analytical chemistry is 278 

presently witnessing a huge interest in the creation and utilization of sustainable and eco-279 

friendly solvents. This trend is particularly visible in the SDME field, in which a growing 280 

number of innovative solvents has been reported, for instance, ionic liquids, superheated water, 281 

deep eutectic solvents, surfactants, and supercritical fluids [144]. An important aspect that 282 

could significantly influence the efficacy of the extraction process is the choice of solvent. In 283 

particular, the utilization of a solvent with high viscosity can facilitate the suspension of larger 284 

and more stable droplets at the needle tip. This property makes NADESs a suitable option for 285 

the task, given their favorable attributes such as elevated viscosity at ambient temperature, 286 

considerable thermal stability, and low vaporization tendencies [145]. Yousefi et al. have 287 

introduced a novel technique for headspace single drop microextraction (HS-SDME) that 288 

employs a magnetic bucky gel derived from deep eutectic solvents (DES-MBG) as the 289 

extraction medium. This method offers several advantages, including high viscosity, magnetic 290 

susceptibility, and adjustable extractability. Additionally, it ensures droplet stability, allowing 291 

extraction at high temperatures and rapid agitation rates. This suggests the potential of DES-292 

MBGs to exhibit superior resilience, facilitating the utilization of larger droplet volumes and 293 

consequently enhancing extraction efficiency, sensitivity, and detection limits [146]. Yıldırım 294 

et al. [147] proposed a novel approach for fluoroquinolone analysis in environmental waters 295 

via an automated Lab-In-Syringe direct immersion single drop microextraction method 296 

coupled online to HPLC with fluorescence detection (Fig. 4). The method employed NADES 297 

as an extractant within an automatic syringe pump, thus eliminating the utilization of toxic 298 

solvents and augmenting the method's sustainability from an environmental perspective. The 299 

method's linearity range for fluoroquinolones lied between 0.1 and 5.0 μg/L, with 300 

quantification limits in the 20-30 ng/L and enrichment factors of 35-45. The trueness of spiked 301 

samples ranged from 84.6% to 119.7%, and the method exhibited low RSD values. The 302 
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method's advantages include its parallel operation with HPLC, low sample consumption, and 303 

environmentally friendly characteristics, aligning it with the principles of green analytical 304 

chemistry [147]. 305 

 306 

Fig. 4. A schematic representation for the automation of a lab-in-syringe technique using 307 

NADES-based direct immersion single drop microextraction, which is linked online to HPLC-308 

FL to determine fluoroquinolones (With permission from [147]) 309 

 310 

3.5 Applications of NADES in DLLME-SFOD 311 

The DLLME-SFOD approach is a microextraction method that employs a ternary 312 

solvent system (extractant, disperser and sample), in which the extractant is an organic solvent 313 

that solidifies in ice bathes at relatively low temperatures [148]. The injection of a suitable 314 

mixture into an aqueous sample results in the formation of a cloudy solution, which facilitates 315 

phase interaction [149]. Following phase separation and centrifugation, the sample is immersed 316 

in an ice bath and the solidified organic phase is gathered for analysis [150]. This method boasts 317 

high efficiency, enrichment factors, and rapid equilibrium, while necessitating minimal solvent 318 

volume and equipment. Nonetheless, its solvent options are restricted in a narrow range of long 319 

chain alcohols with high melting points in the range 10-25°C. However, deep eutectic solvents 320 

(DESs) are being investigated as a favorable, eco-friendly replacement for this technique 321 

[151,152]. NADES have been utilized in DLLME-SFOD, serving as both disperser and 322 

extracting solvents. An effective example is a NADES consisting of lactic acid, glucose, and 323 

water at a 5:1:3 molar ratio, which has demonstrated efficient dispersion of pesticides from 324 
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water and white wine through vigorous shaking. The addition of water has resulted in lower 325 

viscosity, which has facilitated the dispersion process. The dispersive NADES has achieved 326 

recoveries exceeding 90% for analytes tested due to its reduced viscosity and increased 327 

polarity, which have improved interactions among the aqueous sample, NADES, and extracting 328 

solvent [153]. The developed method offered a strong, efficient, and environmentally friendly 329 

alternative for determining pesticides, providing a novel application for NADES in sample 330 

preparation, as indicated in Table 1. Another study has incorporated menthol and decanoic acid 331 

in the preparation of NADES with a molar ratio of 1:2 for the extraction of antidepressants 332 

from urine samples prior to GC/MS analysis resulting in recoveries ranging from 74 to 147% 333 

[154]. In their research, Taşpınar et al. applied an environmentally friendly approach known as 334 

air-assisted DLLME-SFOD, which was designed to extract patulin from both fruit juice and 335 

dried fruit. This process involved the injection of NADES as extraction solvents at a volume 336 

of 410 µL into a sample solution that has been adjusted to a pH of 5.6. The solution was then 337 

drawn into a syringe and immediately reinjected six times to allow for the even dispersal of 338 

NADES droplets throughout the aqueous bulk, resulting in a cloudy solution. Afterwards, the 339 

tubes were submerged in an ice bath for roughly seven minutes, which enabled the NADES 340 

phase to solidify and become easily separable before undergoing UV/Vis spectrophotometric 341 

analysis. This method had an LOD of 3.5 μg/L and an EF of 150 [155]. 342 

 343 

4. Limitations of NADES  344 

The interest and the applications of NADES in various fields, particularly in chemical 345 

analysis and LPME are increasing. However, NADES are not perfect solvents and have some 346 

challenges and limitations that need to be addressed, such as stability, viscosity, water content, 347 

and extraction efficiency. NADES are prone to decomposition or degradation over time. The 348 

hydrogen-bonding network that exists between the constituents significantly influences the 349 

stability of NADES. Hydrogen bonds are responsible for lowering the melting point of NADES 350 

[20]. Betaine-urea-water is a NADES that has been used for extracting bioactive compounds 351 

from plants. However, this NADES is not stable at room temperature and tends to crystallize 352 

after a few days. A recent study by Nava-Ocampo et al. investigated the structural properties 353 

and stability of betaine-urea-water using spectroscopic and computational methods. The 354 

researchers discovered that the formation of a metastable transparent liquid requires a 355 

minimum of two moles of water, whereas a stable NADES necessitates a minimum of three 356 

moles of water. They also showed that water plays a crucial role in forming stronger hydrogen 357 

bonds between urea and the carbonyl groups of betaine, and in deprotecting the methyl group 358 
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of betaine from forming intermolecular interactions [156]. NADES tend to have high viscosity 359 

compared to conventional solvents, which can limit their mass transfer and diffusion rates. This 360 

can reduce their extraction efficiency and increase the energy consumption and processing 361 

time. To address this, it is necessary to optimize the composition and ratio of the components 362 

of NADES to achieve the desired viscosity. Moreover, some methods can be used to reduce the 363 

viscosity of NADES, such as heating, dilution, ultrasonication, or adding co-solvents [13]. 364 

NADES usually contain a certain amount of water due to their hygroscopic nature or the 365 

presence of water in the natural components. Water can affect the polarity and solvation ability 366 

of NADES, as well as their interaction with the target compounds. So, it is important to control 367 

the water content of NADES according to the specific application and the solubility of the 368 

target compounds. Additionally, some techniques can be used to remove or reduce the water 369 

content of NADES, such as freeze-drying [157]. NADES may be less environmentally friendly 370 

than initially thought, urging a reevaluation of their large-scale applications [158]. According 371 

to Popović et al, The cytotoxic effect is primarily influenced by the structure of the HBD, with 372 

acidic systems showing the highest cytotoxic effects. Cytotoxicity depends on both the 373 

concentration of the NADES system in the cell medium and the chemical composition of the 374 

investigated systems [159]. 375 

 376 

5. Perspectives 377 

One of the major limitations in any LPME is phase separation. To overcome this 378 

problem, magnetic solvents have been introduced in recent years to shorten the time necessary 379 

for phase separation. These magnetic solvents can be quickly separated and collected without 380 

the need for time-consuming centrifugation processes, allowing for quick sample preparation. 381 

Magnetic solvents are easier to prepare and have higher reproducibility than magnetic 382 

materials. Magnetic ionic liquids have a low vapor pressure and good thermal stability, as well 383 

as the capacity to respond significantly to external magnetic fields [160,161]. However, they 384 

are costly and need drying or a rotary evaporation process [162]. Magnetic deep eutectic 385 

solvents (MDESs) not only exhibit paramagnetic characteristics similar to magnetic ionic 386 

liquids, but they also offer substantial cost and availability benefits. Most MDESs are currently 387 

hydrophilic, which limits their applicability to extracting polar analytes (such as thiophene and 388 

aldehydes) in non-polar solvents (such as n-heptane and oil samples) [163,164]. Therefore, the 389 

development of hydrophobic MDESs is necessary to extract non-polar analytes from different 390 

matrices. For these reasons, MDESs is a new growing area of research for the development 391 

green solvents in LPME. Duque et al [165] applied ferrofluid-based NADES in stir bar 392 
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dispersive liquid microextraction for the determination of  UV filters in water samples. This 393 

ferrofluid was composed of a hydrophobic NADES (1:5 molar ratio of menthol and thymol as 394 

carrier solvent) and oleic acid-coated cobalt ferrite (CoFe2O4@oleic acid) magnetic 395 

nanoparticles. CoFe2O4 MNPs were first synthesized through wet chemical coprecipitation 396 

using an adapted procedure [166], and then coated with oleic acid. In this case, 100 mL of 0.4 397 

