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Abstract: Objective: Evaluation of the in vivo bone response of two innovative titanium surfaces
ytterbium laser active fiber obtained (L1-L2) compared to a sandblasted and acid etched (SBAE)
during early phase of osseointegration. Material and Methods: Three implant groups with the
same macroscopic features were obtained (L1-L2-SBAE) to promote specific surface characteristics.
Scanning electron microscopy, profilometric evaluation, X-ray spectrometry, and diffraction analysis
were performed. For each group, six implants were placed in the tibiae of three Peli Buey sheep,
and histologic, histomorphometric analysis, bone to implant contact (BIC), and the Dynamic Os-
seointegration index (DOI) were performed. Results: During the early phases of osseointegration,
the histological and histomorphometric results showed significant differences between L1-L2-SBAE
implants. At 15 and 30 days, histological analysis detected a newly bone formation around all speci-
mens with an higher vital bone in L2 compared to L1 and SBAE both in cortical and in poor-quality
marrow bone. At same time, histomorphometric analysis showed significantly higher BIC values in
L2 (42.1 ± 2.6 and 82.4 ± 2.2) compared to L1 (5.2 ± 3.1 and 56.2 ± 1.3) and SBAE (23.3 ± 3.9 and
77.3 ± 0.4). DOI medium value showed a higher rate in L2 (2.83) compared to SBAE (2.60) and L1
(1.91). Conclusions: With the limitations of this pilot study, it is possible to assess that the titanium
surface characteristics, and not the technologies used to obtain the modification, played a crucial
role during the osseointegration process. Histological, histomorphometric, BIC, and DOI evaluation
showed a significantly higher rate in L2 specimens compared to others, confirming that the implant
surface could increase the bone response in cortical or marrow poor quality bone during the initial
phases of osseointegration.

Keywords: laser treatment; dental implants; sandblasted and acid etching implant; sheep animal
model; histological and histomorphometrical analysis; bone to implant contact (BIC); dynamic
osseointegration index

1. Introduction

In modern dentistry, osseointegrated implants represent the standard treatment to par-
tially and completely edentulous patients’ prosthetic rehabilitations [1]. In 1983, Brånemark
defined osseointegration as a biological process with a structural and functional direct
contact between the vital bone and implant fixture [2,3]. Primary and secondary stability of
the fixture promoted the osseointegration and were related with several factors including
bone density, implant shape, macrodesign, and surface characteristics [4,5]. During healing
time, the bone formation around the implant is produced by different biological events,
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with molecular and cellular activations, started after implant placement [6–8]. Several
studies showed implant surface as a crucial factor involved in the implant osseointegration
through the clot adhesion, cell migration, increasing the matrix deposition, and to pro-
mote the bone to implant contact (BIC) [9–12]. Traditional or innovative titanium surface
treatments, as machined, chemical, electrochemical, or laser, showed relevant osseoin-
tegration process differences [5,13–19] promoting cell alignments and migration [20,21].
Using different energy sources, powers, and times, the laser technology could be able to
design macro, micro, and nano textured surfaces characterized by peaks, grooves, and pits
that are constantly reproducible [18,20,22]. Important novel laser treatments produced a
large palette of colors with interesting optical and physical features for aesthetic dental
implant solution [20,23]. Currently, a rehabilitation time reduction, a predictable long-term
success, and better aesthetic results are required both by the patients and the clinicians [24].
Osseointegration is not a static biological process, but dynamic, that evolves and changes
throughout life [20,25]. To better understand this process, in addition with the bone to
implant contact percentage (BIC), the authors proposed the Dynamic Osseointegration
Index (DOI).

In the present study, the different behavior between two different innovative titanium
surfaces that were laser modified, compared with a sandblasted and acid etched implant
used as a control, was evaluated with histologic and histomorphometric analysis, BIC,
and Dynamic Osseointegration Index.

