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Abstract
We propose a new methodology to simulate the discounted penalty applied to a wind-farm
operator by violating ramp-rate limitation policies. It is assumed that the operator manages
a wind turbine plugged into a battery, which either provides or stores energy on demand to
avoid ramp-up and ramp-down events. The battery stages, namely charging, discharging, or
neutral, are modeled as a semi-Markov process. During each charging/discharging period,
the energy stored/supplied is assumed to follow a modified Brownian bridge that depends
on three parameters. We prove the validity of our methodology by testing the model on 10
years of real wind-power data and comparing real versus simulated results.
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1 Introduction

In the last decades, we have assisted in the increase of renewable energy penetration in the
electricity market, in particular from wind and solar sources. This is caused by the increasing
concern about environmental pollution and global warming, and the awareness of having to
exploit sources of clean energy to decrease the use of fossil fuels (Biancardi et al., 2023;
Janzen et al., 2020; Razmjoo et al., 2021).

One of themain problems that hinder the use ofwind power is its intermittent nature caused
by rapid andunpredictable fluctuations inwind speed. This conflictswith the stability required
by the energy market to guarantee a systemic balance and security (Frate et al., 2020).

Among the control strategies used to decrease the high variability of wind power, the
ramp-rate limitation has seen increasing use in recent years (Bossavy et al., 2015; D’Amico
et al., 2021, 2022b; Hittinger et al., 2014). Limiting the ramp rate means limiting the rate at
which the power production varies between two consecutive time steps. The ramp-rate limits
might be violated in two ways: up-ramping events, meaning that the variation is positive, and
down-ramping events, when the change is negative (Gallego-Castillo et al., 2015). Predicting
these two types of events has been in the spotlight of wind-farm managing literature for a
while (Cui et al., 2021; Zheng et al., 2022).

The ramp-rate event is considered a critical event because its delayed and inadequate
control can cause serious damage to the power grid and consequent economic losses. Several
of the largest system operators, such as the Electric Reliability Council of Texas (ERCOT)
and the state-owned electric power transmission operator in Ireland, EirGrid, require ramp-
rate control to wind generators. According to the grid characteristics, it can be requested to
control the ramp rate within 1- and 10-min limits (Cui et al., 2023; D’Amico et al., 2022b;
Hittinger et al., 2014).

Wind farms subjected to ramp-rate limitations usually use a storage system for two main
purposes: providing power when a ramp-down occurs, and storing power in the presence of
a ramp-up event (Abdullah et al., 2014; Hittinger et al., 2010; Khalid & Savkin, 2010; Lone
& Mufti, 2008; Teleke et al., 2009). Batteries are the most used energy storage systems due
to their quick response time and easy installation, and, in this context, its main variables of
interest are the size and the state of charge, but in principle also pumped-storage generating
system can be used (Li et al., 2019).

In the literature, particular attention is given to the ramp rate detection and prediction
(Cui et al., 2021; Zheng et al., 2022), and, more in general, to the application of stochastic
processes that make the operator able to know in advance the future behaviour of the system
in terms of wind power variability (An et al., 2012; Chen et al., 2009; D’Amico et al., 2013a;
Grassi & Vecchio, 2010; Lee & Baldick, 2012). These aspects are relevant from an economic
perspective due to the possibility of forecasting the economic losses of a wind farm under
a ramp-rate policy (Cui et al., 2021, 2017). The amount of penalty can be significant if we
consider that, for example, that in ERCOT the penalty is computed by multiplying the energy
(in MW-h) not meeting the ramp-rate up or down limitations by the regulation up or down
prices, which were 16$/MW-h and 13$/MW-h in 2008–2009, respectively (Hittinger et al.,
2014). According to Wan (2011), in Texas, between 2004 and 2009, the number of large
ramp events with magnitude > 25% of the highest annual wind generation is 235 per year,
on average. If we want to have a rough estimate of the penalization, we can assume that the
average installed capacity in Texas is 2500 MW in such a period, and the average amount of
ramp events with magnitude > 25% of the highest annual wind generation is 625 MW. By
considering an average penalty of 14.5$/MW-h, we obtain a total average penalty of about
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9000, 00$ per year. These economic losses refer to the ramp events with magnitude > 25%,
which is very high. If we lower the percentage the losses increase.