M FeCl3 aqueous solution was combined with 100 mL of 0.2 M CoCl2 aqueous solution. Then, 398 

100 mL of a 3 M sodium hydroxide aqueous solution was added dropwise at 80°C, under 399 

continuous stirring. The reaction mixture was then agitated at the same temperature for 1 hour 400 

after 2 mL of oleic acid was added. After carefully cooling the black precipitate result to 401 

ambient temperature, the MNPs were cleaned twice with ultrapure water and once with ethanol. 402 

Finally, the precipitate was dried overnight at 100°C and ground into a fine powder. A stable 403 

ferrofluid was prepared by weighing 25 mg of CoFe2O4@OA MNPs in a microcentrifuge tube 404 

and 1 mL of NADES was added. The resulting mixture was sonicated for 40 min. The results 405 

indicated that the developed analytical method produced comparable findings, demonstrating 406 

the promise of this ferrofluid as a less expensive and more environmentally friendly alternative 407 

to MILs in future analytical procedures [166]. 408 

 409 

6. Conclusion 410 

   NADESs have emerged as promising alternatives for liquid phase microextraction 411 

applications. NADES offer unique advantages such as high polarity, hydrophilicity, and 412 

environmentally friendly nature, making them suitable for liquid phase microextraction in 413 

diverse fields, including pharmaceutical, environmental, and food analysis. NADES have been 414 

successfully employed in different modes, including HF-LPME, DLLME, and SDME. These 415 

techniques aim to minimize the use of organic solvents, reduce extraction time, and enhance 416 

the preconcentration factor. NADES have shown promise in improving the efficiency and 417 

environmental friendliness of LPME processes. By replacing traditional solvents with NADES, 418 

researchers have achieved successful extraction of analytes from aqueous samples. Rising 419 

interest in NADES for analysis and LPME faces challenges in stability, viscosity, water 420 

content, and extraction efficiency. Further research and development in the synthesis methods, 421 

characterization techniques, and application of NADES are warranted to fully explore their 422 

potential in liquid phase microextraction and contribute to sustainable analytical practices. The 423 

automation of liquid-liquid microextraction processes using NADES has proven to be a 424 

valuable approach in minimizing reagent and sample usage while reducing human and 425 

environmental hazards.  426 
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Abstract 29 

Natural deep eutectic solvents (NADES) have gained significant attention as green solvents 30 

due to their unique properties, such as high solubility, low volatility, low toxicity, and 31 

tunability. LPMELiquid phase microextraction (LPME) is a sample preparation technique that 32 

plays a crucial role in analytical chemistry, and the use of NADES as extraction solvents in 33 

LPME offers numerous benefits compared to traditional solvents. NADES can effectively 34 

extract bioactive compounds from natural sources without damaging their structure and 35 

activity. They can also serve as solvents and catalysts in organic reactions, enhancing the 36 

bioavailability of natural compounds. In addition, NADES can be utilized as mobile or 37 

stationary phases in chromatographic techniques for separating and analyzing natural 38 

compounds. The review highlights the efficiency of NADES in terms of extraction ability, 39 

analyte stabilization capacity, and detection compatibility. Moreover, the availability of their 40 

components, ease of preparation, low toxicity, cost-effectiveness, and biodegradability make 41 

NADES attractive for researchers in the field of analytical chemistry. The applications of 42 

NADES in LPME contribute to the principles of green analytical chemistry and green sample 43 

preparation by providing a sustainable and environmentally friendly approach to sample 44 

preparation. A comprehensive overview of the applications of NADES in liquid phase 45 

microextraction is provided, emphasizing their potential for advancing green practices in 46 

analytical chemistry. 47 

Keywords 48 

Natural deep eutectic solvents; Microextraction; Sample preparation; Analytical chemistry; 49 

NADES; Green analytical chemistry 50 

  51 
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1. Introduction 52 

There is a growing interest in the development of new solvents and procedures that are safer 53 

for both analysts and the environment [1,2]. This is related to the fact that current organic 54 

solvents are highly hazardous, easily vaporized, and combustible. This shift aligns with the 55 

principles of green analytical chemistry (GAC) and green sample preparation (GSP) [3–5], 56 

which aim to create sustainable solvents, particularly for sample preparation [6,7], a process 57 

that can generate significant amounts of waste [8–10]. Natural deep eutectic solvents (NADES) 58 

are a novel class of green solvents that captured significant interest in recent years for their 59 

potential applications in the domain of research related to natural products. (Fig. S1) illustrates 60 

the upward trend of NADES publications recently [11]. 61 

The term “NADES” was coined by Choi et al [12] in 2011. NADES are formed by 62 

mixing a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA) of natural origin 63 

(Fig. 1) [13] to form a liquid mixture at room temperature or below [14]. The robust hydrogen 64 

bonding interactions between the components lower the melting point of the mixture and drive 65 

the formation of NADES. For this reasons, NADES have several unique properties that make 66 

them attractive as green solvents. Some of these properties are high solubility, low volatility, 67 

low toxicity and tunability. Also, they can dissolve a wide range of compounds, such as 68 

proteins, lipids, nucleic acids, metal ions and organic pollutants and bismuth oxide 69 

nanoparticles (BIONPs) that are not soluble in water [15–18]. NADES have very low vapor 70 

pressure, which reduces the risk of evaporation [19–21]. These solvents are derived from 71 

biodegradable compounds, which minimize the environmental and health impacts of solvent 72 

use and disposal [22]. Additionally, they can be tailored to suit different applications by 73 

changing the type and ratio of the components, which affects the viscosity, polarity, acidity and 74 

conductivity of the solvent [23]. 75 
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 76 

Fig. 1. Names and structures of the most common hydrogen bond donners and acceptors 77 

involved in NADES preparation. 78 

 79 

NADES have been used for various applications in different fields, such as extraction, 80 

synthesis, separation, electrochemistry and bioavailability enhancement [24]. They are also 81 

able to extract bioactive compounds from natural sources [25], such as plants, algae and fungi, 82 

without damaging their structure and activity [26]. NADES can also act as both solvents and 83 

catalysts for organic reactions, such as esterification, transesterification and aldol condensation 84 

[27–30]. They can improve the bioavailability of natural compounds by increasing their 85 

solubility, stability, permeability, and absorption in biological systems [31]. By creating 86 

complexes or micelles [32–34] with poorly water-soluble drugs, NADES can increase their 87 

solubility and bioavailability [35]. They can also serve as carriers or adjuvants for various drug 88 

delivery systems like nanoparticles, liposomes, or hydrogels. Additionally, NADES can 89 

regulate the absorption and release of drugs by modifying their phase behavior or viscosity 90 

[36]. These solvents could also be used as antibacterial and antifungal agents [37].  91 

In the field of analytical chemistry, NADES can separate mixtures of compounds based 92 

on their solubility and affinity to the solvent as mobile phases or stationary phases in 93 
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chromatographic techniques for separating natural compounds [37–40]. They are also 94 

presented as a green alternative in analytical chemistry, showing high extraction ability [41], 95 

analyte stabilization capacity In the field of analytical chemistry, NADES can separate 96 

mixtures of compounds based on their solubility and affinity to the solvent as mobile phases or 97 

stationary phases in chromatographic techniques for separating natural compounds [38–41]. 98 

They are also presented as a green alternative in analytical chemistry, showing high extraction 99 

ability [42], analyte stabilization capacity [31], and detection compatibility [42] [43]. These 100 

advantages make NADES suitable solvent for LPME, which is principally considered green 101 

due to the huge reduction in solvent and sample consumption. So, finding the most suitable 102 

solvent took massive effort along the years [44]. One major advantage, besides the previously 103 

mentioned benefits, is their high polarity, which allows them to dissolve a wide range of 104 

substances that are typically insoluble in conventional solvents such as cellulose [45]. 105 

