Check for updates

Are racial differences in hospital mortality after coronary artery bypass graft surgery real? A risk-adjusted meta-analysis

Umberto Benedetto, MD, PhD,^a Mohamed K. Kamel, MD,^b Faiza M. Khan, MD,^b Gianni D. Angelini, MD,^a Massimo Caputo, MD,^a Leonard N. Girardi, MD,^b and Mario Gaudino, MD^b

ABSTRACT

Background: Despite several reports, there are still conflicting data on the influence of ethnicity on mortality rates associated with coronary artery bypass grafting (CABG). We aimed to get further insights into the effect of race on mortality following CABG by performing a risk adjusted meta-analysis.

Methods: Relevant studies were searched on PubMed, Embase, BioMed Central, and the Cochrane Central register. Pairwise meta-analysis was used to estimate the relative risk of hospital death of black, Hispanic, and Asian patients using white patients as reference. Risk adjusted meta-analytic estimates were obtained using generic inverse variance methods with random effect model.

Results: A total of 28 studies were selected for analysis. A total of 21 studies reported on hospital mortality in black (n = 222,892) versus white (n = 3,884,043) patients, 7 studies reported on Hispanic (n = 91,256) versus white (n = 1,458,524) and 9 studies reported on Asian (n = 27,820) versus white (n = 1,081,642). When compared with white patients, adjusted risk of hospital death was significantly greater for black patients (adjusted odds ratio [OR], 1.25; 95% confidence interval [CI], 1.13-1.39; P < .001), and not statistically different for Asian (OR, 1.33; 95% CI, 0.99-1.77; P = .05) and Hispanic patients (adjusted OR, 1.08; 95% CI, 0.94-1.23; P = .26). Meta-regression showed a significant trend toward lower mortality rates in most recent series in both black (P = .02) and white (P = .0007) and Asian (P = .01) but not for Hispanic (P = .41). However, as mortality rates were lower across the different races, the relative disadvantage between the study groups persisted, which may explain the lack of interaction between study period and race effect on mortality for black (adjusted P = .09), Asian (adjusted P = .63), and Hispanic (adjusted P = .97) patients.

Conclusions: The present meta-analysis showed that despite progress is being made in lowering in-hospital mortality rates among the major racial/ethnic groups, ethnical disparities in hospital mortality after CABG remain. (J Thorac Cardiovasc Surg 2019;157:2216-25)

Although multiple studies have found that non-white patients, in particular black and Hispanic, have lower rates

Meta-analytic risk-adjusted estimates of race effect on operative mortality.

Central Message

Despite progress being made in lowering inhospital mortality rates among the major racial/ethnic groups, ethnic disparities in hospital mortality after coronary bypass surgery remain.

Prospective

The effect of race on mortality after coronary bypass surgery remains uncertain, and current guidelines and risk stratification systems make no differentiation by race. We showed that despite progress being made in lowering in-hospital mortality rates among the major racial/ethnic groups, ethnic disparities in hospital mortality after CABG remain.

See Commentary on page 2226.

of cardiovascular procedures, including cardiac catheterization, percutaneous coronary intervention, and coronary artery bypass grafting (CABG),¹ there are still limited and conflicting data on the influence of ethnicity on mortality and complication rates associated with CABG.²⁻⁶ One

Scanning this QR code will take you to the article title page to access supplementary information.

From the ^aBristol Heart Institute, University of Bristol, School of Clinical Sciences, Bristol, United Kingdom; and ^bDepartment of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY.

Supported by the NIHR Bristol Biomedical Research Centre Cardiovascular Theme. Drs Benedetto and Kamel contributed equally to this manuscript.

Received for publication Sept 12, 2017; revisions received Nov 12, 2018; accepted for publication Dec 2, 2018; available ahead of print Jan 30, 2019.

Address for reprints: Umberto Benedetto, MD, PhD, Bristol Heart Institute, University of Bristol, Upper Maudlin St, Bristol BS2 8HW United Kingdom (E-mail: umberto.benedetto@bristol.ac.uk).

^{0022-5223/\$36.00}

Copyright © 2018 by The American Association for Thoracic Surgery https://doi.org/10.1016/j.jtcvs.2018.12.002

Abbreviations and Acronyms

CABG = coronary artery by pass grafting

- CI = confidence interval
- OR = odds ratio

potential concern is that if racial minorities are less likely to be referred for cardiac catheterization and coronary revascularization, then only those with particularly advanced disease or compelling indications may undergo these procedures, leading to worse outcomes.²⁻⁴ Previous studies evaluating the impact of ethnicity on mortality following CABG surgery have had mixed conclusions. Several studies have reported greater mortality for black patients following the operation.^{5,6} Other studies have suggested similar risk-adjusted survival for black patients following CABG surgery.²⁻⁴ Therefore, the effect of race on mortality after CABG remains uncertain,² and current CABG guidelines⁷ and risk-stratification systems^{8,9} make no differentiation by race. We aimed to get further insights into the effect of race on mortality following CABG by performing a risk-adjusted meta-analysis of comparative studies.

METHODS

Literature Search Strategy

The search strategy adopted is in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines.¹⁰ We searched PubMed, the Cochrane Central Register of Controlled Trials, and

EMBASE from their inception to March 2017, without language restrictions. Search algorithm used was "race" OR "ethnicity" AND ("coronary artery bypass" OR CABG OR "bypass surgery" OR "coronary bypass"). In addition, reference lists of the identified reports and relevant reviews were manually screened by 2 reviewers (U.B., M.K.) to identify relevant studies. Studies reporting hospital outcomes after CABG across different ethnic groups including white, black, Hispanic, and Asian patients were selected. When centers have published duplicate trials with accumulating numbers of patients, only the largest reports were included for qualitative appraisal (Online Data Supplement). Non-English articles were not excluded. Abstracts, case reports, conference presentations, editorials, and expert opinions were excluded. Disagreements were resolved by consensus. The quality of included studies was assessed with the Newcastle-Ottawa scale for observational studies.¹¹ The total score was 9 stars, and the quality was graded as low level (<6 stars) or high level $(\geq 6 \text{ stars})$. Baseline characteristics and hospital outcomes in different ethnic groups were independently abstracted by 2 investigators (U.B., M.K.). The primary outcome of the present meta-analysis was hospital mortality. Hospital mortality crude incidence rates for different ethnic groups were obtained from individual studies. As different ethnic groups can present different patient-level and hospital-level factors distribution, we also extracted fully adjusted estimates obtained by multivariate models from individual studies. Other operative outcomes investigated were stroke, wound infection, renal failure/dialysis, re-exploration for bleeding, and respiratory failure/tracheostomy.

Statistical Analysis

Pairwise meta-analysis methods were used to estimate operative mortality relative risk for different ethnic groups (black, Hispanic, and Asian) using the white group as reference. A subgroup analysis was done to compare South Asian with white. Individual study and pooled operative mortality were reported as odds ratio (OR) with a 95% confidence interval (CI). Unadjusted pooled estimates were obtained using the model of DerSimonian and Laird.¹² Individual studies risk-adjusted estimates were pooled as log OR and standard error using the generic inverse variance method.¹³

FIGURE 1. Study selection process for meta-analysis.