Ramp-rate limitations are usually coupled with a penalty policy if the wind farm does not
meet the imposed limits (Hittinger et al., 2014). Among the existing penalty systems applied
by the system operators, one largely used method consists of multiplying a fixed monetary
amount and the number of MW above or below the ramp-rate limits. The work of D’Amico
et al. (2021) considers a system comprising a wind farm with a ramp-rate limitation policy
and a battery, with the aim of forecasting the penalties received by the operator over a given
time period. This kind of system shows a nonlinear behaviour, which is due to the interaction
between the charge and discharge processes and the storage capacity of the battery. Indeed, as
rampevents occur throughout time, the battery’s state of charge shifts accordingly. This affects
the ability to dispatch or store energy as needed to avoid penalties. In summary, the variations
of energy are subject to a time-varying nonlinear random constraint, which is the result of the
wind speed fluctuations, state of charge, and ramp-rate policy. A discrete-time homogeneous
Markov chain is used to model the battery operations, which are divided into three states:
the charging event, the discharging event, and the neutral event or absence of operations.
During each charging/discharging period, the random power stored/supplied by the battery
is assumed to be a discrete collection of independent, not identically distributed, random
variables. The penalty is then calculated by multiplying the random charges/discharges by
the regulation fees. However, the Markovian assumption was proved to be not completely
satisfactory in this context by D’Amico et al. (2022a), where a semi-Markov process was
instead considered to model the battery operations and, consequently, the penalty dynamics
were set to evolve as a semi-Markov modulated reward process. This kind of stochastic
process has been largely used in the literature (D’Amico et al., 2013b; Feinberg, 1994;
Papadopoulou et al., 2012).

This paper builds on the semi-Markov approach used in D’Amico et al. (2022a) by using
a modification of a Brownian Bridge (BB) to model the charging/discharging processes
during the battery’s operation periods. Hence, we take off the independence assumption,
considered by D’Amico et al. (2021) and (2022a), between the random charges/discharges at
different times, which does not seem to be supported by real data and can be considered only
as an approximation of the behaviour of the system. Besides, a BB model accounts for the
convenientMarkovian andGaussian properties along thewaiting time of the underlying semi-
Markov process, and it is one of the most exhaustively studied diffusion bridges, making it an
appealing model from theoretical and applicable perspectives.We use 10 years of wind speed
real data to compute the power production of a hypothetical wind turbine located in Sardinia,
which we use to obtain the penalty associated to three different ramp-rate limitations: 1%,
5% and 7% of the wind turbine rated capacity. An estimation of the penalty process is then
produced via aMonte Carlo simulation algorithm. The results suggest that our semi-Markov-
modulated model succeeds in simulating the accumulated penalty process over a given time
period.

The rest of the paper is structured as follows. Section2 introduces the ramp-rate policy
and sets the semi-Markovmodel that governs the battery operation process.When the battery
is either charging or discharging, a discrete-time model based on a BB is proposed in Sect. 3
to model the dynamics of the random charges. We then introduce, in Sect. 4, two key pro-
cesses: the one associated with the state of the charge of the battery, and the penalty process.
The last one is then generated via Monte Carlo simulations in Sect. 5, where we show the
competitiveness of our method by comparing its results against the penalty obtained from
real data. Final thoughts are relegated to Sect. 6.
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2 The semi-Markovmodel of sequential ramp-rate events

Ramp-rate limitations can be used to smooth the power produced from the wind turbine and
obtain a more stable output. We limit both up-ramping and down-ramping events, as done in
Hittinger et al. (2014). This limitation decreases the slope bywhich the power profile changes
between two consecutive time steps, it is indicated as a percentage of the rated capacity of
the wind farm, and its unit of measure can be MW/h. Lower percentages represent stricter
limitations. For example, if we consider a rated capacity of 2 MW, a ramp-rate limitation of
1% penalizes changes faster than 0.02 MW/h.

For δ > 0 and k ∈ N let e(k) be the power generated at time δk, and define the modified
power at the same time, denoted by ē(k), as

ē(k) :=
⎧
⎨

⎩

ē(k − 1) + �δ, if e(k) > ē(k − 1) + �δ (up-ramping event)
ē(k − 1) − �δ, if e(k) < ē(k − 1) − �δ (down-ramping event)

e(k), otherwise
(1)

where � > 0 is the ramp-rate limit. For the sake of simplicity and because it does not sacrifice
generality, we set δ = 1 for the rest of the paper. Working with an arbitrary time-step length
follows identical steps. The following is an interpretation of the earlier quantities: the power
generated by the wind turbine at time k is denoted by e(k), while the power that is effectively
injected into the electrical grid at time k is denoted by e(k). The ramp-rate policy is employed
to stabilize the grid because e(k) exhibits milder variations and less steep slopes than e(k).

We connect a battery to the wind turbine to either store or supply energy in case of an
up-ramping or down-ramping event, respectively. A penalization is applied every time the
battery cannot store the total energy surplus or provide the required energy.