, and detection compatibility [43] [44]. These advantages make NADES suitable 106 

solvent for LPME, which is principally considered green due to the huge reduction in solvent 107 

and sample consumption. So, finding the most suitable solvent took massive effort along the 108 

years [45]. One major advantage, besides the previously mentioned benefits, is their high 109 

polarity, which allows them to dissolve a wide range of substances that are typically insoluble 110 

in conventional solvents such as cellulose [46]. 111 

Several review articles on the microextraction techniques utilizing deep eutectic solvents can 112 

be found. Makoś et al. provided an article concentrating in hydrophobic deep eutectic solvents 113 

in different microextraction techniques [46].[47]. Nakhle et al. focused on microextraction 114 

methods employing deep eutectic solvents as extraction solvents, and exploring the impact of 115 

these solvents' properties on extraction efficiency [47].[48]. Andrade et al.  presented an 116 

overview on the utilization of deep eutectic solvents for the analysis of biological matrices, 117 

with a particular emphasis on urine, blood, plasma, and oral fluid. The focus was placed on 118 

microextraction techniques, highlighting the various analytical features [48].[49]. Santos et al. 119 

explored the application of deep eutectic solvents in LPME and their significant contributions 120 

to the field of green chemistry [49].[50]. To the best of our knowledge, this is the first review 121 

article to highlight the applications of NADESs in liquid phase microextraction. 122 

 123 

2. Preparation and characterization of NADES 124 

NADES are prepared by blending specific natural metabolites at specific molar ratios 125 

to create a clear liquid at room temperature. Common components of NADES include amino 126 

acids, sugars, organic acids, choline salts, essential oil ingredients, and inorganic salts [50–52]. 127 
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The preparation techniques include thermal mixing, vacuum evaporation, ultrasound-based 128 

methods, and microwave-based methods. In the thermal mixing method, two components are 129 

heated and stirred with or without a predetermined amount of water to obtain a clear liquid 130 

[43,53–59]. Vacuum evaporation involves heating the NADES components under reduced 131 

pressure to remove excess water [43,53]. Ultrasound-based methods utilize ultrasonic waves 132 

to create cavitation and facilitate the formation of NADES [60]. Microwave-based methods 133 

use microwave energy to induce molecular agitation and collisions between the components 134 

[61,62][51–53]. The preparation techniques include thermal mixing, vacuum evaporation, 135 

ultrasound-based methods, and microwave-based methods. In the thermal mixing method, two 136 

components are heated and stirred with or without a predetermined amount of water to obtain 137 

a clear liquid [44,54–60]. Vacuum evaporation involves heating the NADES components under 138 

reduced pressure to remove excess water [44,54]. Ultrasound-based methods utilize ultrasonic 139 

waves to create cavitation and facilitate the formation of NADES [61]. Microwave-based 140 

methods use microwave energy to induce molecular agitation and collisions between the 141 

components [62,63]. 142 

The characterization of NADES involves several analytical techniques. Nuclear magnetic 143 

resonance (NMR) [23,63], Fourier transform infrared spectroscopy (FTIR)The characterization 144 

of NADES involves several analytical techniques. Nuclear magnetic resonance (NMR) 145 

[23,64], Fourier transform infrared spectroscopy (FTIR)[23], Raman spectroscopy [64,65], and 146 

mass spectrometry (MS) [66] are also used to determine the chemical composition of NADES. 147 

NMR, in combination with FTIR, helps identify the constituents and purity of components 148 

[67,68]. FTIR can also be employed to determine NADES' structures [69,70] while 149 

thermogravimetric analysis and differential scanning calorimetry are used to assess density, 150 

thermal features, and stability [43,71]. Density and viscosity measurements provide important 151 

physical property information for designing processes and evaluating solvent suitability and to 152 

determine the best ratio between HBD and HBA [72–74].  153 

 154 

3. Application of NADESs in liquid phase microextraction 155 

Despite obvious developments in analytical science and technology, sample preparation 156 

remains the bottleneck of all analytical procedures. Miniaturizing the analytical scale and/or 157 

using safer alternatives instead of hazardous solvents can be used to mitigate the negative 158 

environmental effect of analytical procedures [75,76]., Raman spectroscopy [65,66], and mass 159 

spectrometry (MS) [67] are also used to determine the chemical composition of NADES. NMR, 160 

in combination with FTIR, helps identify the constituents and purity of components [68,69]. 161 



 

8 
 

FTIR can also be employed to determine NADES' structures [70,71] while thermogravimetric 162 

analysis and differential scanning calorimetry are used to assess density, thermal features, and 163 

stability [44,72]. Density and viscosity measurements provide important physical property 164 

information for designing processes and evaluating solvent suitability and to determine the best 165 

ratio between HBD and HBA [73–75].  166 

 167 

3. Application of NADESs in liquid phase microextraction 168 

Despite obvious developments in analytical science and technology, sample preparation 169 

remains the bottleneck of all analytical procedures. Miniaturizing the analytical scale and/or 170 

using safer alternatives instead of hazardous solvents can be used to mitigate the negative 171 

environmental effect of analytical procedures [76,77]. Both hydrophilic and hydrophobic 172 

NADES have been employed in different modes of LPME, as shown in (Fig. 2). In this section, 173 

the role of NADES in liquid phase microextraction approaches are discussed in details. 174 

 175 

Fig. 2: Modes on LPME in which NADESs were employed  176 

 177 

3.1. Applications of NADES in HF–LPME  178 

Sample preparation trends tend to minimize the amount of organic solvent and extraction time. 179 

The liquid-phase microextraction (LPME) approach offers an alternative to typical preparation 180 

procedures [77]. There are different modes of LPME including dispersive liquid-liquid 181 

microextraction (DLLME) [78], single drop microextraction (SDME) [79], and hollow fiber–182 

LPME (HF–LPME) [80]. Among these techniques, the HF-LPME has distinct benefits such as 183 
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low cost, high preconcentration factor, low solvent consumption, and environmental 184 

friendliness. The HF-LPME technique is based on the use of different materials such as porous 185 

polypropylene hollow fiber, polyvinylidene difluoride, or PTFE, which first extract analytes 186 

from an aqueous sample as the donor phase and then back-extract them into the acceptor phase 187 

situated in the HF lumen [81]. Organic solvents are often used in the HF-LPME technique, but 188 

they have various drawbacks, including volatility, toxicity, instability, and deleterious effects 189 

on laboratory workers. Nia et al [82] prepared amino acids hydrophobic NADES in two phase 190 

HF-LPME. In this application, NADES was prepared by mixing amino acids (as an HBA) with 191 

lactic acid (as an HBD) using a hollow fiber's supported liquid membrane. The lumens were 192 

impregnated with extremely stable NADESs (serine: lactic acid). The developed method was 193 

successfully applied to extract caffeic acid from green tea, tomato samples and coffee.  The 194 

enrichment factor was in the range of 418–438. Morelli et al. [83] investigated both hydrophilic 195 

and hydrophobic NADESs  hollow fiber-microporous membrane liquid-liquid microextraction 196 

(HF-MMLLE).[78]. There are different modes of LPME including dispersive liquid-liquid 197 

microextraction (DLLME) [79], single drop microextraction (SDME) [80], and hollow fiber–198 

LPME (HF–LPME) [81]. Among these techniques, the HF-LPME has distinct benefits such as 199 

low cost, high preconcentration factor, low solvent consumption, and environmental 200 

friendliness. The HF-LPME technique is based on the use of different materials such as porous 201 

polypropylene hollow fiber, polyvinylidene difluoride, or PTFE, which first extract analytes 202 

from an aqueous sample as the donor phase and then back-extract them into the acceptor phase 203 

situated in the HF lumen [82]. Organic solvents are often used in the HF-LPME technique, but 204 

they have various drawbacks, including volatility, toxicity, instability, and deleterious effects 205 

on laboratory workers. Nia et al [83] prepared amino acids hydrophobic NADES in two phase 206 

HF-LPME. In this application, NADES was prepared by mixing amino acids (as an HBA) with 207 

lactic acid (as an HBD) using a hollow fiber's supported liquid membrane. The lumens were 208 

impregnated with extremely stable NADESs (serine: lactic acid). The developed method was 209 

successfully applied to extract caffeic acid from green tea, tomato samples and coffee.  The 210 

enrichment factor was in the range of 418–438. Morelli et al. [84] investigated both hydrophilic 211 

and hydrophobic NADESs  hollow fiber-microporous membrane liquid-liquid microextraction 212 

(HF-MMLLE). The best NADES was composed from thymol and camphor. Selected NADESs 213 

were introduced into the porous polypropylene membrane for 10 minutes, substituting widely 214 

used solvents (for example, hexane and octanol). The developed method was successfully 215 

applied and verified for 11 emergent contaminants from various classes, demonstrating the 216 

method's adaptability.  217 
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Analytical method automation, commonly employed to minimize reagent and sample usage, is 218 

a highly effective tool for integrating all stages of necessary analytical procedures onto a single 219 

manifold while minimizing human and environmental hazards. Shakirova et al. [84]Analytical 220 

method automation, commonly employed to minimize reagent and sample usage, is a highly 221 

effective tool for integrating all stages of necessary analytical procedures onto a single 222 

manifold while minimizing human and environmental hazards. Shakirova et al. [85] developed 223 

an automated liquid-liquid microextraction process for determining sulfonamides 224 