2. Material and Methods
2.1. Surface Physical Analysis

Same Titanium Grade 5 implants (Ti6Al4V) of 3.3 mm in diameter and 8.5 mm in height
were used to compare bone responses and prevent errors or bias. Type and dimensions
of the implant fixture were selected according to sheep tibia surgical site dimension.
The implants’ physical characteristics were analyzed by Scanning Electron Microscopy
(SEM) (XL30CP—Philips, Eindhoven, The Netherlands). The surface characteristics were
evaluated with contact portable profilometer (Taylor Hobson, Subsonic 3+, Leicester, UK)
and the absolute values of the profile heights over the evaluation length (Ra), the root mean
square average (Rq), the vertical distance from the highest peak to the lowest valley (Rz also
known as Rtm values), the maximum peak height of the profile (Ry), and the mean spacing
between peaks (Sm also known as RSm) were performed according to ISO 4287:1997.
Linear measurements of 8 mm (points density of 500/mm) along the external fixture profile
were evaluated in all samples in triplicate. For the profilometer, manufacture specification
reports a cut-off of 0.25, 0.80, and 0.10 mm, 2RC and phase correct Gaussian filters, and a
transmission of the selected cut-off to 75%. A normal probability test (t-test) was used
to evaluate the statistical significance of the normal distribution of the surface roughness
parameter values. The average of 10 analyzed samples were recorded in triplicate and
p ≤ 0.005 difference between the samples was considered statistically significant.

2.2. Surface Chemical Analysis

At 100× magnification for 1 min by 20 kV energy dispersive spectroscopy (EDS—Oxford,
Inca Energy 250, High Wycombe, UK), the chemical surface analysis was assessed. Moreover,
with X-ray diffraction analysis (XRD—Philips PW 172, 9 AE Eindhoven, Netherlands) using
CuKα radiation and operating at 30 kV/40 mA with a 1st divergence slit with a step size
of 0.02◦ 2θ in the 2θ range of 5–90◦, implants were analyzed to verify the formation of
harmful compounds. Crystalline phases were evaluate using the Joint Committee of Powder
Diffraction Standard data base (JPDS) of the International Centre for Diffraction Chemical
Data [26].

2.3. Specimens Preparation

The Ethics Committee for Animal Research of the Veterinary School of the University
of La Havana (Havana, Cuba) approved the study protocol, which followed guidelines
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established by the Comitè de Etica de la Investigation de la Facultà de Estomatologia de
l’Universidad de Ciencias Medicas de La Habana—Cuba with protocol 05/2018 titled: “A new
laser treated implant surface: experimental pilot study in the tibia of the sheep”. Eighteen
titanium implants (Premium-Sweden & Martina, Due Carrare—Padova, Italy) were used
and selected in 3 groups. In a clean room, implants were ablated with ytterbium laser active
fiber in two completely different conditions to obtain Laser 1 (L1) and Laser 2 (L2) surfaces.
After treatments, all samples were ultrasonically cleaned, with ethanol and demineralized
water, to remove contaminants, dried in an oven, and sterilized. Group sand blasted and acid
etched (SBAE) dental implants were provided by Sweden & Martina (Due Carraie—Padova,
Italy) and obtained with sand blasted and acid etched according to ZirTi specific registered
procedure for Premium Implants (Sweden & Martina, Due Carrare—Padova, Italy).

2.4. In Vivo Surgery

The surgery was performed in accordance with the Code of Good Practice of the
Laboratory of the CETEX (Centro de Toxicologıa Experimental, La Habana, Cuba) and
the Code for the use of laboratory animals of the CENPALAB (Centro Nacional para la
Produccion de Animales de Laboratorio, La Habana, Cuba) recommendations. All proce-
dures were performed under anesthesia and veterinaries’ control to minimize the animals
suffering. Three female “Peli-Buey” sheep, in good general health, mean weight 35 kg,
and 3 years average age, were enrolled. Pregnancy or systemic disease, active infection or
severe inflammation were indicated as exclusion criteria. At each surgical session, the ani-
mals were pre-anesthetized with atropine 0.02 mg/kg i.v. (Mayne Pharma, Napoli, Italy)
and anesthetized i.m. with 0.04 mg/kg metedomidine (Medetor®®—Virbac, Glattbrugg,
Switzerland) added to 5 mg/kg of ketamine-50 (Liorad, Havana, Cuba) after premedication.
The anesthesia was maintained with 2–3% Isoflurane (Vet®®—Merial, Tolosa, France) with
O2 at 95%. Local anesthesia was also provide with Mepivacaine (Mayne Pharma, Napoli,
Italy). The blood pressure as well as the O2 perfusion was constantly monitored. The legs
of the sheep were shaved, disinfected with chlorhexidine di-gluconate, and incised in the
facial aspect. The skin as well as the muscular fascia will be elevated, and the tibia bone
plate denuded. Three surgical sites were obtained in each tibia using drill preparation
with water-cooling, through the cortical bone layer and into the marrow compartment,
up to a depth of 8.5 mm from the outer contour of the tibia. In each site, one implant
L1, L2, and SBAE, with cover screws, was placed at the top of the cortical bony crest.
To minimize potential errors and distinguish each implant typology, the bone bordering
was differently marked with a bone screw for the future identification. Wounds were
sutured with reabsorbable suture (Figure 1).