TABLE 1. Overview of studies included in the meta-analysis

	First author and									
N of	year of	_	Single vs	Years of	Information on	White	Black	Asian	Hispanic	Race
study	publication	Country	multi-institution	enrollment	source of data	patients (N)	patients (N)	patients (N)	Patients (N)	identification
1	Anderson et al, ³¹ 2016	US	Multi-institution	2011-2012	California CABG Reporting Program	14,389	975	3196	4614	*
2	Andrews et al, ³⁴ 2015	US	Multi-institution	2009	Healthcare Research and Quality (NIS)	194,440	15,534			*
3	Becker and Rahimi, ⁶ 2006	US	Multi-institution	1993-2002	Healthcare Research and Quality (NIS)	1,040,641	63,991	20,353	67,554	*
4	Bridges et al, ⁵ 2000	US	Multi-institution	1994-1997	Society of Thoracic Surgeons (STS)	555,939	25,850			Self-identified
5	Brister et al, ²² 2007	Canada	Single institution	1994-2003	-	917		917		Self-identified & patients' name
6	Chowdhury et al, ³³ 2017	US	Single institution	2006-2010	-	3107	389			Self-identified
7	Cooper et al, ²⁸ 2009	US	Multi-institution	1997-2007	Society of Thoracic Surgeons (STS)	10,841	2033			*
8	Efird et al, ¹⁶ 2015	US	Single institution	1992-2011	-	11,395	2379			Self-identified
9	Gasevic et al, ²⁰ 2013	Canada	Multi-institution	1999-2003	British Columbia Cardiac Registry	1507		180		Patients' name
10	Goldsmith et al, ³⁷ 1999	UK	Single institution	1994-1997	-	190		194		*
11	Gray et al, ²⁵ 1996	US	Single institution	1984-1992	-	3113	115			*
12	Hadjinikolaou et al, ³⁶ 2010	UK	Single institution	2002-2007	-	2623		274		Self-identified
13	Kaila et al, ¹⁸ 2014	Canada	Multi-institution	1999-2012	APPROACH database	737		252		Patients' name
14	Keeling et al, ³² 2017	US	Single institution	2002-2014	-	13,569	2810			*
15	Kim et al, ²¹ 2008	US	Multi-institution	2002-2005	University HealthSystem Consortium	63,487	8462			*
16	Konety et al, ²³ 2005	US	Multi-institution	1997-2000	Medicare Provider and Analysis Review	566,785	24,354			*
17	Lucas et al, ³⁵ 2006	US/Canada	Multi-institution	1994-1999	Medicare Provider and Analysis Review	829,037	33,367			*
18	Maynard and Ritchie, ²⁴ 2001	US	Multi-institution	1994-1999	Veterans Affairs	27,439	2380			*
19	Mehta et al, ³⁰ 2016	US	Multi-institution	2010-2011	Society of Thoracic Surgeons (STS)	136,362	14,375			*
20	O'Neal et al, ²⁹ 2014	US	Single institution	2002-2011	-	3460	970			Self-identified
21	Pollock et al, ¹⁷ 2015	US	Single institution	2004-2011	-	6365	612		593	*
22	Rangrass et al, ¹⁹ 2014	US	Multi-institution	2007-2008	Medicare Analysis Provider and Review	159,043	9390		3016	*
23	Rumsfeld et al, ⁴ 2002	US	Multi-institution	1995-2001	Veterans Affairs	29,333	2570		1525	*
24	Smith et al, ²⁷ 2006	US	Multi-institution	1993-2005	Multi-institutional database	1932	644			*
										(Continued)

TABLE 1. Continued

	First author and									
N of	year of		Single vs	Years of	Information on	White	Black	Asian	Hispanic	Race
study	publication	Country	multi-institution	enrollment	source of data	patients (N)	patients (N)	patients (N)	Patients (N)	identification
25	Trivedi et al, ²⁶ 2006	US	Multi-institution	1998-2001	Healthcare Research and Quality (NIS)	193,684	11,393		11,393	*
26	Yeo et al, ³ 2007	US	Multi-institution	2003	California CABG Outcomes Reporting Program	15,069	785	1772	2561	*
27	Zacharias et al, ² 2005	US	Single institution	1991-2003	-	6073	304			*
28	Zindrou et al. ³⁸ 2001	UK	Single institution	1993-1997	-	1458		436		Self-identified

CABG, Coronary artery bypass graft; NIS, National Inpatient Sample. *As reported in single/multiple institutional or national databases.

Random effect was used in all meta-analyses to obtain more conservative estimates.¹⁴ We used the I² statistic, which estimates the percentage of total variation across studies that is due to heterogeneity rather than chance. Suggested thresholds for heterogeneity were used, with I² values of 25% to 49%, 50% to 74%, and \geq 75%, indicative of low, moderate, and high heterogeneity.^{15,16} For each study, median year of enrollment was obtained and changes in estimates across different eras were tested using meta-regression model (mixed-effects model). Meta-analytic estimates were computed using Review Manager (RevMan, Computer program, Version 5.2; The Nordic Cochrane Centre, The Cochrane Collaboration, 2012, Copenhagen, Denmark) and meta R package (R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.org/).

RESULTS

Study Selection

A total of 1362 references were identified through electronic database searches and references lists. After exclusion of duplicate or irrelevant references, 45 potentially relevant articles were retrieved. After detailed evaluation of these articles, 28 studies were selected for analysis.²⁻ ^{6,16-38} (Figure 1). Study overview, patients' characteristics, and severity of coronary artery disease are reported in Table 1, Table 2, and Table E1, respectively. A total of 21 studies reported on hospital mortality in black (n = 222,892) versus white (n = 3,884,043) patients, 7 studies reported on Hispanic (n = 91,256) versus white (n = 1,458,524) patients, and 9 studies reported on Asian (n = 27,820) versus white (n = 1,081,642) patients. Of the 9 studies that reported on Asian patients, 5 studies reported on South Asians, 1 study reported on South Asians and Chinese, and 3 studies did not distinguish between the different Asian ethnicities. Fully adjusted estimates including patient-level and hospital-level covariates were reported by 12 studies for black versus white comparison, 4 studies for Hispanic versus white comparison, and 4 studies for Asian versus white comparison. The methods and variables used in adjustment are listed in Table E2. Quality assessment of individual studies is reported in Table 3.

Meta-Analysis

Meta-analysis of unadjusted rates (Figure 2) showed that when compared with white patients, black (unadjusted OR, 1.24; 95% CI, 1.20-1.28; P < .001) and Asian patients (unadjusted OR, 1.33; 95% CI, 1.05-1.69; P = .02) were associated with a significantly increased risk for hospital death whereas Hispanic patients presented a comparable risk (unadjusted OR, 0.98; 95% CI, 0.87-1.09; P = .66). This trend was confirmed when reported adjusted estimates for hospital mortality were pooled (Figure 3). When compared with white patients, adjusted risk of hospital death was significantly greater for black patients (adjusted OR, 1.25; 95% CI, 1.13-1.39; P < .001), and not statistically different for Asian (OR, 1.33; 95% CI, 0.99, 1.77; P = .05) and Hispanic patients (adjusted OR, 1.08; 95% CI, 0.94-1.23; P = .26).

A subgroup analysis showed that South Asian patients had greater risk of crude hospital mortality compared with white patients (unadjusted OR, 1.72; 95% CI, 1.12-2.66; P = .01). However, there was no difference in the risk of hospital mortality between South Asian and white patients after adjusting for possible confounding factors (adjusted OR, 1.73; 95% CI, 0.71-4.18; P = .23) (Figure E1).

Meta-regression (Figure 4) showed a significant trend toward lower mortality rates in most recent series in both black (P = .02) and white (P = .0007) and Asian (P = .01) patients but not for Hispanic patients (P = .41). However, as mortality rates were lower across the different races, the relative disadvantage between the study groups persisted, which may explain the lack of interaction between study period and race effect on mortality for black (unadjusted P = .29, adjusted P = .09), Asian (unadjusted P = .15, adjusted P = .63), and Hispanic (unadjusted and adjusted P = .97) patients.