(sulfamethoxazole, sulfamethazine, and sulfapyridine) in urine samples utilizing NADES. The 225 

extraction of sulfonamides was based on the synthesis of colored Schiff bases in the presence 226 

of vanillin, which served as a derivatization reagent as well as a precursor of NADES (an 227 

extractant). Thymol was utilized in this process as both a medium for Schiff base synthesis and 228 

a second precursor of the NADES. Mass spectrometry verified the production of the Schiff 229 

bases. The microextraction method was automated using the Lab-In-Syringe approach as 230 

indicated in (Fig. 3). 231 

 232 

Fig. 3: manifold for the determination of sulfonamides in urine samples with permission from 233 

[8485]. 234 

 235 

The developed approach had enough sensitivity to determine the concentration of sulfonamides 236 

at therapeutic levels. In addition to that, this method was ecologically benign, providing full 237 

automation with a sample throughput of six samples/h. 238 

Field Code Changed
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 239 

3.2. Applications of NADES in DLLME 240 

DLLME is a miniaturized sample preparation process used in many analytical chemistry 241 

applications [85,86]. In this mode, an immiscible organic solvent is used with an organic 242 

disperser, the two solvents are combined. The organic extractant is dispersed as tiny droplets 243 

by manual shaking resulting in a homogeneous hazy solution.  DLMME has several benefits 244 

over other sample preparation approaches in terms of simplicity, affordability, convenience of 245 

use, and speed. However, the right selection of dispersing and extracting solvents (µL scale) is 246 

quite difficult [87]. The pioneers of DLLME mode (Rezaee et al. [88]) developed this mode as 247 

a modification of LLME in an attempt to boost the recovery rate in LLME. DLLME results in 248 

extending the contact surface between the extractant and the sample, and this dispersion 249 

procedure greatly increases extraction kinetics. The sample is then centrifuged to separate the 250 

extractant and break up the emulsion. It worth mentioning that dispersion could be achieved 251 

by using a disperser solvent or by using external mechanical force such as manual shaking, 252 

vortex agitation, magnetic stirrer power, ultrasonic power, and microwave irradiation. 253 

Traditional DLLME procedures use hazardous halogenated organic solvents such as 254 

chloroform, carbon tetrachloride, and chlorobenzene, which can be harmful to human health 255 

and the environment. In addition to using long chain alcohols as extractant and hazardous 256 

dispersers such as acetonitrile (ACN), methanol, acetone, tetrahydrofuran (THF), ethanol. 257 

Therefore, one of the GAC principles that should be adopted in method development is the 258 

replacement of harmful solvents with more benign ones. As a result, more environmentally 259 

friendly NADESs have recently been offered as a sustainable alternative in DLLME. In 260 

general, NADES is made up of two or more natural components (HBD and HBA) blended in 261 

a certain ratio to generate a homogeneous mixture with a eutectic point at a lower temperature 262 

than the separate substances. The most common components used in synthesis of NADESs are 263 

monoterpenes (menthol, thymol, and camphor) [89–100]. These solvents are biodegradable, 264 

less hazardous, widely accessible, and simple to make. Monoterpenes such as are considered 265 

an ideal choice of extractant because of their poor water solubility [101]. In general, 266 

hydrophobic NADESs were used as extractants in DLLME mode however, hydrophilic 267 

NADESs could be used as a disperser in the same mode. As reported in Table 1, the use of 268 

NADESs in DLLME was successfully applied for the extraction of different analytes from 269 

different matrices including water [100], biological samples [102], foods [103], beverages [92] 270 

and personal care products [91][86,87]. In this mode, an immiscible organic solvent is used 271 

with an organic disperser, the two solvents are combined. The organic extractant is dispersed 272 
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as tiny droplets by manual shaking resulting in a homogeneous hazy solution.  DLMME has 273 

several benefits over other sample preparation approaches in terms of simplicity, affordability, 274 

convenience of use, and speed. However, the right selection of dispersing and extracting 275 

solvents (µL scale) is quite difficult [88]. The pioneers of DLLME mode (Rezaee et al. [89]) 276 

developed this mode as a modification of LLME in an attempt to boost the recovery rate in 277 

LLME. DLLME results in extending the contact surface between the extractant and the sample, 278 

and this dispersion procedure greatly increases extraction kinetics. The sample is then 279 

centrifuged to separate the extractant and break up the emulsion. It worth mentioning that 280 

dispersion could be achieved by using a disperser solvent or by using external mechanical force 281 

such as manual shaking, vortex agitation, magnetic stirrer power, ultrasonic power, and 282 

microwave irradiation. Traditional DLLME procedures use hazardous halogenated organic 283 

solvents such as chloroform, carbon tetrachloride, and chlorobenzene, which can be harmful to 284 

human health and the environment. In addition to using long chain alcohols as extractant and 285 

hazardous dispersers such as acetonitrile (ACN), methanol, acetone, tetrahydrofuran (THF), 286 

ethanol. Therefore, one of the GAC principles that should be adopted in method development 287 

is the replacement of harmful solvents with more benign ones. As a result, more 288 

environmentally friendly NADESs have recently been offered as a sustainable alternative in 289 

DLLME [90]. In general, NADES is made up of two or more natural components (HBD and 290 

HBA) blended in a certain ratio to generate a homogeneous mixture with a eutectic point at a 291 

lower temperature than the separate substances. The most common components used in 292 

synthesis of NADESs are monoterpenes (menthol, thymol, and camphor) [91–102]. These 293 

solvents are biodegradable, less hazardous, widely accessible, and simple to make. 294 

Monoterpenes such as are considered an ideal choice of extractant because of their poor water 295 

solubility [103]. In general, hydrophobic NADESs were used as extractants in DLLME mode 296 

however, hydrophilic NADESs could be used as a disperser in the same mode. As reported in 297 

Table 1, the use of NADESs in DLLME was successfully applied for the extraction of different 298 

analytes from different matrices including water [102], biological samples [104], foods [105], 299 

beverages [94] and personal care products [93].  300 
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Table 1: Application of NADES in DLLME 301 

Analyte Sample 

Sample 

volume 

(mL) 

NADES component 
Dispersion 

mode 

Extractant 

volume 

(µL) 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Tetracyclines Water 5 [ChCl]: [thymol]: [nonanoic acid] 
Air assisted 

DLLME 
400 HPLC/UV 18.2-500 ≤11.2 

[100]

[102] 

Warfarin Biological samples 10 Borneol: decanoic acid 
Air assisted 

DLLME 
60 HPLC/UV 5–500 ˂5.87 

[102]

[104] 

Vanadium Food stuff 2 ChCl: phenol 
Ultrasound 

assisted DLLME 
1000 

Electrothermal 

atomic absorption 

spectrometry 

(ETAAS) 

N/A 3.4% 
[104]

[106] 

Tert-

Butylhydroquino

ne 

Soybean Oils 0.2 g ChCl: sesamol 
Ultrasound 

assisted DLLME 
400 HPLC/UV 

5-500 

mg/kg 
˂2.3% 

[105]

[107] 

NSAIDs 
Water and milk 

samples 
10 

1,1,3,3-tetramethylguanidine chloride: 

thymol 

Ultrasound 

assisted DLLME 
200 HPLC/UV 5–2000 

1.11% 

to 

16.9%. 

[89][

91] 

Parabens 
Personal care 

products 
5 Menthol: formic acid 

Vortex assisted 

DLLME 
80 UHPLC/UV 20–4000 ≤3.33% 

[91][

93] 

Mercury Water samples 9 Decanoic acid: DL-menthol 
Vortex assisted 

DLLME 
50 LC/UV–Vis 10–200 ≤19% 

[90][

92] 

Alkylphenols, 

bisphenols and 

alkylphenol 

ethoxylates 

Microbial-fermented 

functional beverages 

and bottled water 

10 Methanol: octanoic acid 
Vortex assisted 

DLLME 
100 UHPLC-MS 0.4-50 ≤19.5% 

[93][

95] 

Sudan I Food samples 0.2 g ChCl: sesamol 
Vortex assisted 

DLLME 
800 HPLC/UV 

0.2–100 

mg /kg 
˂4.5% 

[103]

[105] 

Beta-blockers Water samples 9.5 Azelaic acid: thymol 
Vortex assisted 

DLLME 
55 HPLC/DAD 0.5-100 ˂6% 

[106]

[108] 

Phthalate Esters Soft drinks 10 Thymol: octanoic acid 
Vortex assisted 

DLLME 
125 UPLC-MS/MS 0.10−5.00 ˂11.5% 

[92][

94] 

Phthalate esters 
Grape-based 

beverages 
7.5 ChCl: acetic acid 

Vortex assisted 

DLLME 
500 Nano-LC/UV 5-403 ˂17% 

[107]

[109] 

Benzoic acid and 

sorbic acid 
Condiments 10 L-Menthol Acetic acid: decanoic acid 

Vortex assisted 

DLLME-SFOD 
800 HPLC/DAD 70-100000 ≤5.66% 

[94][

96] 