In order to obtain two periods of healing, all the animals were operated on in dif-
ferent surgical periods of 15 and 30 days. During the post-operative period Tramadol®®

(Altadol; Formevet, Milan, Italy) 2 mg/kg was administered twice a day for 5 days, and in
the healing period, the animals were kept in sheepfolds with free access to water and
food. Daily visits were performed to evaluate the clinical signs of healing and surgical
complications. At the end of the experimental period, the animals were first anesthetized
with 0.04 mg/kg metedomidine (Medetor®®—Virbac, Glattbrugg, Switzerland) added to
5 mg/kg of ketamine-50 (Liorad, Havana, Cuba), and then euthanized with 25 mEq of
potassium chloride intravenously (Aica, La Habana, Cuba).
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Figure 1. In vivo surgical procedures of the L1, L2, and sandblasted and acid etched (SBAE) implants insertion in sheep
tibiae. (a) Surgical sites preparation. (b) Implant fixture insertion at 8.5 mm depth from the outer contour of the tibia.
(c) Simultaneously, implants insertion to the top of the cortical bony crest.

2.5. Histological Preparation

The tibia specimens were retrieved, trimmed, and immersed in 4% formaldehyde solu-
tion. The histological samples were performed in the laboratory of Histology at the Faculty
of Odontology of the University of La Habana, Cuba. Block sections, each containing one
implant, were dehydrated in a series of graded ethanol, and subsequently embedded in
resin—Technovit 7200 (VLC Kulzer, Friedrichsdorf, Germany). Concerning the fixtures
position in the tibiae, a precision transversal slice cuts (150 ± 200 µm) were carried out (Ex-
akt1, Apparatebau, Norderstedt, Germany) along the centerline of the implants. The slices,
very fine and extra fine grinded (silicon carbide P280, P320, P400, P600) (ISO/FEPA Grit
designation), polished (diamonds suspension polycrystalline 9–3–1 µm), reduced to a
thickness of about 60 µm (Exakt1, Apparatebau, Norderstedt, Germany-ATM QNESS,
GMBH, 57636 Mammelzen, Germany), and stained with Stevenel’s blue and alizarin red.

2.6. Histologic and Histomorphometric Analysis

The histological and histomorphometrical analysis were performed after 15 and
30 days using a light microscope (Eclipse Ci—Nikon Corporation, Tokyo, Japan), digital
video camera equipped (Digital Sight DS-2Mv; Nikon Corporation) connected to NIS-
Elements D4.10 software (NIS.ai, Laboratory Imaging; Nikon Corporation, Melville, NY,
USA). A high-resolution video camera was interfaced with a monitor and PC (Intel Pen-
tium III 1200 MMX, Intel, Santa Clara, CA, USA). The image analysis was performed by
digitizing pad (Matrix Vision GmbH, Oppenweiler, Germany) and a histomorphometry
software (Image-Pro Plus 4.5, Media Cybernetics Inc., Immagini & Computer Snc, Milano,
Italy). BIC was evaluated as the ratio between the linear surface of the implants firmly in
contact with the mineralized bone matrix compared with the total implant surface. In par-
ticular, at 100× magnification, the samples were compared with specific landmarks to
identified the shoulder of the implant (IS), the most coronal bone-to-implant contact point
(B), the intersection between cortical and marrow bone compartments (C/M), the most
apical bone-to-implant contact point (X), and the apex of the implant (A) and parallel
linear distance to the implant long axis were detected (Figure 2). Moreover, on both sides
of the implant, the percentages of new and old bone, yellow bone marrow, and residual
tissue (clot and bone debris/particles), in contact with the implant surface, were performed
between B and C/M, C/M and A, and between B and A (Figure 2). Using Adobe Photo-
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shop software (Adobe Photoshop & Premier Elements 2020, Adobe, San Jose, CA, USA),
the different hues of the bone, representative of old or new bone stages, were detected
according to International Commission on Illumination (CIE) in the color space L*, a*, b*
(CIELAB). D50 2◦ were chosen as illuminant and reference angle for input values.