We consider the battery operations over time as a Markov chain {Jn}n∈N with state space
E = {−1, 0,+1}. States −1 and +1 indicate discharging and charging operations, associ-
ated, respectively, with a down-ramping and up-ramping event. The state 0 represents the
unchanged condition, that is, the battery is neither charging nor discharging, which occurs
when the power production meets the ramp-rate limits. The process {Kn}n∈N stands for the
n-th time in which the battery changes state. We assume that K0 = 0 and Kn < Kn+1 for all
n ∈ N. The (sojourn) time the battery remains in the state Jn , before the (n + 1)th jump, is
denoted by Xn+1. Formal definitions of Jn , Kn , and Xn , are given below:

Kn = inf {k > Kn−1 : sgn(e(k) − ē(k)) �= sgn(e(Kn−1) − ē(Kn−1))} ,

Jn = sgn(e(Kn) − ē(Kn)),

Xn+1 = Kn+1 − Kn, X0 = 0.

We assume that {(Jn, Kn)}n∈N is a Markov Renewal process, and define its kernel as

qi, j (k) := P (Jn+1 = j, Xn+1 = k | Jn = i)

= P (Jn+1 = j, Xn+1 = k | Jn = i, Jn−1, . . . , J0, Kn, . . . , K0) .

According to the previous relation, regardless of what the values of the past variables were,
knowing the last battery operation, Jn , is sufficient to provide the conditional joint distribution
of the pair, Jn+1, and Xn+1.

For later reference, we introduce the conditional sojourn-time distribution

hi (k) := P (Xn+1 = k | Jn = i) =
∑

j∈E
qi j (k) (2)
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as well as the transition probabilities of the embedded Markov chain

pi j := P (Jn+1 = j | Jn = i) =
∞∑

k=0

qi j (k), (3)

and the conditional (to the sojourn time) transition probabilities

pi j (k) := P (Jn+1 = j |Jn = i, Xn+1 = k) = qi j (k)/hi (k). (4)

Finally, consider the process N (k) = max{n > 0 : Kn ≤ k}, which counts the number
of transitions up to time k, as well as the Semi-Markov Chain (SMC) associated with the
Markov Renewal chain (Jn, Kn), indicated by JN (k), for k ∈ N.

3 A Gauss–Markovmodel for battery operations between ramp-rate
events

The purpose of this section is to model the battery storing operations using a BB, which is
a well-studied process and accounts for two desirable properties, namely Gaussianity and
Markovianity.

3.1 Setting themodel

Consider the semi-Markovmodel of battery operations introduced in the previous section and
call a random segment to any triplet (Jn, Jn+1, Xn+1), for n ∈ N. Hence, a random segment
comprises an initial state Jn denoting the current operation, its time length Xn+1, and the next
operation Jn+1. Thereby, the triplet (Jn = +1, Jn+1 = −1, Xn+1 = 5), for instance, denotes
a segment where the battery after charging for 5 units of time starts discharging afterwards.

Let C(k) represents the theoretical random energy charged/discharged into/from the
battery at time k ∈ N. Define CJn ,Jn+1,Xn+1 := {

CJn ,Jn+1,Xn+1(k)
}Xn+1
k=1 be the process repre-

senting the charge (Jn = +1) or discharge (Jn = −1) during the nth stage of the SMC. Note
that this notation presumes that the charging/discharging process depends on Jn , Jn+1, and
Xn+1, and is independent of Kn . We assume that it is also independent of {C(m)}Kn−1

m=0 . That
is, for k = 1, . . . , x ,

P

(
C(Kn + k − 1) ≤ c

∣
∣ Jn = i, Jn+1 = j, Xn+1 = x, Kn = K , {C(m)}Kn−1

m=0

)

= P
(
Ci, j,x (k) ≤ c

)
.

Consider the discrete-time processes Ci, j,x := {Ci, j,x (k)
}x+1
k=0 , for i ∈ {−1,+1},

j ∈ {−1, 0,+1}\{i}, x ∈ N. Moreover, set

(P.1)
{Ci, j,x (k)

}x
k=1 = {|Ci, j,x (k)|

}x
k=1,

(P.2) Ci, j,x (0) = Ci, j,x (x + 1) = 0.