Phthalates and 

one adipate 
Water samples 10 Thymol: menthol 

Vortex assisted 

DLLME 
100 

UHPLC-QqQ-

MS/MS 
0.100–250 ˂14% 

[95][

97] 

Chloramphenico

l 
Honey sample 5 Menthol: acetic acid 

Vortex assisted 

DLLME 
100 LC/UV 

1–100 µg 

/kg 
≤4.5% 

[96][

98] 

Triarylmethane) 

dyes 

Shrimp and water 

samples. 
10 Thymol and camphor 

Vortex assisted 

DLLME 
200 HPLC/DAD 0.2 -200 ≤2.3 

[97][

99] 

Acaricides Egg samples 5 Choline chloride-acetic acid-n-octanol 
In-syringe 

DLLME 
74 GC/FID 2.7–4000 ≤11% 

[108]

[110] 

Phthalic acid 

esters 

Soft drinks and 

infusions 
20 Menthol: acetic acid 

Manual agitation 

assisted 

DLLME-SFO 

100 HPLC/UV 6-1190 1-22 % 
[98][

100] 

Phthalic acid 

esters 

Water and beverage 

samples 
20 Menthol: acetic acid 

Manual agitation 

assisted DLLME 
100 HPLC/UV 4-425 ≤ 20% 

[99][

101] 

302 
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3.3. Applications of NADES in HLLME 303 

HLLME is a method of sample preparation that involves the formation of a homogeneous phase 304 

between an aqueous sample and a small amount of a water-miscible extractant, such as 305 

acetonitrile, acetone or tetrahydrofuran. The separation of phases is achieved using a phase 306 

separating agent (PSA), which may be a salt, sugar, or hydrophobic substance. Depending on 307 

the type of PSA used, HLLME can be classified into three categories: salt-assisted LLME 308 

(SALLME) [109,110], sugar-assisted LLME (SULLME) [111,112], and hydrophobic 309 

substance-assisted  or aprotic solvent assisted HLLME [113,114].  Besides, the manipulation 310 

of physical conditions such as temperature, pH of the system, and, introducing gas bubbles to 311 

the homogeneous system could achieve phase separation [115]. It is worth mentioning that 312 

HLLME is characterized by infinite contact surface area between the aqueous and organic 313 

phases, which permits highly quick and effective extraction [116]. Another advantage of this 314 

microextraction process is that there is no need for an evaporation/reconstitution step due to 315 

the hydrophilicity of the donor phase. In the standard HLLME approach, hydrophilic organic 316 

solvents such as acetonitrile, acetone, ethanol, and propanol are frequently used as extractants. 317 

NADESs have recently attracted a lot of attention as a more eco-friendly alternative to the 318 

poisonous and volatile organic solvents used in the HLLME process. The most common mode 319 

that was used in HLLME is the aprotic solvent-assisted HLLME, which depends on using a 320 

water miscible extractant and an aprotic solvent a PSA such as THF, ACN and acetone. Unlike 321 

other HLLME modes, this mode gives the ability to use a large sample volume, enhancing 322 

sensitivity of the proposed method. Khezeli et al. [117] were the pioneers of this mode. In this 323 

work, the NADESs used were prepared by combining choline chloride (ChCl) as an HBA with 324 

phenol as an HBD. The developed method was used to successfully extract several organic 325 

chemical components from water samples. This procedure produced a homogeneous solution 326 

by adding the extraction solvent (the hydrophilic NADES) to the aqueous sample solution 327 

(donor phase). Finally, an aprotic solvent (THF) was used to produce phase separation. It has 328 

been proposed that introducing an aprotic solvent into a homogeneous solution can greatly 329 

diminish the interactions between DES and water molecule because of the π- π and hydrogen 330 

bonding interactions between the DES ingredients. Therefore, the DES molecules can self-331 

aggregate and migrate out of the water phase. Shishov et al. [118] proposed another theory in 332 

the mechanism of phase separation. They investigated the solvent-assisted HLLME process 333 

with hydrophilic DES based on choline and phenol utilizing gas chromatography-mass 334 

spectrometry analysis and coulometric Karl-Fischer titration. The results of this study 335 

supported the instability of a hydrophilic DES in aqueous conditions. Thus, they hypothesize 336 
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that hydrophilic DESs based on choline and phenol breaks down in the aqueous phase in the 337 

solvent-assisted HLLME process. The findings of this study revealed that the organic phase 338 

recovered comprised phenol, THF, and water. As indicated in Table 2 , this mode was 339 

successfully applied for extraction various compound from different matrices including water 340 

[119], food [120], biological samples [121] and beverages [122]. The most common water 341 

miscible NADES used in aprotic solvent-assisted HLLME was composed of phenol and ChCl 342 

[120,123–127]. In addition to that, THF was widely used in this mode as PSA 343 

[120,123,128,129]. It is worth mentioning that other aprotic solvent were used as PSA in 344 

aprotic solvent assisted HLLME such as ACN [130] and acetone [131]. The applications of 345 

NADES in HLLME have high potential because of being greener, simpler, cheaper, and more 346 

sensitive in comparison with other conventional extraction modes.  347 
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Table 2: Applications of NADES in HLLME 348 
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3.3. Applications of NADES in HLLME 349 

HLLME is a method of sample preparation that involves the formation of a homogeneous phase 350 

between an aqueous sample and a small amount of a water-miscible extractant, such as 351 

acetonitrile, acetone or tetrahydrofuran. The separation of phases is achieved using a phase 352 

separating agent (PSA), which may be a salt, sugar, or hydrophobic substance. Depending on 353 

the type of PSA used, HLLME can be classified into three categories: salt-assisted LLME 354 

(SALLME) [111,112], sugar-assisted LLME (SULLME) [113,114], and hydrophobic 355 

substance-assisted  or aprotic solvent assisted HLLME [115,116].  The manipulation of 356 

physical conditions such as temperature or pH, and the introduction of gas bubbles into the 357 

homogeneous system could achieve phase separation [117,118]. It is worth mentioning that 358 

HLLME is characterized by infinite contact surface area between the aqueous and organic 359 

phases, which permits highly quick and effective extraction [119]. Another advantage of this 360 

microextraction process is that there is no need for an evaporation/reconstitution step due to 361 

the hydrophilicity of the donor phase. In the standard HLLME approach, hydrophilic organic 362 

solvents such as acetonitrile, acetone, ethanol, and propanol are frequently used as extractants. 363 

NADESs have recently attracted a lot of attention as a more eco-friendly alternative to the 364 

poisonous and volatile organic solvents used in the HLLME process. The most common mode 365 

that was used in HLLME is the aprotic solvent-assisted HLLME, which depends on using a 366 

water miscible extractant and an aprotic solvent a PSA such as THF, ACN and acetone. Unlike 367 

other HLLME modes, this mode gives the ability to use a large sample volume, enhancing 368 

sensitivity of the proposed method. Khezeli et al. [120] were the pioneers of this mode. In this 369 

work, the NADESs used were prepared by combining choline chloride (ChCl) as an HBA with 370 

phenol as an HBD. The developed method was used to successfully extract several organic 371 

chemical components from water samples. This procedure produced a homogeneous solution 372 

by adding the extraction solvent (the hydrophilic NADES) to the aqueous sample solution 373 

(donor phase). Finally, an aprotic solvent (THF) was used to produce phase separation. It has 374 

been proposed that introducing an aprotic solvent into a homogeneous solution can greatly 375 

diminish the interactions between DES and water molecule because of the π- π and hydrogen 376 

bonding interactions between the DES ingredients. Therefore, the DES molecules can self-377 

aggregate and migrate out of the water phase. Shishov et al. [121] proposed another theory in 378 

the mechanism of phase separation. They investigated the solvent-assisted HLLME process 379 

with hydrophilic DES based on choline and phenol utilizing gas chromatography-mass 380 

spectrometry analysis and coulometric Karl-Fischer titration. The results of this study 381 

supported the instability of a hydrophilic DES in aqueous conditions. Thus, they hypothesize 382 
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that hydrophilic DESs based on choline and phenol breaks down in the aqueous phase in the 383 

solvent-assisted HLLME process. The findings of this study revealed that the organic phase 384 

recovered comprised phenol, THF, and water. As indicated in Table 2 , this mode was 385 

successfully applied for extraction various compound from different matrices including water 386 

[122], food [123], biological samples [124] and beverages [125]. The most common water 387 

miscible NADES used in aprotic solvent-assisted HLLME was composed of phenol and ChCl 388 

[123,126–130]. In addition to that, THF was widely used in this mode as PSA 389 

[123,126,131,132]. It is worth mentioning that other aprotic solvent were used as PSA in 390 

aprotic solvent assisted HLLME such as ACN [133] and acetone [134]. The applications of 391 