Figure 2. At 100× magnification, landmarks scheme adopted for the histological measurements:
Shoulder of the implant (IS), the most coronal bone-to-implant contact point (B), the intersection
between cortical and marrow bone compartments (C/M), the most apical bone-to-implant contact
point (X), and the apex of the implant (A).

2.7. Dynamic Osseointegration Index

The quality and value of osseointegration are crucial factors of a dental implant
success. Nowadays, starting from histomorphometric analysis, bone to implant contact
was adopted to measure the osseointegration rates and bone maturation, but only at the
end of the healing time. It should be necessary to achieve values during all healing time,
especially during the early phases of osseointegration. Therefore, the authors proposed,
in addition, a dynamic osseointegration index (DOI), using the BIC data, to obtain more
complementary information of bone behavior and different contact osseointegration values
during all healing times. The DOI in L1, L2, and SBAE specimens was evaluated around
the implant fixture at 15 and 30 days to understand if the surfaces are able to influence the
bone behavior during the early phases of osseointegration. The DOI was expressed as ratio
between the BIC percentage and the numbers of days. In particular, the medium Dynamic
Osseointegration Index of the three different implant groups was the mean value of BIC
percentage divided for 30 days, while DOI1 was the BIC percentage at 15 days divided by
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first the fifteen days, and the DOI2 was the BIC value at 30 days divided by the second
fifteen days.

2.8. Histomorphometric Statistical Analysis

Mean values and standard deviations were calculated for each outcome variable. At 15
and 30 days, differences between L1, L2, and SBAE implants were evaluated with Wilcoxon
test included in the SPSS Statistics 19 (IBM Inc., Chicago, IL, USA). The level of significance
was set at a p ≤ 0.05.

3. Results

Several micro and macroscopic topography surface differences were detected in all
3 groups analyzed (Figure 3). At low magnification (50×), SEM evaluation and SBAE sam-
ples showed a fine surface structure with regular roughness. At high magnification (400×),
irregular micro-roughness with fine sharp crests alternated to different deep valleys with-
out a reproducible texture in various areas of SBAE surface were performed (Figure 3a1).
At higher magnification (800×), it is possible to observe a very low diffuse porosity within
15 and 25 µm at the same depth (Figure 3a2,a3). At low magnification, the L1 sample
showed a specific fine diagonal bands micro topography (Figure 3b1). At higher mag-
nification (400×–800×), it is possible to observe the presence of two roughened bands
(respectively, 200 and 100 µm width spaced of 20 µm) that alternate by a smooth band of
50 µm width (Figure 3b2,b3). The porosity within 15 and 50 µm is located in the ablated
areas. At low magnification (50×), L2 samples showed a marked macroscopic porosity
consisting of only diagonal parallel highly grooved bands (Figure 3c1). At 400× magnifica-
tion, an uniform series of micro-structures formed by narrow ridge structures and diffuse
different valleys with various deep depressions were observed (Figure 3c2). At higher mag-
nification (800×), L2 showed a constant nano-crests alternation of nano-projection structure
villi-like interspaced between diffuse valleys with different nano-depth, obtained through
a complex laser titanium treatment (Figure 3c3). Porosity is homogenously distribute and
ranged within 5 and 50 µm.