In this way, we are embedding the charging process Ci, j,x into the bridge process Ci, j,x .
Indeed, (P.1) sets the embedding while (P.2) ensures that Ci, j,x can be regarded as a bridge
that vanishes at its initial and terminal times. Note that the absolute-value transformation in
condition (P.1) does not introduce identifiability issues as Ci, j,x has constant sign. Figure1
shows some linearly-interpolated sample paths of Ci, j,x .
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Fig. 1 Battery charges/discharges Ci, j ,x . The coloured dots represent the actual values of the
charges/discharges, which are linearly interpolated. (a) accounts for (i = −1, j = 0, x = 4), while in
(b) (i = +1, j = 0, x = 4). (Color figure online)

Fig. 2 (a) Shows three paths of the bridge process Ci,j,x. (b) Displays these same charges (transparent lines),
alongside the triangle functions gi, j ,x derived from them. The associated error process Ei, j,x is shown in
(c). All images account for i = −1, j = 0, x = 5, and the ramp-rate coefficient � = 0.02. The values of
{Ci, j,x (k)}xk=1 are remarked using bullet points in the curves that result after linearly interpolating them

Essentially, properties (P.1) and (P.2) define the size of the charging/discharging values
for each segment of the SMC that is enlarged by introducing two boundary conditions at the
times 0 and Xn+1 + 1, where the size of the charging/discharging is set to zero.

For a neater notation, we will define the shorthands Cn := CJn ,Jn+1,Xn+1 and Cn :=
CJn ,Jn+1,Xn+1 .

We now introduce a parsimonious model for Ci, j,x . Define the parameters

τi, j,x := argmax
{Ci, j,x (k) : k = 1, . . . , x

}
, hi, j,x := Ci, j,x (τn), (5)

and the error process

Ei, j,x (k) := Ci, j,x (k) − gi, j,x (k), (6)

where, for 0 < τ < x + 1 and h > 0, gi, j,x is given by

gi, j,x (t) := hi, j,x
τi, j,x

t1(t ≤ τi, j,x ) + h

T − τi, j,x
(x + 1 − t)1x + 1 − τi, j,x (7)

Thus, Cn can be split into the sum of the (triangle-shaped) function gi, j,x plus the stochastic
process Ei, j,x . Figure2 shows a few paths of these three processes.

Let ēi, j,x be the corrected power at the time when the battery changes to the state i ∈ E
and remains there for a sojourn time x , after which it changes to the state j ∈ E\{i}. Hence,
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ēi, j,x has the same distribution as ē(Kn) for all n such that (Jn = i, Jn+1 = j, Xn+1 = x).
We are implicitly assuming that ē(Kn) depends entirely on Jn , Jn+1, and Xn+1.

Consider now the variable

ρi, j,x :=
{
min{max{ēi, j,x − �, �(x + 1)}, Pr }, if i = −1

max{Pr − (ēi, j,x − �), Pr − �(x + 1), 0}, if i = +1
, (8)

where Pr is the rated capacity of the wind turbine. The variable ρi, j,x can be regarded as the
initial corrected power along the random segment (Jn = i, Jn+1 = j, Xn+1 = x).

In (8), the adjustments ēi, j,x − � and Pr − (ēi, j,x )− � are justified by the assumption that
the battery has been charging/discharging for exactly one unit of time before the first observed
battery operation of the random segment. The lower bounds �(x + 1) and Pr − �(x + 1)
are needed because the battery remains in the state i exactly one unit of time after the last
observed operation, making a total charging/discharging time length of x + 1. Finally, the
formula takes into account the fact that the initial power cannot exceed the rated capacity Pr
neither be negative.

Note that

0 ≤ Cn(k) = |(e − ē)(Kn + k − 1)| ≤ ρJn ,Jn+1,Xn − (k − 1)�, k = 1, . . . , x . (9)

Inequality (9) alongside the non-negativity of Cn yield the following restrictions to the error
process Ei, j,x :

Ei, j,x (k) = max
{−gi, j,x (k),min

{
Yi, j,x (k), ρi, j,x − (k − 1)� − gi, j,x (k)

}}
, k = 1, . . . , x,

(10)

for some process Yi, j,x := {
Yi, j,x (k)

}x
k=1. We choose to model Yi, j,x as a BB going from

(0, 0) ∈ R
2 to (T , 0) ∈ R

2 and forced to stop by (τi, j,x , 0). Hence, Yi, j,x admits the
representation

Yi, j,x (k) = Y (1)
i, j,x (k ∧ τi, j,x ) + Y (2)

i, j,x ((k − τi, j,x ) ∨ 0), k = 1, . . . , x, (11)

where Y (1)
i, j,x and Y (2)

i, j,x are two independent BBs satisfying the representation

Y (1)
i, j,x (k) := σi, j,x

(

W (1)(k) − k

τi, j,x
W (1)(τi, j,x )

)

, k = 1, . . . , x, (12)

and

Y (2)
i, j,x (k) := σi, j,x

(

W (2)(k) − k

x + 1 − τi, j,x
W (2)(x + 1 − τi, j,x )

)

, k = 1, . . . , x,

(13)

where W (1) and W (2) are independent standard Brownian motions, and σi, j,x > 0 is the
common volatility term.