Postoperative Complications

For the comparison between black and white patients, several studies reported also on unadjusted rate of postoperative complication (Figure E2). Pooled estimates showed

Mean age, y % Female		
	Mean age, y	% Female
A A		

		Mea	n age, y			% F	emale			% Diabet	tes mellitus	5
Study	White	Black	Asian	Hispanic	White	Black	Asian	Hispanic	White	Black	Asian	Hispanic
Anderson et al, ³¹ 2016												
Andrews et al, ³⁴ 2015					27.10%	42.60%						
Becker and Rahimi, ⁶ 2006					28.40%	44%	27.70%	31.40%				
Bridges et al, ⁵ 2000	65	62			27.93%	44.45%			27.82%	43.78%		
Brister et al, ²² 2007	62		61		23.50%		23.60%		37.30%		39.40%	
Chowdhury et al, ³³ 2017	58	56			10%	21%						
Cooper et al, ²⁸ 2009	63	60			27%	42%			33.60%	47.00%		
Efird et al, ¹⁶ 2015	65	62			27.30%	42%			32.00%	48.00%		
Gasevic et al, ²⁰ 2013					21%		18%		21.30%		31.00%	
Goldsmith et al, ³⁷ 1999	58		58						11.60%		38.70%	
Gray et al, ²⁵ 1996	67	65			21%	35%			23.00%	36.00%		
Hadjinikolaou et al, ³⁶ 2010	66		63		19.70%		23%					
Kaila et al, ¹⁸ 2014					20.30%		21.40%		47.80%		44.40%	
Keeling et al, ³² 2017	64	61							37.10%	50.30%		
Kim et al, ²¹ 2008												
Konety et al, ²³ 2005	74	72			34.40%	51.40%			8.30%	18.40%		
Lucas et al, ³⁵ 2006					34.30%	51.50%						
Maynard and Ritchie, ²⁴ 2001	64	63			1%	1%			30.00%	34.00%		
Mehta et al, ³⁰ 2016	66	62			25.30%	40.40%			39.10%	53.00%		
O'Neal et al, ²⁹ 2014	64	61			25%	38%			37.20%	50.00%		
Pollock et al, ¹⁷ 2015	65	62		61	23.70%	44%		27.50%	37.10%	46.60%		61.20%
Rangrass et al, ¹⁹ 2014	74				30.50%				29.30%			
Rumsfeld et al,4 2002	63.6	62.2		63.8	1.10%	1.10%		0.50%	31.40%	38.10%		47.80%
Smith et al, ²⁷ 2006	64.6	63.7			28.60%	45.70%			30.40%	47.20%		
Trivedi et al, ²⁶ 2006												
Yeo et al, ³ 2007	66.91	63.17	65.6	64.02	25%	43%	27%	31%	33.00%	49.00%	47.00%	56%
Zacharias et al, ² 2005	64	62			29.80%	46.10%			32.40%	43.40%		
Zindrou et al, ³⁸ 2001	61.6		59.6		15.98%		19.70%		17.50%		43.00%	

that rate for stroke (unadjusted OR, 1.78; 95% CI, 1.49-2.13; P < .001), bleeding (unadjusted OR, 1.24; 95% CI, 1.09-1.41), tracheostomy/reintubation (unadjusted OR, 1.37; 95% CI, 1.15-1.61; P = .0003), and renal failure (adjusted OR, 1.54; 95% CI, 1.38-1.73; P < .001) but not wound infection (OR, 1.16; 95% CI, 0.98-1.36; P = .09) were greater among black patients.

DISCUSSION

In the present study, we investigated the effect of race by performing a meta-analysis and meta-regression of comparative studies available. We showed that black race was associated with increased mortality rates when compared with white race also after adjusting for patient-level and hospital-level factors. We also showed that despite the fact that mortality rates declined over the years for black patients, a specular reduction in mortality was observed for white patients. Therefore, the gap between black and white patients remained stable. Black race was also shown to be associated with significant increased risk of postoperative complications, including bleeding, stroke, renal failure/dialysis, and respiratory failure/tracheostomy. Although not statistically significant, there was a strong trend toward an increased risk of mortality in Asian when compared with white subjects (P = .05). In contrast, Hispanic patients were consistently found to have mortality rates comparable with those observed in white patients without significant changes across different eras.

TABLE 3.	Study	quality	assessment	using	Newcastle	Ottawa	Scale
----------	-------	---------	------------	-------	-----------	--------	-------

Study	Selection	Comparability	Exposure	Sum
Anderson et al, ³¹ 2016	4	2	3	9
Andrews et al, ³⁴ 2015	4	2	3	9
Becker and Rahimi, ⁶ 2006	4	0	3	7
Bridges et al, ⁵ 2000	4	0	3	7
Brister et al, ²² 2007	4	2	3	9
Chowdhury et al, ³³ 2017	4	0	3	7
Cooper et al, ²⁸ 2009	4	2	3	9
Efird et al, ¹⁶ 2015	4	0	3	7
Gasevic et al, ²⁰ 2013	4	0	3	7
Goldsmith et al, ³⁷ 1999	4	0	3	7
Gray et al, ²⁵ 1996	4	2	3	9
Hadjinikolaou et al, ³⁶ 2010	4	0	3	7
Kaila et al, ¹⁸ 2014	4	2	3	9
Keeling et al, ³² 2017	4	2	3	9
Kim et al, ²¹ 2008	4	2	3	9
Konety et al, ²³ 2005	4	2	3	9
Lucas et al, ³⁵ 2006	4	2	3	9
Maynard and Ritchie, ²⁴ 2001	4	2	3	9
Mehta et al, ³⁰ 2016	4	2	3	9
O'Neal et al, ²⁹ 2014	4	0	3	7
Pollock et al, ¹⁷ 2015	4	0	3	7
Rangrass et al, ¹⁹ 2014	4	2	3	9
Rumsfeld et al,4 2002	4	2	3	9
Smith et al, ²⁷ 2006	4	0	3	7
Trivedi et al, ²⁶ 2006	4	2	3	9
Yeo et al, ³ 2007	4	0	3	7
Zacharias et al, ² 2005	4	2	3	9
Zindrou et al, ³⁸ 2001	4	0	3	7

Despite several studies that have suggested ethnic disparities in operative outcomes following CABG,^{5,6} final conclusions are still lacking, and current CABG guidelines and risk stratification systems including the Society of Thoracic Surgeons scoring system (http:// riskcalc.sts.org/stswebriskcalc/)⁸ and the European System for Cardiac Operative Risk Evaluation (http://www. euroscore.org/)⁹ make no differentiation by race in terms of operative mortality. The present study consistently demonstrated that black patients remain associated with a greater operative mortality, although this disparity was found to be relevant only among male patients.