NADES in HLLME have high potential because of being greener, simpler, cheaper, and more 392 

sensitive in comparison with other conventional extraction modes.  393 
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Table 2: Applications of NADES in HLLME 394 

Analyte Sample 

Sample 

volume 

(mL) 

NADES 

component 
HLLME PSA 

Extractant 

volume 

(µL) 

PSA(vol 

/amount) 

µL 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Copper 
olive oil and 

water samples 
15 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 450 450 FAAS NA ˂5.0% [123][126] 

Arsenic and antimony Water samples 125 
ChCl: oxalic 

acid 

Aprotic 

solvent 

assisted 

HLLME 

THF 700 300 

Hydride 

generation-atomic 

absorption 

spectrometry 

15-570 

ng/L 

2.1% and 

2.7% 
[119][122] 

Benzotriazole 

derivatives and 

benzothiazole 

derivatives 

Surface water 5 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 1000 500 
UHPLC-ESI(+)-

QToF-MS 
5 -200 1 -8% [124][127] 

Pesticides 
Chinese 

medicine 
10 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 650 550 HPLC/DAD 50-107000 4.7% [125][128] 

Methyl mercury and 

total mercury 

Water and fish 

sample 
2.5 

betaine-

sorbitol 

Aprotic 

solvent 

assisted 

HLLME 

ACN 600 375 Spectrophotometer 0.7–340 1.9–5.5% [130][133] 

Caffeine Turkish coffee 5 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 400 800 HPLC/UV 
500-

100000 
2.20% [126][129] 

Curcumin 
Tea and honey 

samples 
5 

ChCl: 

Maltose 

Aprotic 

solvent 

assisted 

HLLME 

THF 762.5 107.5 Spectrophotometer 0.4–120 ≤4.3% [132][135] 

Curcumin 
Food and herbal 

tea 
10 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 400 400 Spectrophotometer NA 1.8 %. [120][123] 

Malachite green 
Aquarium fish 

water 
10 ChCl: Phenol 

Aprotic 

solvent 
THF 500 500 Spectrophotometer 45-900 2.7 %. [127][130] 
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assisted 

HLLME 

Sulfonamides Water samples 1.5 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 193 100 HPLC/UV 
500–

100000 
≤2.10 [128][131] 

Thiophenols Water samples 1.5 ChCl:p-cresol 

Aprotic 

solvent 

assisted 

HLLME 

Acetone 50 50 GC/FID 2-100000 ˂4.1% [131][134] 

Polycyclic aromatic 

hydrocarbons 
Water samples 1.5 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 100 100 HPLC/UV 0.1-400 ˂4.5 [117][120] 

Antidepressants 

Pharmaceutical 

and water 

samples 

6 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 200 430 HPLC/UV 10-8000 3.6-5.7% [133][136] 

Selenium species 
Water and food 

samples 
25 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.2-8 ≤4.1 [134][137] 

Phenoxy acid 

herbicides 

Paddy field and 

water samples 
1.5 

ChCl:2-

chlorophenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 50 100 HPLC/UV 5–100 ≤4.6 [135][138] 

Phthalate Beverages 10 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 440 440 HPLC/DAD 170-2700 ˂11% [122][125] 

Caffeine Beverages 1 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 50 50 HPLC/UV 
100-

200000 
≤6% [136][139] 

Mercury 

Water and 

biological 

samples 

10 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.3-10 ≤–5.72% [121][124] 
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Cadmium 
Food and water 

samples 
50 ChCl: Phenol 

Aprotic 

solvent 

assisted 

HLLME 

THF 500 600 ETAAS 
5–150 ng/ 

L 
3.1% [129][132] 

395 
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3.4. Applications of NADES in single drop microextraction 396 

Single-drop microextraction (SDME) is a highly effective and environmentally 397 

sustainable sample pretreatment technique that involves the immersion of an organic solvent 398 

microdroplet into the sample with the aid of a microsyringe needle. SDME has gained 399 

widespread use in fields such as environmental monitoring, food quality control, and biological 400 

analysis, owing to its minimal solvent consumption and high sample-to-extractant phase ratio 401 

[137,138].[140,141]. This technique has streamlined the analytical workflow by integrating 402 

extraction and enrichment processes. Furthermore, SDME is particularly well-suited for 403 

fluorescence spectroscopy, as the solvent used is transparent in the visible region and does not 404 

interfere with direct visual readout or spectral analysis [139,140].[142,143]. The realm of green 405 

analytical chemistry is presently witnessing a huge interest in the creation and utilization of 406 

sustainable and eco-friendly solvents. This trend is particularly visible in the SDME field, in 407 

which a growing number of innovative solvents has been reported, for instance, ionic liquids, 408 

superheated water, deep eutectic solvents, surfactants, and supercritical fluids [141].[144]. An 409 

important aspect that could significantly influence the efficacy of the extraction process is the 410 

choice of solvent. In particular, the utilization of a solvent with high viscosity can facilitate the 411 

suspension of larger and more stable droplets at the needle tip. This property makes NADESs 412 

a suitable option for the task, given their favorable attributes such as elevated viscosity at 413 

ambient temperature, considerable thermal stability, and low vaporization tendencies 414 

[142].[145]. Yousefi et al. have introduced a novel technique for headspace single drop 415 

microextraction (HS-SDME) that employs a magnetic bucky gel derived from deep eutectic 416 

solvents (DES-MBG) as the extraction medium. This method offers several advantages, 417 

including high viscosity, magnetic susceptibility, and adjustable extractability. Additionally, it 418 

ensures droplet stability, allowing extraction at high temperatures and rapid agitation rates. This 419 

suggests the potential of DES-MBGs to exhibit superior resilience, facilitating the utilization 420 

of larger droplet volumes and consequently enhancing extraction efficiency, sensitivity, and 421 

detection limits [143]. [146]. Yıldırım et al. [144][147] proposed a novel approach for 422 

fluoroquinolone analysis in environmental waters via an automated Lab-In-Syringe direct 423 

immersion single drop microextraction method coupled online to HPLC with fluorescence 424 

detection (Fig. 4). The method employed NADES as an extractant within an automatic syringe 425 

pump, thus eliminating the utilization of toxic solvents and augmenting the method's 426 

sustainability from an environmental perspective. The method's linearity range for 427 

fluoroquinolones lied between 0.1 and 5.0 μg/L, with quantification limits in the 20-30 ng/L 428 

and enrichment factors of 35-45. The trueness of spiked samples ranged from 84.6% to 119.7%, 429 
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and the method exhibited low RSD values. The method's advantages include its parallel 430 

operation with HPLC, low sample consumption, and environmentally friendly characteristics, 431 

aligning it with the principles of green analytical chemistry [144147]. 432 

 433 

Fig. 4. A schematic representation for the automation of a lab-in-syringe technique using 434 

NADES-based direct immersion single drop microextraction, which is linked online to HPLC-435 

FL to determine fluoroquinolones (With permission from [144]) 436 

 437 

Fig. 4. A schematic representation for the automation of a lab-in-syringe technique using 438 

NADES-based direct immersion single drop microextraction, which is linked online to HPLC-439 

FL to determine fluoroquinolones (With permission from [147]) 440 
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 441 

3.5 Applications of NADES in DLLME-SFOD 442 

The DLLME-SFOD approach is a microextraction method that employs a ternary 443 

solvent system (extractant, disperser and sample), in which the extractant is an organic solvent 444 

that solidifies in ice bathes at relatively low temperatures [145].[148]. The injection of a 445 

suitable mixture into an aqueous sample results in the formation of a cloudy solution, which 446 

facilitates phase interaction [146].[149]. Following phase separation and centrifugation, the 447 

sample is immersed in an ice bath and the solidified organic phase is gathered for analysis 448 

[147].[150]. This method boasts high efficiency, enrichment factors, and rapid equilibrium, 449 

while necessitating minimal solvent volume and equipment. Nonetheless, its solvent options 450 

are restricted in a narrow range of long chain alcohols with high melting points in the range 451 

10-25°C. However, deep eutectic solvents (DESs) are being investigated as a favorable, eco-452 

friendly replacement for this technique [148,149].[151,152]. NADES have been utilized in 453 

DLLME-SFOD, serving as both disperser and extracting solvents. An effective example is a 454 

NADES consisting of lactic acid, glucose, and water at a 5:1:3 molar ratio, which has 455 

demonstrated efficient dispersion of pesticides from water and white wine through vigorous 456 

shaking. The addition of water has resulted in lower viscosity, which has facilitated the 457 

dispersion process. The dispersive NADES has achieved recoveries exceeding 90% for 458 

analytes tested due to its reduced viscosity and increased polarity, which have improved 459 

interactions among the aqueous sample, NADES, and extracting solvent [150].[153]. The 460 

developed method offered a strong, efficient, and environmentally friendly alternative for 461 

determining pesticides, providing a novel application for NADES in sample preparation, as 462 

indicated in Table 1. Another study has incorporated menthol and decanoic acid in the 463 

preparation of NADES with a molar ratio of 1:2 for the extraction of antidepressants from urine 464 

samples prior to GC/MS analysis resulting in recoveries ranging from 74 to 147% [151].[154]. 465 