3.2 Estimation of the parameters

We provide here a mechanism to generate the parameters ρi, j,x , τi, j,x ,
hi, j,x , and σi, j,x . Define the shorthand notations ρn := ρJn ,Jn+1,Xn+1 ,
τn := τJn ,Jn+1,Xn+1 , and hn := hJn ,Jn+1,Xn+1 . For ρn , τn , and
hn , in alignment to D’Amico et al. (2022a), we assume that all their values belong to
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the same population as soon as they share the same sojourn time as well as initial and
next charging stages. That is, if we consider a generic segment identified by the triplet
(Jn = i, Jn+1 = j, Xn+1 = x), then the set of values

{(ρm, τm, hm) : Jm = i, Jm+1 = j, Xm = x}m∈N

are simulations of the joint distribution of (ρi, j,x , τi, j,x , hi, j,x ), which we denote by
fi, j,x : Dn → R+, and has the support

Di, j,x :=
{
(ρ, τ, h) : ρ ∈ [ρ, ρ], τ ∈ {1, . . . , x} , h ∈ (0, h)

}
,

with, in alignment to (8),

ρ =
{
0, if i = +1

Pr − (x + 1)�, if i = −1
, ρ =

{
(x + 1)�, if i = +1

Pr , if i = −1
,

and

h =
{

ρ − τ�, if i = +1

Pr − (ρ + τ�), if i = −1
.

The upper bound h comes after (8) and the definition of hn in (5).
We estimate fi, j,x in a non-parametric fashion by relying on kernel estimations of their

vine copulas. This method is well-documented in Nagler (2014). Besides the flexibility of
its non-parametric nature, the main drive for choosing this technique was its robustness in
high-dimensional frameworks.

This method simulates τi, j,x as a continuous variable within the interval [0, x], and then
we replace that original simulation with the nearest value within the support {1, . . . , x}.

We leaned on the approach suggested by Geenens et al. (2017) for the copulas density
estimation. They build on a larger body ofworks that transform observations in the unit square
[0, 1]2 intoR2, where standard kernel density estimation techniques can be used, and a back-
transformation recovers the copula density estimation. Specifically, Geenens et al. (2017)
propose a local likelihood estimator by means of quadratic polynomials approximations.

We performed the kernel density estimation with these specifications via the R package
kdevine (Nagler, 2022).

To avoid running into small data issues for the bandwidth matrix estimation, we boot-
strapped the sample of any random segment with less than 10 observations and introduced
small perturbations to guarantee differences among the new data values.

We illustrate in Fig. 3 how this method of estimating ρi, j,x , τi, j,x , and hi, j,x captures the
distribution of the real data.

The remaining parameter to be estimated is the volatility term σi, j,x . Recall that the BBs
in (12) and (13) share the same volatility. The Gaussian and Markovian properties of the BB
make it easy to come up with the following formula for the maximum likelihood estimator
of σi, j,x :

σ̂i, j,x :=
√
√
√
√ 1

Mi, j,x

Mi, j,x∑

m=1

(um − um−1)−1

(

Yi, j,x (um)
τi, j,x (m) − um−1

τi, j,x (m) − um
− Bi, j,x (um−1)

)

,
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Fig. 3 Simulation of the parameter τi, j ,x (x-axis), hi, j ,x (y-axis), and ρi, j,x (z-axis). Black dots represent
real data, while blue dots are randomly generated points from the kernel density estimation of fi, j,x . Red
points in (b) indicate the augmented bootstrapped data. For all images, i = −1, j = 0, and � = 0.02. (Color
figure online)

Fig. 4 Images of the relation between the volatility and the height. The y axis marks the values of σ̂i, j,x for
any value x ∈ N, and with i = −1 and j = 0 for (a), and i = −1 and j = 0 for (b), while values of hi, j,x
are in the x-axis. For both figures, � = 0.02

with Mi, j,x := ∑x
k=1 1(Yi, j,x (k) = Ei, j,x (tk)), and

u0 = 0, um = min
{
k : k > um−1, Yi, j,x (k) = Ei, j,x (k)

}
, m = 1, . . . , Mi, j,x ,

(14)

τi, j,x (m) = 1(um ≤ τi, j,x )τi, j,x + 1(um > τi, j,x )(x + 1). (15)

The definition of um in (14) is necessary to pick up only the times that truly represent the
jumps in the BBs’ paths, and do not account for spurious values due to the representation
of the error process Ei, j,x in (10). In (15), we set τi, j,x (m) as a single term to denote the

different terminal points of B(1)
i, j,x and B(2)

i, j,x .
One might be tempted to assume that σi, j,x is homogeneous with respect to other param-

eters like ρi, j,x , τi, j,x , hi, j,x , and x , or the battery stages Jn = i and Jn+1 = j . However,
empirical evidence suggests otherwise. For instance, higher heights hi, j,x tend to produce
higher volatilities, as Fig. 4 shows. It also illustrates that a convenient transformation of the
volatility might result in a linear relationship between these two parameters.