There are a number of possible explanations for these persistent differences in outcomes between the different racial groups. First, it is well documented that disparities in access to health care system persist by race and black patients are likely to be referred to surgery with poorer health conditions.^{39,40} Although the present National Inpatient Sample analysis and meta-analysis controlled for many more patient, organizational, and socioeconomic aspects of CABG patients' condition, there still may be other unmeasured social phenomena of the patient's background, health condition, or hospital stay that may help explain racial/ethnic differences. In addition, many aspects of the physician-patient relationship that involve patients' education, trust, and the physician's sensitivity to a patient's culture might also play a critical role.⁴⁰ Finally, others have identified genetic differences in race/ethnicity that could account for differences in outcomes. For patients with heart disease, some studies have suggested subtle differences among race/ethnicities in the biology of hypertension. Potential differences in the biology of hypertension may result in more frequent and more severe hypertension and ventricular hypertrophy in black patients.⁴

The present meta-analysis presents several limitations. The vast majority of the included studies did not mention the definitions used for race identification, a factor that may have influenced the results. Although we performed a risk-adjusted analysis, we cannot exclude the presence of residual confounding factors accounting for differences in outcomes between ethnic groups, which may have not been considered by individual studies. In particular, data on predicted risk of mortality (ie, SYNTAX score) were not provided in most of the studies. Moreover, detailed information on patients' socioeconomic status and surgeon and hospital volume were limited. The study focused primarily on operative mortality and did not compare the differences in long-term outcomes between the different race groups. Most of the series included in the present analysis were from US databases, and this might partially limit the generalizability of the present findings. In addition, despite we attempt to avoid cohort overlapping among different studies, we cannot exclude that different US nationwide databases might have reported on similar study populations. Finally, we acknowledge the difficulties and uncertainties that may sometimes be associated with defining individual patients' ethnicities, particularly for those residing in North America, where the population diversity may lead to racial mixing.

In conclusion, the present meta-analysis confirmed that despite progress is being made in lowering in-hospital mortality rates among the major racial/ethnic groups including black patients, significant disparities in outcomes still remain that warrant further investigation.

Conflict of Interest Statement

Authors have nothing to disclose with regard to commercial support.

Black vs white

	Bla	ick	W	hite		Odds Ratio	Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rande	om, 95% Cl
Yeo 2007	22	785	422	15069	0.5%	1.00 [0.65, 1.55]		
Maynard 2001	86	2380	960	27439	1.7%	1.03 [0.83, 1.29]		
Efird 2015	68	2379	303	11395	1.2%	1.08 [0.82, 1.41]		
Rumsfeld 2002	107	2750	1056	29333	2.0%	1.08 [0.89, 1.33]	_	
Mehta 2015	331	14375	2757	136362	5.4%	1.14 [1.02, 1.28]		
Gray 1996	6	115	143	3113	0.1%	1.14 [0.49, 2.65]		
Trivedi 2006	490	11393	7166	193684	7.4%	1.17 [1.07, 1.28]		_
Zacharias 2005	9	304	152	6073	0.2%	1.19 [0.60, 2.35]		
Anderson 2016	26	975	315	14389	0.5%	1.22 [0.82, 1.84]		
Bridges 2000	991	25850	17456	555939	11.8%	1.23 [1.15, 1.31]		
Lucas 2006	2229	33367	45597	829037	16.9%	1.23 [1.18, 1.29]		
Pollok 2015	20	612	169	6365	0.4%	1.24 [0.77, 1.98]		<u> </u>
Becker 2006	2118	63991	27889	1040641	16.6%	1.24 [1.19, 1.30]		
Konety 2005	1559	24354	29473	566785	14.6%	1.25 [1.18, 1.31]		
Andrews 2015	538	15534	5367	194440	7.8%	1.26 [1.15, 1.38]		_ _
Rangrass 2014	438	9390	5567	159043	6.8%	1.35 [1.22, 1.49]		
Kim 2008	233	8462	1241	63487	3.8%	1.42 [1.23, 1.64]		- _
Keeling 2016	50	2810	168	13569	0.9%	1.45 [1.05, 1.99]		
Smith 2006	22	644	44	1932	0.3%	1.52 [0.90, 2.55]	_	>
Cooper 2009	57	2033	195	12841	1.0%	1.87 [1.39, 2.52]		>
Chowdhury 2016	4	389	14	3107	0.1%	2.30 [0.75, 7.01]		
Total (95% CI)		222892		3884043	100.0%	1.24 [1.20, 1.28]		•
Total events	9404		146454					
Heterogeneity: Tau ² = 0.00; Chi ² = 26.29, df = 20 (P = .16); l ² = 24%						· · ·		
Test for overall effect: $Z = 14.02 (P < .00001)$						0.5 0.7 1	1.5 2	
		/					Favours Black	Favours White

A

Hispanic vs white

	Hisp	anic	W	hite		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Anderson 2016	73	4614	315	14389	11.0%	0.72 [0.56, 0.93]	
Rumsfeld 2002	43	1525	1056	29333	8.6%	0.78 [0.57, 1.06]	
Pollok 2015	15	593	169	6365	3.6%	0.95 0.56, 1.62	
Becker 2006	1729	67554	27889	1040641	26.3%	0.95 0.91, 1.00	-
Trivedi 2006	410	11393	7166	193684	22.4%	0.97 [0.88, 1.08]	_
Yeo 2007	82	2561	422	15069	11.9%	1.15 [0.90, 1.46]	
Rangrass 2014	132	3016	5567	159043	16.1%	1.26 [1.06, 1.51]	
Total (95% CI)		91256		1458524	100.0%	0.98 [0.87, 1.09]	-
Total events	2484		42584				
Heterogeneity: Tau ² = 0	.01; Chi ² = 1	8.08, df = 6	6 (P = .006)	; I ² = 67%			
Test for overall effect: Z	= 0.45 (<i>P</i> =	.66)	,				0.5 0.7 1 1.5 2
_							Favours [White] Favours [Hispanic]

В

Asiatic vs white

	Asia	atic	w	hite		Odds Ratio		Odds Rati	0	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C		IV, Random, 9	5% CI	
Gasevic 2013	5	180	62	1507	5.2%	0.67 [0.26, 1.68]				
Kaila 2014	4	252	17	737	4.0%	0.68 [0.23, 2.05]	_		_	
Anderson 2016	66	3196	315	14389	17.6%	0.94 [0.72, 1.23]				
Becker 2006	584	20353	27889	1040641	21.9%	1.07 [0.99, 1.17]				
Yeo 2007	62	1772	422	15069	17.5%	1.26 [0.96, 1.65]				
Zindrou 2001	24	436	41	1458	11.1%	2.01 [1.20, 3.37]		_		
Brister 2007	29	1163	55	5028	12.5%	2.31 [1.47, 3.64]		-		
Hadjinikolaou 2010	7	274	28	2623	6.0%	2.43 [1.05, 5.62]				
Goldsmith 1999	13	194	5	190	4.2%	2.66 [0.93, 7.61]				_
Total (95% CI)		27820		1081642	100.0%	1.33 [1.05, 1.69]		•		
Total events	794		28834							
Heterogeneity: Tau ² = 0).07: Chi ² = 2	5.95. df = 8	B(P = .001)	$ ^2 = 69\%$				 	1 1	—
Test for overall effect: 2	Z = 2.33 (P =	.02)	- (,	,			0.1 0.2	0.5 1	2 5	10
	,						Favours	s Asiatic Fa	vours White	a

С

FIGURE 2. Meta-analytic unadjusted estimates of race effect on operative mortality (white as reference). *M-H*, Mantel-Haenszel; *CI*, confidence interval; *IV*, inverse variance.