In their research, Taşpınar et al. applied an environmentally friendly approach known as air-466 

assisted DLLME-SFOD, which was designed to extract patulin from both fruit juice and dried 467 

fruit. This process involved the injection of NADES as extraction solvents at a volume of 410 468 

µL into a sample solution that has been adjusted to a pH of 5.6. The solution was then drawn 469 

into a syringe and immediately reinjected six times to allow for the even dispersal of NADES 470 

droplets throughout the aqueous bulk, resulting in a cloudy solution. Afterwards, the tubes were 471 

submerged in an ice bath for roughly seven minutes, which enabled the NADES phase to 472 

solidify and become easily separable before undergoing UV/Vis spectrophotometric analysis. 473 

This method had an LOD of 3.5 μg/L and an EF of 150 [152155]. 474 Field Code Changed



 

25 
 
 

 475 

4. Limitations of NADES  476 

The interest and the applications of NADES in various fields, particularly in chemical 477 

analysis and LPME are increasing. However, NADES are not perfect solvents and have some 478 

challenges and limitations that need to be addressed, such as stability, viscosity, water content, 479 

and extraction efficiency. NADES are prone to decomposition or degradation over time. The 480 

hydrogen-bonding network that exists between the constituents significantly influences the 481 

stability of NADES. Hydrogen bonds are responsible for lowering the melting point of NADES 482 

[20]. Betaine-urea-water is a NADES that has been used for extracting bioactive compounds 483 

from plants. However, this NADES is not stable at room temperature and tends to crystallize 484 

after a few days. A recent study by Nava-Ocampo et al. investigated the structural properties 485 

and stability of betaine-urea-water using spectroscopic and computational methods. The 486 

researchers discovered that the formation of a metastable transparent liquid requires a 487 

minimum of two moles of water, whereas a stable NADES necessitates a minimum of three 488 

moles of water. They also showed that water plays a crucial role in forming stronger hydrogen 489 

bonds between urea and the carbonyl groups of betaine, and in deprotecting the methyl group 490 

of betaine from forming intermolecular interactions [153].[156]. NADES tend to have high 491 

viscosity compared to conventional solvents, which can limit their mass transfer and diffusion 492 

rates. This can reduce their extraction efficiency and increase the energy consumption and 493 

processing time. To address this, it is necessary to optimize the composition and ratio of the 494 

components of NADES to achieve the desired viscosity. Moreover, some methods can be used 495 

to reduce the viscosity of NADES, such as heating, dilution, ultrasonication, or adding co-496 

solvents [13]. NADES usually contain a certain amount of water due to their hygroscopic 497 

nature or the presence of water in the natural components. Water can affect the polarity and 498 

solvation ability of NADES, as well as their interaction with the target compounds. So, it is 499 

important to control the water content of NADES according to the specific application and the 500 

solubility of the target compounds. Additionally, some techniques can be used to remove or 501 

reduce the water content of NADES, such as freeze-drying [154].[157]. NADES may be less 502 

environmentally friendly than initially thought, urging a reevaluation of their large-scale 503 

applications [155].[158]. According to Popović et al, The cytotoxic effect is primarily 504 

influenced by the structure of the HBD, with acidic systems showing the highest cytotoxic 505 

effects. Cytotoxicity depends on both the concentration of the NADES system in the cell 506 

medium and the chemical composition of the investigated systems [156159]. 507 

 508 
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5. Perspectives 509 

One of the major limitations in any LPME is phase separation. To overcome this 510 

problem, magnetic solvents have been introduced in recent years to shorten the time necessary 511 

for phase separation. These magnetic solvents can be quickly separated and collected without 512 

the need for time-consuming centrifugation processes, allowing for quick sample preparation. 513 

Magnetic solvents are easier to prepare and have higher reproducibility than magnetic 514 

materials. Magnetic ionic liquids have a low vapor pressure and good thermal stability, as well 515 

as the capacity to respond significantly to external magnetic fields [157,158]. However, they 516 

are costly and need drying or a rotary evaporation process [159]. Magnetic deep eutectic 517 

solvents (MDESs) not only exhibit paramagnetic characteristics similar to magnetic ionic 518 

liquids, but they also offer substantial cost and availability benefits. Most MDESs are currently 519 

hydrophilic, which limits their applicability to extracting polar analytes (such as thiophene and 520 

aldehydes) in non-polar solvents (such as n-heptane and oil samples) [160,161]. Therefore, the 521 

development of hydrophobic MDESs is necessary to extract non-polar analytes from different 522 

matrices. For these reasons, MDESs is a new growing area of research for the development 523 

green solvents in LPME. Duque et al [162] applied ferrofluid-based NADES in stir bar 524 

dispersive liquid microextraction for the determination of  UV filters in water samples. This 525 

ferrofluid was composed of a hydrophobic NADES (1:5 molar ratio of menthol and thymol as 526 

carrier solvent) and oleic acid-coated cobalt ferrite (CoFe2O4@oleic acid) magnetic 527 

nanoparticles. CoFe2O4 MNPs were first synthesized through wet chemical coprecipitation 528 

using an adapted procedure [163], and then coated with oleic acid. In this case, 100 mL of 0.4 529 

M FeCl3 aqueous solution was combined with 100 mL of 0.2 M CoCl2 aqueous solution. Then, 530 

100 mL of a 3 M sodium hydroxide aqueous solution was added dropwise at 80°C, under 531 

continuous stirring. The reaction mixture was then agitated at the same temperature for 1 hour 532 

after 2 mL of oleic acid was added. After carefully cooling the black precipitate result to 533 

ambient temperature, the MNPs were cleaned twice with ultrapure water and once with ethanol. 534 

Finally, the precipitate was dried overnight at 100°C and ground into a fine powder. A stable 535 

ferrofluid was prepared by weighing 25 mg of CoFe2O4@OA MNPs in a microcentrifuge tube 536 

and 1 mL of NADES was added. The resulting mixture was sonicated for 40 min. The results 537 

indicated that the developed analytical method produced comparable findings, demonstrating 538 

the promise of this ferrofluid as a less expensive and more environmentally friendly alternative 539 

to MILs in future analytical procedures [163]. 540 

 541 
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One of the major limitations in any LPME is phase separation. To overcome this 543 

problem, magnetic solvents have been introduced in recent years to shorten the time necessary 544 

for phase separation. These magnetic solvents can be quickly separated and collected without 545 

the need for time-consuming centrifugation processes, allowing for quick sample preparation. 546 

Magnetic solvents are easier to prepare and have higher reproducibility than magnetic 547 

materials. Magnetic ionic liquids have a low vapor pressure and good thermal stability, as well 548 

as the capacity to respond significantly to external magnetic fields [160,161]. However, they 549 

are costly and need drying or a rotary evaporation process [162]. Magnetic deep eutectic 550 

solvents (MDESs) not only exhibit paramagnetic characteristics similar to magnetic ionic 551 

liquids, but they also offer substantial cost and availability benefits. Most MDESs are currently 552 

hydrophilic, which limits their applicability to extracting polar analytes (such as thiophene and 553 

aldehydes) in non-polar solvents (such as n-heptane and oil samples) [163,164]. Therefore, the 554 

development of hydrophobic MDESs is necessary to extract non-polar analytes from different 555 

matrices. For these reasons, MDESs is a new growing area of research for the development 556 

green solvents in LPME. Duque et al [165] applied ferrofluid-based NADES in stir bar 557 

dispersive liquid microextraction for the determination of  UV filters in water samples. This 558 

ferrofluid was composed of a hydrophobic NADES (1:5 molar ratio of menthol and thymol as 559 

carrier solvent) and oleic acid-coated cobalt ferrite (CoFe2O4@oleic acid) magnetic 560 

nanoparticles. CoFe2O4 MNPs were first synthesized through wet chemical coprecipitation 561 

using an adapted procedure [166], and then coated with oleic acid. In this case, 100 mL of 0.4 562 

M FeCl3 aqueous solution was combined with 100 mL of 0.2 M CoCl2 aqueous solution. Then, 563 

100 mL of a 3 M sodium hydroxide aqueous solution was added dropwise at 80°C, under 564 

continuous stirring. The reaction mixture was then agitated at the same temperature for 1 hour 565 

after 2 mL of oleic acid was added. After carefully cooling the black precipitate result to 566 

ambient temperature, the MNPs were cleaned twice with ultrapure water and once with ethanol. 567 