In light of this numerical evidence, we take ρi, j,x , τi, j,x , hi, j,x , x , and all their first-order
interactions, as regressors in a linear model where a transformation of σ̂i, j,x is the response.
The transformation is chosen from a catalog of several parameterized functions, such that it
better helps the linearmodel tomeet its assumptions, namelynormality, homoscedasticity, and
linearity. We used the R package trafo (Medina et al., 2018) to perform this transformation
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Fig. 5 Check for the linear-model assumptions before and after taking the transformation qλ, with i = −1,
j = 0, and � = 0.02

Table 1 Adjusted R2 of the
different linear models

� = 0.02 � = 0.1 � = 0.14

i = −1, j = 0 0.8607 0.8127 0.8013

i = −1, j = +1 0.8534 0.7591 0.7251

i = +1, j = −1 0.9068 0.7415 0.7764

i = +1, j = 0 0.9061 0.8295 0.7795

selection. All cases pointed out to Box-Cox-type transformations, having the following form

qλ(x) =
{

(xλ − 1)/λ, λ �= 0

log(x), λ = 0
.

The final estimation of the volatility σi, j,x is taken to be the anti-transformed mean of the
linear model response, whose parameters are chosen to better fit the data

{
(̂σJm ,Jm+1,Xm+1 , ρm, τm, hm, Xm+1) : Jm = i, Jm+1 = j

}

m∈N .

Actually, we fit the linear model twice. A first fitting was used to ditch out observations
with outlier Cook’s distances, according to Tukey’s method of tagging an outlier as anything
farther than 3 times the interquartile range from the median. The second and final fitting was
done with the remaining observations. Figure5 illustrates the final fit for i = −1 and j = 0.
Table 1 shows the values of the adjusted R2 as a metric of the goodness of the different linear
models.

The GitHub repository https://github.com/aguazz/WindPower-BatteryCharge provides
all the R code and data necessary to implement the estimations and numerical algorithms
introduced in this section.
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Section 5 provides an algorithm to simulate paths of Ci, j,x . The algorithm’s performance
is validated by comparing the mean and covariance matrices of real and simulated data of
Ci, j,x , for different values of i , j , and x .

4 Techno-economical analysis

The study of the ramp-rate policy requires an analysis of the battery’s State Of Charge (SOC)
along with the mechanism of the penalty cost.

Consider the backward-recurrence-time process B(k) = k−KN (k), and let S(k) represents
the SOC of the battery at time k ≥ 1, defined by

S(k) :=

⎧
⎪⎨

⎪⎩

(CN (k)(B(k) + 1) + S(k − 1)) ∧ c if JN (k) = +1

(S(k − 1) − CN (k)(B(k) + 1)) ∨ c if JN (k) = −1

S(k − 1) if JN (k) = 0

,

where c and c are the maximum and minimum SOC levels, respectively. Note that
S(k) ∈ [c, c] for all k ≥ 1. We remind that, although it is not explicitly stated in the equation
above, Cn depends on Jn , Jn+1, and Xn+1. The previous relation is illustrative of the non-
linear nature of the considered stochastic system. The state of charge process is the result of
a nonlinear transformation applied to the charging/discharging process which involves the
random charge/discharge and the limit of the battery’s capacity. It is obvious that, in contrast
to linear reward structures, the penalty process inhales the nonlinearity of the SOC process
and makes it challenging to evaluate the accumulated discounted penalty process.

Likewise, consider the penalty process

M(k) :=

⎧
⎪⎨

⎪⎩

x+1(CN (k)(B(k) + 1) − (c − S(k − 1))+ if JN (k) = +1

x−1(CN (k)(B(k) + 1) − (S(k − 1) − c))+ if J N (k) = −1

0 if JN (k) = 0

,

where the constants x+1 and x−1 are the penalties per unit of time associated with up-
ramping and down-ramping events, respectively.

Finally, consider the cumulative discounted penalty up until time k ∈ N, defined as

W (k) :=
k∑

m=0

M(m)e−rm,

where r ≥ 0 is the discount rate.