Black vs white

Study or Subgroup	log [Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI		Odds Ratio IV, Random, 95) i% Cl	
Maynard 2001	0.0198	0.0582	8.9%	1.02 [0.91, 1.14]				
Konety 2005	0.0296	0.0306	9.7%	1.03 [0.97, 1.09]				
Lucas 2006	0.0583	0.0247	9.8%	1.06 [1.01, 1.11]				
Rumsfeld 2002	0.0677	0.1235	6.5%	1.07 [0.84, 1.36]		_		
Zacharias 2005	0.1212	0.4929	1.1%	1.13 [0.43, 2.97]				
Trivedi 2006	0.1222	0.0832	8.0%	1.13 [0.96, 1.33]		++		
Keeling 2016	0.2624	0.1876	4.5%	1.30 [0.90, 1.88]				_
Rangrass 2014	0.2776	0.0529	9.1%	1.32 [1.19, 1.46]			-	
Becker 2006	0.3001	0.0352	9.6%	1.35 [1.26, 1.45]				
Mehta 2015	0.3001	0.0687	8.6%	1.35 [1.18, 1.54]				
Andrews 2015	0.4147	0.0464	9.3%	1.51 [1.38, 1.66]				
Becker 2006	0.4383	0.0376	9.5%	1.55 [1.44, 1.67]				
Cooper 2009	0.5247	0.1539	5.5%	1.69 [1.25, 2.28]				
Total (95% CI)			100.0%	1.25 [1.13, 1.39]				
Heterogeneity: Tau ² =	0.03; Chi ² = 153.11, c	lf = 12 (<i>P</i> <	.00001); l ²	= 92%				
Test for overall effect:	Z = 4.22 (<i>P</i> < .0001)				0.5	0.7 1	1.5	2

A

Hispanic vs white

Study or Subgroup	log [Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% Cl	Odds IV, Rando	s Ratio om, 95% Cl	
Rumsfeld 2002	-0.3567	0.1717	10.1%	0.70 [0.50, 0.98]			
Becker 2006	-0.0101	0.043	25.3%	0.99 [0.91, 1.08]		_	
Trivedi 2006	0.0953	0.0695	21.7%	1.10 [0.96, 1.26]	+		
Becker 2006	0.174	0.0495	24.5%	1.19 [1.08, 1.31]			
Rangrass 2014	0.2776	0.093	18.4%	1.32 [1.10, 1.58]			
Total (95% CI)			100.0%	1.08 [0.94, 1.23]			
Heterogeneity: Tau ² = 0. Test for overall effect: Z	.02; Chi ² = 19.03, df = = 1.11 (<i>P</i> = .26)	= 4 (<i>P</i> = .0	008); l ² = 79	9%	0.5 0.7 1	1.5 2	
В					Favours [Hispanic]	Favours [White]	

Favours [Black]

Favours [White]

Asiatic vs white

Study or Subgroup	log [Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% Cl		Od IV, Ran	ds Ratio dom, 959	% CI	
Gasevic 2013	-0.4463	0.5935	5.4%	0.64 [0.20, 2.05]			-		
Gasevic 2013	-0.0943	0.773	3.4%	0.91 [0.20, 4.14]					
Becker 2006	0.0583	0.0613	38.4%	1.06 [0.94, 1.20]			•		
Becker 2006	0.3507	0.0859	36.1%	1.42 [1.20, 1.68]			-		
Hadjinikolaou 2010	0.72	0.52	6.7%	2.05 [0.74, 5.69]					
Brister 2007	1.1314	0.4056	10.0%	3.10 [1.40, 6.86]			-	-	
Total (95% CI)			100.0%	1.33 [0.99, 1.77]					
Heterogeneity: Tau ² = 0	0.05; Chi ² = 15.68, df =	= 5 (<i>P</i> = .0	008); l ² = 68%	%		I	-	1	
Test for overall effect: 2	Z = 1.92 (<i>P</i> = .05)				0.05	0.2	1	5	20
						Favours Asiatic	Fav	ours White	

С

FIGURE 3. Meta-analytic risk-adjusted estimates of race effect on operative mortality (white as reference). SE, Standard error; IV, inverse variance; CI, confidence interval.

FIGURE 4. Meta-regression of crude mortality rate in separate ethnical groups and race effect on mortality across different study periods (median year of enrollment).

References

- 1. Peterson ED, Shaw LK, DeLong ER, Pryor DB, Califf RM, Mark DB. Racial variation in the use of coronary revascularization procedures. Are the differences real? Do they matter? *N Engl J Med.* 1997;336:480-6.
- Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah A, Habib RH. Operative and late coronary artery bypass grafting outcomes in matched African-American versus Caucasian patients: evidence of a late survival-Medicaid association. J Am Coll Cardiol. 2005;46:1526-35.
- Yeo KK, Li Z, Amsterdam E. Clinical characteristics and 30-day mortality among Caucasians, Hispanics, Asians, and African-Americans in the 2003 California coronary artery bypass graft surgery outcomes reporting program. *Am J Cardiol.* 2007;100:59-63.
- Rumsfeld JS, Plomondon ME, Peterson ED, Shlipak MG, Maynard C, Grunwald GK, et al. The impact of ethnicity on outcomes following coronary artery bypass graft surgery in the Veterans Health Administration. *J Am Coll Cardiol*. 2002;40:1786-93.
- Bridges CR, Edwards FH, Peterson ED, Coombs LP. The effect of race on coronary bypass operative mortality. J Am Coll Cardiol. 2000;36:1870-6.
- Becker ER, Rahimi A. Disparities in race/ethnicity and gender in in-hospital mortality rates for coronary artery bypass surgery patients. *J Natl Med Assoc.* 2006;98:1729-39.
- 7. Eagle KA, Guyton RA, Davidoff R, Edwards FH, Ewy GA, Gardner TJ, et al; American College of Cardiology; American Heart Association. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee to update the 1999 guidelines for coronary artery bypass graft surgery). *Circulation*. 2004;110:e340-437.
- Shahian DM, O'Brien SM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al; Society of Thoracic Surgeons Quality Measurement Task Force. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 1—coronary artery bypass grafting surgery. *Ann Thorac Surg.* 2009;88:S2-22.
- Roques F, Nashef SA, Michel P, Gauducheau E, de Vincentiis C, Baudet E, et al. Risk factors and outcome in European cardiac surgery: analysis of the Euro-SCORE multinational database of 19030 patients. *Eur J Cardiothorac Surg.* 1999;15:816-22.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis of observational studies in epidemiology (MOOSE) group. *JAMA*. 2000; 283:2008-12.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalysis. Presented at: 3rd Symposium on Systematic Reviews: Beyond the Basics; July 3-5, 2000. Oxford, United Kingdom.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88.
- Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719-48.
- Hunter JE, Schmidt FL. Fixed effects vs random effects meta-analysis models: implications for cumulative research knowledge. Int J Sel Assess. 2000;8:275-92.

- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat* Med. 2002;21:1539.
- Efird JT, O'Neal WT, Griffin WF, Anderson EJ, Davies SW, Landrine H, et al. Increased coronary artery disease severity in black women undergoing coronary bypass surgery. *Medicine (Baltimore)*. 2015;94:e552.
- Pollock B, Hamman BL, Sass DM, Da graca B, Grayburn PA, Filardo G. Effect of gender and race on operative mortality after isolated coronary artery bypass grafting. *Am J Cardiol.* 2015;115:614-8.
- Kaila KS, Norris CM, Graham MM, Ali I, Bainey KR. Long-term survival with revascularization in South Asians admitted with an acute coronary syndrome (from the Alberta provincial project for outcomes Assessment in coronary heart disease registry). *Am J Cardiol.* 2014;114:395-400.
- Rangrass G, Ghaferi AA, Dimick JB. Explaining racial disparities in outcomes after cardiac surgery: the role of hospital quality. JAMA Surg. 2014;149:223-7.
- 20. Gasevic D, Khan NA, Qian H, Karim S, Simkus G, Quan H, et al. Outcomes following percutaneous coronary intervention and coronary artery bypass grafting surgery in Chinese, South Asian and White patients with acute myocardial infarction: administrative data analysis. *BMC Cardiovasc Disord*. 2013;13:121.
- Kim DH, Daskalakis C, Lee AN, Adams S, Hohmann S, Silvestry SC, et al. Racial disparity in the relationship between hospital volume and mortality among patients undergoing coronary artery bypass grafting. *Ann Surg.* 2008;248:886-92.
- Brister SJ, Hamdulay Z, Verma S, Maganti M, Buchanan MR. Ethnic diversity: South Asian ethnicity is associated with increased coronary artery bypass grafting mortality. J Thorac Cardiovasc Surg. 2007;133:150-4.
- Konety SH, Vaughan Sarrazin MS, Rosenthal GE. Patient and hospital differences underlying racial variation in outcomes after coronary artery bypass graft surgery. *Circulation*. 2005;111:1210-6.
- 24. Maynard C, Ritchie JL. Racial differences in outcomes of veterans undergoing coronary artery bypass grafting. *Am J Cardiol.* 2001;88:893-5.A8.
- Gray RJ, Nessim S, Khan SS, Denton T, Matloff JM. Adverse 5-year outcome after coronary artery bypass surgery in blacks. *Arch Intern Med*. 1996;156:769-73.
- Trivedi AN, Sequist TD, Ayanian JZ. Impact of hospital volume on racial disparities in cardiovascular procedure mortality. J Am Coll Cardiol. 2006;47:417-24.
- Michael Smith J, Soneson EA, Woods SE, Engel AM, Hiratzka LF. Coronary artery bypass graft surgery outcomes among African-Americans and Caucasian patients. *Int J Surg.* 2006;4:212-6.
- Cooper WA, Thourani VH, Guyton RA, Kilgo P, Lattouf OM, Chen EP, et al. Racial disparity persists after on-pump and off-pump coronary artery bypass grafting. *Circulation*. 2009;120(11 suppl):S59-64.
- 29. O'Neal WT, Efird JT, Davies SW, O'Neal JB, Griffin WF, Ferquson TB, et al. Discharge β-blocker use and race after coronary artery bypass grafting. *Front Public Health*. 2014;2:94.
- 30. Mehta RH, Shahian DM, Sheng S, O'Brien SM, Edwards FH, Jacobs JP, et al; Society of Thoracic Surgery National Adult Cardiac Surgery Database; Duke Clinical Research Institute. Association of hospital and physician characteristics and care processes with racial disparities in procedural outcomes among contemporary patients undergoing coronary artery bypass grafting surgery. *Circulation*. 2016;133:124-30.

- Anderson JE, Li Z, Romano PS, Parker J, Chang DC. Should risk adjustment for surgical outcomes reporting include sociodemographic status? A study of coronary artery bypass grafting in California. J Am Coll Surg. 2016;223:221-30.
- **32.** Keeling WB, Binongo J, Halkos ME, Leshnower BG, Nguyen DQ, Chen EP, et al. The racial paradox in multiarterial conduit utilization for coronary artery bypass grafting. *Ann Thorac Surg.* 2017;103:1214-21.
- 33. Chowdhury R, Davis WA, Chaudhary MA, Jiang W, Zogg CK, Schoenfeld AJ, et al. Race-based differences in duration of stay among universally insured coronary artery bypass graft patients in military versus civilian hospitals. *Surgery*. 2017;161:1090-9.
- 34. Andrews RM, Moy E. Racial differences in hospital mortality for medical and surgical admissions: variations by patient and hospital characteristics. *Ethn Dis*. 2015;25:90-7.
- Lucas FL, Stukel TA, Morris AM, Siewers AE, Birkmeyer JD. Race and surgical mortality in the United States. *Ann Surg.* 2006;243:281-6.
- 36. Hadjinikolaou L, Klimatsidas M, Maria iacona G, Spyt T, Samani NJ. Short- and medium-term survival following coronary artery bypass surgery in British Indo-Asian and white Caucasian individuals: impact of diabetes mellitus. *Interact Cardiovasc Thorac Surg.* 2010;10:389-93.

- Goldsmith I, Lip GY, Tsang G, Patel RL. Comparison of primary coronary artery bypass surgery in a British Indo-Asian and white Caucasian population. *Eur Heart J.* 1999;20:1094-100.
- Zindrou D, Bagger JP, Smith P, Taylor KM, Ratnatunga CP. Comparison of operative mortality after coronary artery bypass grafting in Indian subcontinent Asians versus Caucasians. Am J Cardiol. 2001;88:313-6.
- **39.** Kovesdy CP, Norris KC, Boulware LE, Lu JL, Ma JZ, Streja E, et al. Association of race with mortality and cardiovascular events in a large cohort of US veterans. *Circulation*. 2015;132:1538-48.
- Bucholz EM, Ma S, Normand SL, Krumholz HM. Race, socioeconomic status, and life expectancy after acute myocardial infarction. *Circulation*. 2015;132:1338-46.
- Valerio L, Peters RJ, Zwinderman AH, Pinto-Sietsma SJ. Association of family history with cardiovascular disease in hypertensive individuals in a multiethnic population. J Am Heart Assoc. 2016;5:e004260.

Key Words: coronary artery bypass grafting, outcomes, meta-analysis, ethnicity, mortality

Readers who found these articles interesting may also like to read the following papers found in recent and future issues of our sister publications, *Seminars in Thoracic and Cardiovascular Surgery* and *Operative Techniques in Thoracic and Cardiovascular Surgery*!

Adult: Coronary

CURRENT READINGS: Current Readings: Single vs Bilateral Internal Mammary Artery in Coronary Artery Bypass Grafting. Sary F. Aranki. Semin Thoracic Surg 2018: 398-405.

ORIGINAL SUBMISSION: Functional Evaluation of the Myocardial Ischemia After Coronary Artery Bypass Surgery Using Coronary Flow Velocity Reserve in Left Ventricular Hypertrophy. Kentaro Honda. Semin Thoracic Surg 2018: In press

Commentary: Big Hearts, Little Reserve: Coronary Flow Velocity Reserve After Bypass Grafting in Patients With Left Ventricular Hypertrophy. Juan A. Crestanello. Semin Thoracic Surg 2019: In press

ORIGINAL SUBMISSION: Functional Evaluation of the Myocardial Ischemia After Coronary Artery Bypass Surgery Using Coronary Flow Velocity Reserve in Left Ventricular Hypertrophy. Kentaro Honda. Semin Thoracic Surg 2018: In press

ORIGINAL SUBMISSION: The Prevalence and Distribution of Occlusive Lesions of the Cerebral Arteries in Patients Undergoing Coronary Artery Bypass Graft Surgery: Tomohiro Tsunekawa. Semin Thoracic Surg 2018: 413-420

ORIGINAL SUBMISSION: "Frozen Apex" Repair of a Dilated Cardiomyopathy. Masashi Komeda. Semin Thoracic Surg 2018: 406-411

Commentary: The Frozen Apex: A Useful Addition to the Surgeons Armamentarium? James Kirklin. Semin Thoracic Surg 2018: 412

	Asiatic p Events Total Ev		Wh	ite		Odds Ratio		Odd	s Ratio					
Study or Subgroup			Events	Total	Weight	IV, Random, 95%	CI	IV, Rand	lom, 95%	CI				
South Asian vs white														
Brister 2007	29	1163	55	5028	8.8%	2.31 [1.47, 3.64]			-	_				
Gasevic 2013	3	137	62	1507	3.0%	0.52 [0.16, 1.68]	-		+					
Goldsmith 1999	13	194	5	190	3.5%	2.66 [0.93, 7.61]			+		-			
Hadjinikolaou 2010	7	274	28	2623	4.8%	2.43 [1.05, 5.62]								
Kaila 2014	4	252	17	737	3.3%	0.68 [0.23, 2.05]			+					
Zindrou 2001	24	436	41	1458	8.0%	2.01 [1.20, 3.37]				-				
Total (95% CI)		2456		11543	31.3%	1.72 [1.12, 2.66]								
Total events	80		208											
Heterogeneity: Tau ² = 0.13; Chi ² = 9.49, df = 5 (P = .09); I ² = 47%						-	0.1 0	+	1 2		10			
Test for overall effect: Z	= 2.47 (F	^o = .01)					Sout	h Asian		white	J			