Finally, the precipitate was dried overnight at 100°C and ground into a fine powder. A stable 568 

ferrofluid was prepared by weighing 25 mg of CoFe2O4@OA MNPs in a microcentrifuge tube 569 

and 1 mL of NADES was added. The resulting mixture was sonicated for 40 min. The results 570 

indicated that the developed analytical method produced comparable findings, demonstrating 571 

the promise of this ferrofluid as a less expensive and more environmentally friendly alternative 572 

to MILs in future analytical procedures [166]. 573 

 574 

6. Conclusion 575 
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   NADESs have emerged as promising alternatives for liquid phase microextraction 576 

applications. NADES offer unique advantages such as high polarity, hydrophilicity, and 577 

environmentally friendly nature, making them suitable for liquid phase microextraction in 578 

diverse fields, including pharmaceutical, environmental, and food analysis. NADES have been 579 

successfully employed in different modes, including HF-LPME, DLLME, and SDME. These 580 

techniques aim to minimize the use of organic solvents, reduce extraction time, and enhance 581 

the preconcentration factor. NADES have shown promise in improving the efficiency and 582 

environmental friendliness of LPME processes. By replacing traditional solvents with NADES, 583 

researchers have achieved successful extraction of analytes from aqueous samples. Rising 584 

interest in NADES for analysis and LPME faces challenges in stability, viscosity, water 585 

content, and extraction efficiency. Further research and development in the synthesis methods, 586 

characterization techniques, and application of NADES are warranted to fully explore their 587 

potential in liquid phase microextraction and contribute to sustainable analytical practices. The 588 

automation of liquid-liquid microextraction processes using NADES has proven to be a 589 

valuable approach in minimizing reagent and sample usage while reducing human and 590 

environmental hazards.  591 
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Table 1: Application of NADES in DLLME 

Analyte Sample 

Sample 

volume 

(mL) 

NADES component 
Dispersion 

mode 

Extractant 

volume 

(µL) 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Tetracyclines Water 5 [ChCl]: [thymol]: [nonanoic acid] 
Air assisted 

DLLME 
400 HPLC/UV 18.2-500 ≤11.2 [100] 

Warfarin Biological samples 10 Borneol: decanoic acid 
Air assisted 

DLLME 
60 HPLC/UV 5–500 ˂5.87 [102] 

Vanadium Food stuff 2 ChCl: phenol 
Ultrasound 

assisted DLLME 
1000 

Electrothermal 

atomic absorption 

spectrometry 

(ETAAS) 

N/A 3.4% [104] 

Tert-

Butylhydroquino

ne 

Soybean Oils 0.2 g ChCl: sesamol 
Ultrasound 

assisted DLLME 
400 HPLC/UV 

5-500 

mg/kg 
˂2.3% [105] 

NSAIDs 
Water and milk 

samples 
10 

1,1,3,3-tetramethylguanidine chloride: 

thymol 

Ultrasound 

assisted DLLME 
200 HPLC/UV 5–2000 

1.11% 

to 

16.9%. 

[89] 

Parabens 
Personal care 

products 
5 Menthol: formic acid 

Vortex assisted 

DLLME 
80 UHPLC/UV 20–4000 ≤3.33% [91] 

Mercury Water samples 9 Decanoic acid: DL-menthol 
Vortex assisted 

DLLME 
50 LC/UV–Vis 10–200 ≤19% [90] 

Alkylphenols, 

bisphenols and 

alkylphenol 

ethoxylates 

Microbial-fermented 

functional beverages 

and bottled water 

10 Methanol: octanoic acid 
Vortex assisted 

DLLME 
100 UHPLC-MS 0.4-50 ≤19.5% [93] 

Sudan I Food samples 0.2 g ChCl: sesamol 
Vortex assisted 

DLLME 
800 HPLC/UV 

0.2–100 

mg /kg 
˂4.5% [103] 

Beta-blockers Water samples 9.5 Azelaic acid: thymol 
Vortex assisted 

DLLME 
55 HPLC/DAD 0.5-100 ˂6% [106] 

Phthalate Esters Soft drinks 10 Thymol: octanoic acid 
Vortex assisted 

DLLME 
125 UPLC-MS/MS 0.10−5.00 ˂11.5% [92] 

Phthalate esters 
Grape-based 

beverages 
7.5 ChCl: acetic acid 

Vortex assisted 

DLLME 
500 Nano-LC/UV 5-403 ˂17% [107] 

Benzoic acid and 

sorbic acid 
Condiments 10 L-Menthol Acetic acid: decanoic acid 

Vortex assisted 

DLLME-SFOD 
800 HPLC/DAD 70-100000 ≤5.66% [94] 

Phthalates and 

one adipate 
Water samples 10 Thymol: menthol 

Vortex assisted 

DLLME 
100 

UHPLC-QqQ-

MS/MS 
0.100–250 ˂14% [95] 

Chloramphenico

l 
Honey sample 5 Menthol: acetic acid 

Vortex assisted 

DLLME 
100 LC/UV 

1–100 µg 

/kg 
≤4.5% [96] 
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Triarylmethane) 

dyes 

Shrimp and water 

samples. 
10 Thymol and camphor 

Vortex assisted 

DLLME 
200 HPLC/DAD 0.2 -200 ≤2.3 [97] 

Acaricides Egg samples 5 Choline chloride-acetic acid-n-octanol 
In-syringe 

DLLME 
74 GC/FID 2.7–4000 ≤11% [108] 

Phthalic acid 

esters 

Soft drinks and 

infusions 
20 Menthol: acetic acid 

Manual agitation 

assisted 

DLLME-SFO 

100 HPLC/UV 6-1190 1-22 % [98] 

Phthalic acid 

esters 

Water and beverage 

samples 
20 Menthol: acetic acid 

Manual agitation 

assisted DLLME 
100 HPLC/UV 4-425 ≤ 20% [99] 

 



Table 2: Applications of NADES in HLLME 

Analyte Sample 

Sample 

volume 

(mL) 

NADES 

component 
HLLME PSA 

Extractant 

volume 

(µL) 

PSA(vol 

/amount) 

µL 

Analytical 

instrument 

Linearity 

range 

ng/mL 

%RSD Ref 

Copper 
olive oil and 

water samples 
15 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 450 450 FAAS NA ˂5.0% [123] 

Arsenic and antimony Water samples 125 
ChCl: oxalic 

acid 

Aprotic solvent 

assisted 

HLLME 

THF 700 300 

Hydride 

generation-atomic 

absorption 

spectrometry 

15-570 

ng/L 

2.1% and 

2.7% 
[119] 

Benzotriazole derivatives 

and benzothiazole 

derivatives 

Surface water 5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 1000 500 
UHPLC-ESI(+)-

QToF-MS 
5 -200 1 -8% [124] 

Pesticides 
Chinese 

medicine 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 650 550 HPLC/DAD 50-107000 4.7% [125] 

Methyl mercury and total 

mercury 

Water and fish 

sample 
2.5 

betaine-

sorbitol 

Aprotic solvent 

assisted 

HLLME 

ACN 600 375 Spectrophotometer 0.7–340 1.9–5.5% [130] 

Caffeine Turkish coffee 5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 400 800 HPLC/UV 500-100000 2.20% [126] 

Curcumin 
Tea and honey 

samples 
5 

ChCl: 

Maltose 

Aprotic solvent 

assisted 

HLLME 

THF 762.5 107.5 Spectrophotometer 0.4–120 ≤4.3% [132] 

Curcumin 
Food and herbal 

tea 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 400 400 Spectrophotometer NA 1.8 %. [120] 

Malachite green 
Aquarium fish 

water 
10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 Spectrophotometer 45-900 2.7 %. [127] 

Sulfonamides Water samples 1.5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 193 100 HPLC/UV 
500–

100000 
≤2.10 [128] 

Thiophenols Water samples 1.5 ChCl:p-cresol 

Aprotic solvent 

assisted 

HLLME 

Acetone 50 50 GC/FID 2-100000 ˂4.1% [131] 
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Polycyclic aromatic 

hydrocarbons 
Water samples 1.5 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 100 100 HPLC/UV 0.1-400 ˂4.5 [117] 

Antidepressants 

Pharmaceutical 

and water 

samples 

6 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 200 430 HPLC/UV 10-8000 3.6-5.7% [133] 

Selenium species 
Water and food 

samples 
25 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.2-8 ≤4.1 [134] 

Phenoxy acid 

herbicides 

Paddy field and 

water samples 
1.5 

ChCl:2-

chlorophenol 

Aprotic solvent 

assisted 

HLLME 

THF 50 100 HPLC/UV 5–100 ≤4.6 [135] 

Phthalate Beverages 10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 440 440 HPLC/DAD 170-2700 ˂11% [122] 

Caffeine Beverages 1 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 50 50 HPLC/UV 100-200000 ≤6% [136] 

Mercury 

Water and 

biological 

samples 

10 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 500 ETAAS 0.3-10 ≤–5.72% [121] 

Cadmium 
Food and water 

samples 
50 ChCl: Phenol 

Aprotic solvent 

assisted 

HLLME 

THF 500 600 ETAAS 5–150 ng/ L 3.1% [129] 
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