5 System simulation

The two simulation Algorithms 1 and 2 can be used to generate random paths of the charg-
ing/discharging process Ci, j,x discussed in Sect. 3, as well as the SOC and the penalty
processes, S and M , introduced in Sect. 4.
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Fig. 6 Real versus simulated charges. The first column of images accounts for real-data charges, that is, paths
of Ci, j,x pinned to (0, 0) and (x + 1, 0). The second column displays simulated paths of Ci, j,x . The images
on the first raw account for x = 5, while the second row uses x = 45. For all images, i = −1, j = 0, and
� = 0.02

Algorithm 1: Battery charge/discharge simulator

Input: i ∈ {−1, 0,+1}, j ∈ {−1, 0,+1}\{i}, x ∈ N

Output: {cn}x+1
n=0

Pseudo-Code:
Set c0 = 0, cx+1 = 0
Compute simulations τ , h, and ρ, from τi, j,x , hi, j,x , ρi, j,x , according to the equations
(5) and (8) and the mechanism provided in Section 3.2
Simulate two independent standard Brownian motion paths, {w(1)

k }τk=0 and {w(2)
k }x+1−τ

k=0

Simulate the two independent BB processes {y(1)
k } := {w(1)

k − (k/τ)w
(1)
τ }τk=0 and

{y(2)
k } := {w(2)

k − (k/(x + 1 − τ)w
(2)
τ }x+1−τ

k=0
for k = 1 to x do

Set yk := y(1)
k 1(k ≤ τ) + b(2)

k 1(k > τ) as in (11)
Compute the triangle process gk := gi, j,x (k) as in (7)
Compute the error process ek := max {−gk,min {bk), ρ − (k − 1)� − gk)}} as in
(10)
Compute the charge process ck := ek + gk according to (6)

end

Figure6 shows simulated paths of Ci, j,x , for different values of i , j , and x , produced by
implementing Algorithm 1. Note that they visually resemble the real-data paths.

Besides the visual validation in Fig. 6, we provide the relative mean L2-error between the
real and the estimated sample means and sample covariance matrices, displayed in Figs. 7
and 8, respectively.We only considered those random segments with at least 30 observations.

123



Annals of Operations Research

Fig. 7 Relative L2-error, expressed in percentage terms, between the real-data and simulated sample mean.
The numbers in the x-axis represent the values of Xn+1, while the numbers on top of the bars are the real-data
sample size. For all the images, � = 0.02

Fig. 8 Relative L2-error, expressed in percentage terms, between the real-data and simulated sample covariance
matrices. The numbers in the x-axis represent the values of Xn+1, while the numbers on top of the bars are
the real-data sample size. For all the images, � = 0.02
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For each random segment, we simulated as many paths as the maximum between 3 times the
real-data sample size and 100 trajectories.

Algorithm 2 simulates trayectories of the Markov Renewal chain {(Jn, Kn)}n∈N, as well
as the SOC process {S(k)}k∈N and the penalty process {M(k)}k∈N.

Algorithm 2: Semi-Markov reward, SOC, and penalty processes simulator
Input: N ∈ N, i ∈ {−1, 0, +1}, s ∈ R+, b ∈ R+
Output: { jn}Nn=0, {kn}Nn=0, {sk }

kN
k=0, {mk }kNk=0

Pseudo-Code:
Initialize j0 := i , k0 := 0, and s0 := s
for n = 0 to N do

Generate an observation x from the distribution h jn in (2)
Set kn+1 := kn + x
Generate one observation j from the density pi j (x) in (4)
Set jn+1 := j

Simulate a path {ck }x+1
k=0 of

{Ci, j ,x
}
, by using Algorithm 1

if n = 0 then set L := b else set L := 0 if i = +1 then
for k = 1 to x do

simulate the SOC process as skn+k = (cL+k + skn+k−1) ∧ c
simulate the penalty process as mkn+k = x+1(cL+k − (c − skn+k−1))

+
end

if i = −1 then
for k = 0 to Xn+1 − 1 do

simulate the SOC process as skn+k = (skn+k−1 − cL+k ) ∨ c
simulate the penalty process as mkn+k = x+1(cL+k − (skn+k−1 − c))+

end
if i = 0 then

for k = 0 to Xn+1 − 1 do
simulate the SOC process as skn+k = skn+k−1
simulate the penalty process as mkn+k = 0

end

end

Next we estimate the first and second moments of W = {W (k)}Kk=1, for K = 24. That
is, the hourly average and standard deviation of the cumulative penalty process within a
day. To do so, we used Algorithms 1 and 2 to simulate N different trayectories of W ,
Wn = {W (k)(n)}Kk=1, n = 1, . . . , N . Once the N trajectories have been simulated, it is
possible to estimate the moments of the accumulated penalty process for any time t ∈ N by
computing the corresponding sampling moments

1

N

N∑

n=1

(
t∑

k=1

M (n)(k)e−rk

)a

, a = 1, 2, ...