Unadjusted risk of mortality

Adjusted risk of mortality

				Odds Ratio		0	dds Ratio		
Study or Subgroup	log [Odds Ratio]	SE	Weight	IV, Random, 95% C		IV, Random, 95% CI			
South Asian vs white									
Gasevic 2013	-0.4463	0.5935	5.0%	0.64 [0.20, 2.05]					
Hadjinikolaou 2010	0.72	0.52	6.2%	2.05 [0.74, 5.69]			-		
Brister 2007	1.1314	0.4056	9.0%	3.10 [1.40, 6.86]					
Total (95% CI)			20.3%	1.73 [0.71, 4.18]					
Heterogeneity: $Tau^2 = 0$.	.36; Chi ² = 4.84, df =	= 2 (<i>P</i> = .0	9); I ² = 59	1%					
Test for overall effect: Z	= 1.21 (<i>P</i> = .23)				0.05	0.2	1	5	20
	· · · /				S	outh Asian		white	

FIGURE E1. Meta-analytic unadjusted and adjusted risk of operative mortality in South Asian compared with white patients. *IV*, inverse variance; *CI*, confidence interval; *SE*, standard error.

Stroke											
Study or Subgroup	Bla Events	ick Total	Wł Events	nite Total	Weight	Odds Ratio M-H, Random, 95% (CI	Odds Ratio M-H, Random, 95% Cl			
Rumsfeld 2002 Bridges 2000 Mehta 2015 Zacharias 2005 Anderson 2016 Cooper 2009 Efird 2015 Keeling 2016 Chowdhury 2016	80 566 255 7 22 52 60 67 5	2750 25850 14375 304 975 2033 2379 2810 389	675 9006 1536 79 176 150 124 133 14	29333 555939 136362 6073 14389 12841 11395 13569 3107	14.1% 18.0% 16.9% 4.0% 8.5% 11.7% 11.9% 12.3% 2.6%	$\begin{array}{c} 1.27 \ [1.01, 1.61] \\ 1.36 \ [1.25, 1.48] \\ 1.59 \ [1.39, 1.81] \\ 1.79 \ [0.82, 3.91] \\ 1.86 \ [1.19, 2.92] \\ 2.22 \ [1.61, 3.06] \\ 2.35 \ [1.72, 3.21] \\ 2.47 \ [1.83, 3.32] \\ 2.88 \ [1.03, 8.03] \end{array}$				• • • •	 -
Total (95% CI) 51865 783008 100.0% 1.78 [1.49, 2.13] Total events 1114 11893 Heterogeneity: Tau ² = 0.04; Chi ² = 34.79, df = 8 ($P < .0001$); $I2 = 77%$ 0.2 0.5 1 2 Test for overall effect: $Z = 6.37$ ($P < .00001$) Favours black Favours w											
	Wound infection										

Would Infection											
Black White Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H Pandom 95% Cl. M-H Pandom 95% Cl.											
Study or Subgroup	Events	Total	Events	Total	weight	м-п, капоот, 95%		-n, Random, 95% Ci			
Bridges 2000	202	25850	3558	555939		1.22 [1.06, 1.41]					
Efird 2015	24	2379	85	11395		1.36 [0.86, 2.14]					
Mehta 2015	71	14375	668	136362		1.01 [0.79, 1.29]		_ _			
Smith 2006	1	644	10	1932		0.30 [0.04, 2.34]	<u>←</u>				
Total (95% CI)		43248		705628		1.16 [0.98, 1.36]		•			
Total events	298		4321								
Heterogeneity: Tau ² =	hi ² = 3.8	9, df = 3	(P = .27)	•							
Test for overall effect: $Z = 1.72 (P = .09)$ 0.5 0.7 1 1.5 2											

Favours Black Favours White

Bleeding Black White Odds Ratio **Odds Ratio** Weight M-H, Random, 95% CI M-H, Random, 95% Cl Study or Subgroup Events Total Events Total Bridges 2000 650 25850 12731 555939 33.3% 1.10 [1.02, 1.19] 1.10 [1.02, 1.19] 1.20 [0.90, 1.59] 1.23 [1.09, 1.38] 1.35 [1.09, 1.68] 1.43 [0.64, 3.17] 3.01 [1.48, 6.11] Keeling 2016 62 2810 251 13569 13.7% 28.9% Mehta 2015 Rumsfeld 2002 316 14375 2454 136362 • 763 19 96 2750 29333 18.5% Smith 2006 Zacharias 2005 644 304 2.5% 3.1% 9 1932 9 6073 61 Total (95% CI) 1.24 [1.09, 1.41] 46733 743208 100.0% Total events 1142 16279 Heterogeneity: Tau² = 0.01; Chi² = 11.70, df = 5 (*P* = .04); l² = 57% Test for overall effect: Z = 3.24 (*P* = .001) 0.5 0.7 1.5 2 1 Favours Black Favours White

Renal Failure/Dialysis											
Black White Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl											
Zacharias 2005 O'Neal 2014 Bridges 2000 Chowdhury 2016 Rumsfeld 2002 Efird 2015 Keeling 2016 Smith 2006	14 28 1113 30 47 22 43 52	304 970 25850 389 2750 2379 2810 644	242 77 17067 146 293 60 115 79	6073 3460 555939 3107 29333 11395 13569 1932	3.9% 6.0% 50.2% 6.8% 10.9% 4.9% 8.8% 8.4%	1.16 [0.67, 2.02] 1.31 [0.84, 2.02] 1.42 [1.34, 1.51] 1.69 [1.13, 2.55] 1.72 [1.26, 2.35] 1.76 [1.08, 2.88] 1.82 [1.28, 2.59] 2.06 [1.43, 2.96]					
Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect	1349 = 0.01; C : Z = 7.5	36096 hi ² = 8.7 1 (<i>P</i> < .0	18079 8, df = 7 00001)	624808 (<i>P</i> = .27)	100.0% ; I ² = 20%	1.54 [1.38, 1.73]	0.5 0.7 Favours Black	1 1.5 2 Favours White			
Efird 2015 Keeling 2016 Smith 2006 Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect	22 43 52 1349 = 0.01; C : Z = 7.5	2379 2810 644 36096 $hi^2 = 8.7$ 1 (P < .0	115 79 18079 (8, df = 7 (00001)	11395 13569 1932 624808 (<i>P</i> = .27)	4.9% 8.8% 8.4% 100.0% ; $l^2 = 20\%$	1.76 [1.08, 2.88] 1.82 [1.28, 2.59] 2.06 [1.43, 2.96] 1.54 [1.38, 1.73]	0.5 0.7 Favours Black	• 1 1.5 2 Favours White			

Prolonged ventilation/Tracheostomy											
Study or Subgroup	Bla Events	ck Total	Wh Events	nite Total	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl				
O'Neal 2014 Mehta 2015 Zacharias 2005 Rumsfeld 2002 Bridges 2000 Keeling 2016	9 1585 24 231 2053 439	970 14375 304 2750 25850 2810	43 12933 394 1966 33634 1117	3460 136362 6073 29333 555939 13569	4.4% 22.7% 9.2% 19.9% 22.9% 20.9%	0.74 [0.36, 1.53] 1.18 [1.12, 1.25] 1.24 [0.80, 1.90] 1.28 [1.11, 1.47] 1.34 [1.28, 1.40] 2.06 [1.83, 2.32]		•			
Total (95% CI) Total events	4341	47059	50087	744736	100.0%	1.37 [1.15, 1.61]		•			
Test for overall effect: $Z = 3.64$ ($P = .0003$)						- 33 /6	0.5 0.7 Favours Black	1 1.5 2 Favours White			

FIGURE E2. Meta-analytic estimates of unadjusted effect of black vs white race on postoperative complications. *M-H*, Mantel-Haenszel; *CI*, confidence interval.

TABLE E1. Severity of coronary artery disease in studies included in the meta-analysis

	FE %						Triple-vessel disease %				Left main coronary artery disease %					
	EF						Tiple-vessel uisease, 70				Left main coronary artery disease, 70					
	expressed				South					South					South	
Study	as	White	Black	Asian	Asian	Hispanic	White	Black	Asian	Asian	Hispanic	White	Black	Asian	Asian	Hispanic
Anderson et al, ³¹ 2016																
Andrews et al, ³⁴ 2015																
Becker and Rahimi, ⁶ 2006																
Bridges et al, ⁵ 2000	Mean (SD)	51% (14)	48% (14)				70%	69%				20%	19%			
Brister et al, ²² 2007							76%			79%		22%			8%	
Chowdhury et al, ³³ 2017																
Cooper et al,28 2009	Mean	50%	49%									23%	20%			
Efird et al, ¹⁶ 2015							66%	68%				21%	21%			
Gasevic et al, ²⁰ 2013							28%		28%	27%		3%		5%	3%	
Goldsmith et al, ³⁷ 1999	Good EF	52%			56%		63%			66%						
Gray et al,25 1996							64%	68%				24%	22%			
Hadjinikolaou et al, ³⁶ 2010	$EF \geq 30\%$	93%			95%											
Kaila et al, ¹⁸ 2014	EF >35%	72%			68%							7%			6%	
Keeling et al, ³² 2017	Mean (SD)	52% (12)	50% (13)													
Kim et al, ²¹ 2008																
Konety et al, ²³ 2005																
Lucas et al,35 2006																
Maynard and Ritchie, ²⁴ 2001																
Mehta et al, ³⁰ 2016	Median	55%	53%				95%	94%				32%	29%			
O'Neal et al, ²⁹ 2014							67%	68%				26%	27%			
Pollock et al,17 2015	Mean (SD)	49% (14)	47% (16)			47% (14)						29%	28%			29%
Rangrass et al, ¹⁹ 2014																
Rumsfeld et al,4 2002	EF >35%	89%	87%			88%	72%	73%			76%					
Smith et al, ²⁷ 2006	EF >40%	78%	75%													
Trivedi et al, ²⁶ 2006																
Yeo et al, ³ 2007	EF >30%	92%	89%			89%	77%	77%			78%	24%	23%			23%
Zacharias et al, ² 2005	Mean (SD)	50% (11)	49% (12)				72%	73%				19%	18%			
Zindrou et al, ³⁸ 2001	EF >35%	88%			85%							1%			1%	

EF, Ejection fraction; *SD*, standard deviation.

TABLE E2. Methods and variables used in adjusting for hospital mortality

		Adjustment variables						
Study	Adjustment methods	Patient-level factors	Hospital-level factors					
Anderson et al, ³¹ 2016	Logistic regression analysis	Age, age-sex interaction, sex	All patient-refined DRG					
Becker and Rahimi, ⁶ 2006	Logistic regression analysis	Admission type, sex, insurance status, procedure characteristics, SES, smoking, year of procedure, cardiomyopathy, COPD, CHF, CLD, CRF, CVD, dysrhythmias, DM, HD, HTN, MI, obesity, previous CABG, PVD, RF, unstable angina, valve disease						
Brister et al, ²² 2007	Logistic regression analysis	Age, EF, HTN, and unstable angina						
Cooper et al, ²⁸ 2009	Logistic regression analysis	Age, anticoagulants, beta blockers, BMI, BSA, diuretics, EF, sex, height, IABP, immunosuppressive therapy, inotropes, nitrates, last creatinine level, resuscitation, smoking, status, weight, cardiogenic shock, COPD, CVA, CVD, DM, HD, HF, HLD, HTN, left main disease, MI, number of diseased vessels, PVD, RF						
Gasevic et al, ²⁰ 2013	Logistic regression analysis	Age, distance from nearest hospital, sex, SES, time from MI to revascularization, arrhythmia, ARF, cancer, cardiogenic shock, CHF, CRF, CVD, DM, severity of CAD						
Hadjinikolaou et al, ³⁶ 2010	Logistic regression analysis	BMI, logistic EuroSCORE, DM, previous PCI						
Keeling et al, ³² 2017	Logistic regression analysis	Age, creatinine level, EF, sex, height, IABP, immunosuppressive therapy, resuscitation, single/ multiple graft, status, weight, angina, arrhythmia, cardiogenic shock, COPD, CVD, DM, endocarditis, HF, HTN, MI, PAD, previous CV intervention, RF, valve disease						
Konety et al, ²³ 2005	Logistic regression analysis	Admission priority, age, sex, SES, year of surgery, DM, CAD, CHF, COPD, CRF, CVD, HTN, PVD, previous CABG or PCI						
Lucas et al, ³⁵ 2006	Logistic regression analysis	Age, sex, SES, urgency of admission, year of operation, Charlson comorbidity score	Hospital volume, clustering by hospital					
Maynard and Ritchie, ²⁴ 2001	Logistic regression analysis	Age, IMA grafting, Deyo score, COPD, DM, HTN, MI						
Mehta et al, ³⁰ 2016	Logistic regression analysis	Patient characteristics, surgeon, SES	Hospital identity					
Rangrass et al, ¹⁹ 2014	Logistic regression analysis	Age, emergency admission, sex, SES, Elixhauser comorbidity index	Hospital quality					
Rumsfeld et al, ⁴ 2002	Logistic regression analysis	Age, BSA, EF, sex, IMA graft use, number of anastomoses, preoperative ECG, preoperative diuretics and IV nitroglycerin, preoperative IABP, priority of surgery, serum creatinine, smoking, CAD, COPD, CVD, DM, HTN, MI, NYHA class, preoperative mortality risk, previous heart surgery, previous PCI, PVD, 3-vessel CAD						
Trivedi et al, ²⁶ 2006	Logistic regression analysis	Age, sex, urgency of admission, COPD, CHF, DM, Elixhauser comorbidity index, PVD, HTN, MI	Hospital volume and clustering by hospital					
Zacharias et al, ² 2005	Logistic regression analysis	Age, beta blockers, BSA, EF, sex, insurance status, preoperative IABP, priority of procedure, procedure characteristics, SES, smoking, arrhythmia, CHF, CVA, CVD, COPD, DM, double vessel disease, HLD, HTN, left main disease, MI, NYHA class, obesity, PVD, RF, triple- vessel disease, unstable angina.						

DRG, Diagnosis-Related Group; SES, socioeconomic status; COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure; CLD, chronic liver disease; CRF, chronic renal failure; CVD, cerebrovascular disease; DM, diabetes mellitus; HD, hemodialysis; HTN, hypertension; MI, myocardial infarction; CABG, coronary artery bypass graft; PVD, peripheral vascular disease; RF, renal failure; EF, ejection fraction; BMI, body mass index; BSA, body surface area; IABP, intra-aortic balloon pump; CVA, cerebrovascular accident; HF, heart failure, HLD, hyperlipidemia; ARF, acute renal failure; CAD, coronary artery disease; PAD, peripheral arterial disease; CV, cardiovascular; PCI, percutaneous coronary intervention; IMA, internal mammary artery; ECG, electrocardiogram; IV, intravenous; NYHA, New York Heart Association.