For the wind-farm layout, we consider the battery described in (Hittinger et al. 2014, Table
4), that is, a NaS battery with a module energy capacity equal to 0.36 MWh. These batteries
are remarkably cost-efficient compared to super-capacitors and flywheels (Hittinger et al.,
2010), and their fast response is fundamental to smooth wind-power changes. We consider
10 years of real-data hourly wind speed to obtain the power production of a hypothetical
wind turbine located in Sardinia. As done in D’Amico et al. (2022a), we transform the wind
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Fig. 9 Hourly average cumulative penalty and standard deviation of real and simulated data with ramp-rate
limitation percentage equal to 1% (� = 0.02)

Fig. 10 Hourly average cumulative penalty and standard deviation of real and simulated data with ramp-rate
limitation percentage equal to 5% (� = 0.1)

speed data into wind power production by means of the function

P(v) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if v < v

Pr
v3−v3

v3r −v3
if v < v < vr

Pr if vr < v < v

0 if v > v

,

where v is the cut-in wind speed, v is the cut-out wind speed, vr is the rated velocity, and Pr
is the rated capacity of the wind turbine. We set v = 4m/s, v = 25m/s, vr = 13m/s, and
Pr = 2MW (D’Amico et al., 2022a; Vergine et al., 2022).

The penalty fees are set to x+1 = 21.52e/MWh and x−1 = 26.50e/MWh. These values
are the ones used in Hittinger et al. (2014) after being made proportional to the average
electricity price in Italy.

Looking at Figs. 9, 10 and 11, we can notice that the simulations are less accurate for
the ramp-rate limitation of 7%. This is due to the fact that a higher percentage corresponds
to a less strict limitation and, consecutively, to a smaller number of times that the system
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Fig. 11 Hourly average cumulative penalty and standard deviation of real and simulated data with ramp rate
limitation percentage equal to 7% (� = 0.14)

does not comply with it, which leads to a smaller data-set and, consequently to more biased
estimations.

This fact is supported by the Mean Absolute Percentage Error (MAPE) calculated for the
hourly average between real and simulated data. It is a metric that defines how accurate the
forecasted quantities are in comparison with the actual quantities and represents the average
of the absolute percentage errors. We obtain the values of 2.54, 11.34, and 20.18 for the
ramp-rate limitations of 1%, 5%, and 7%, respectively. This confirms the behavior described
above with the value of 2.54, which is very close to the value of 1.77 obtained in D’Amico
et al. (2022a) with the same ramp-rate limitation, where the proposed model needs a larger
number of parameters, being the charge/discharge values independent and not identically
distributed at each time within a sojourn time length. The model proposed in this work gives
similar results but captures better the correlation structure in the sample charge/discharge
paths. The second-order moment is characterized by greater but contained values of MAPE,
5.56, 5.92, and 8.35 for the three studied limitations.

6 Concluding remarks

We applied a discrete-time semi-Markov process to model the operations of charge and
discharge of a battery storage system connected to a wind farm under a ramp-rate limitation
strategy. Within each charging/discharging period, we model the charge/discharge process as
a modified Brownian bridge with three parameters. The resulting semi-Markov-modulated
modified Brownian bridge model was used, via Monte Carlo simulation, to estimate the first
and second-order moments of the cumulative discounted penalty coming from violating up-
ramp and down-ramp limitations. Not only the estimations are accurate when compared to
real data, but they resemble the results obtained by D’Amico et al. (2022a), where the authors
used a model with a large number of parameters. In particular, the results show average daily
losses ranging from almost 30e for a ramp rate limitation of 7% up to almost 150e for the
more strict limitation of 1%.

Our results can be used to improve the management of the wind farm, since they allow us
to obtain detailed information about the state of charge of the battery energy system, as well
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as the penalty dynamics associated to a ramp-rate limitation policy. The two algorithms we
propose provide an accurate calculation of these variables over time.

Potential extensions of this work include exploring different limitation strategies and stor-
age system technologies and estimating higher moments of the cumulative penalty process.
The theoretical calculation of the cumulative penalty process moments is also a worthy path
to explore. Finally, using the continuous-time version of the Brownian bridge process in
(12) and (13), one might be able to come up with a continuous-time model for the battery
charges/discharges.

This work represents the first step for alluring wind-power producers into accepting ramp-
rate policies, by designing effective incentive systems to compensate the potential associated
penalties. These systems have the complementary objective of ensuring the stability of the
network by charging costs not only to wind-energy producers.
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