The profilometric evaluation of the 3 groups showed Ra, Rq, Rz, Ry, and Sm dif-
ferent surface roughness values (Table 1). The SBAE average linear surface roughness
(Ra) detected 1.51 µm (±0.18) value, very different from L1 (6.58 µm ± 0.72) and L2
samples (8.51 µm ± 0.84). The root-mean-square (Rq) value provided lower value in L1
(7.87 µm ± 0.91) than L2 (9.42 µm ± 0.94) and SBAE (22.87 µm ± 1.30). The average dis-
tance between the highest peak and lowest valley (Rz), higher in L2 (45.35 µm ± 9.35) than
L1 (41.16 ± 8.25 µm) and SBAE (17.90 ± 1.37 µm), signaling a more complex and irregular
surface texture. The laser treatment surface maximum height of the profile (Ry) showed
closed value 40.73 µm (±9.92) in L1 and 48.60 µm (±9.92) in L2, respectively, compared
with the lower value 02.62 µm (±0.12) in SBAE. The mean spacing between peaks (Sm)
found similar values within L1 (84.70 µm ± 7.92) and SBAE (85.00 µm ± 8.63) compared
to the higher value of L2 (96.33 µm ± 10.69). The Ra of L1 vs. L2 (0.0013) and the Rq of
L1 vs. SBAE (0.0001) and of L2 vs. SBAE (0.0001) showed surface textures statistically
significant differences (p ≤ 0.005) (Figure 4). The surface textures showed average higher
value differences between L1–L2–SBAE. All sample were evaluated in triplicate.

Table 1. The Ra, Rq, Rz, Ry, and Sm profilometric values of L1, L2, and SBAE titanium surfaces are
reported in micron.

Sample Ra Rq Rz Ry Sm

L1 06.58 (±0.72) 07.87 (±0.91) 41.16 (±8.25) 40.73(±9.92) 84.70 (±7.92)
L2 08.51 (±0.84) 09.42 (±0.94) 45.35 (±9.35) 48.60 (±9.92) 96.33 (±10.69)

SBAE 01.51 (±0.18) 22.87 (±1.30) 17.90 (±1.37) 02.62 (±0.12) 85.00 (±8.63)



Materials 2021, 14, 1830 7 of 17

Figure 3. Scanning Electron Microscope (SEM) analysis of titanium surfaces at 50×, 400×, and 800×:
SBAE (a1–a2–a3), L1 (b1–b2–b3), and L2 (c1–c2–c3) (black marked scale bars reported are equal for
each set of magnifications).

Figure 4. t-test statistically significance relationship between the profilometric data recorded: p-
values ≤ 0.005 was considered positive. Ra of L1 vs. L2 (0.0013), and Rq of L1 vs. SBAE (0.0001) and
L1 vs. SBAE (0.0001), showed surface textures statistically significant differences (*** p ≤ 0.005).

3.1. Surface Chemical Analysis

On all the titanium surfaces analyzed, Energy Dispersive X-ray (EDS) and X-ray
Power Diffraction (XRD) analyses showed the presence of biocompatible elements (Oxygen,
Titanium, Aluminum, and Vanadium and compounds) (Figure 5a–d).
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3.2. Histological Analysis

After two weeks, in all samples around implant surface, few new bone (CM-X) was
observed both in cortical, then marrow bone compartments with different color intensity.
At 100× magnification, low red color intensity was detected around the implant fixture
compared to the higher color intensity of the old cortical bone. All fixtures showed peri-
implant bone reabsorption coupled with bone formation processes and a large area of
bone marrow. In all samples, IS/B area was present with a higher space in L1 and SBAE
compared to L2 (Figure 6).

In L1 and SBAE samples, the cortical bone area showed lower red intensity around
the crestal fixture (Figure 6c) (L* = +42.75, a* = +19.37, b* = +26.27), while in L2 a higher
red color intensity was detected (L* = +29.12, a* = +23.14, b* = +19.26), suggesting a clear
difference of the bone remodeling process between the 3 different surfaces (Figure 6b).
The L1 sample showed CM-X mean value 0.94 mm (±0.19), L2 4.81 mm (±0.28), and SBAE
2.63 mm (±0.13) (Figure 6a). After 30 days, in all samples a marrow space reduction and a
high contact of the bone with the implant was detected (Figure 7).

In the L1 fixture, low red color intensity of the bone around the crestalarea (L* = +47.70,
a* = +20.76, b* = +26.48) and little IS/B distance was detected. Homogeneous bone layer
completely covered the implant body. In L1, the apical areas showed spot bone deposition,
and different areas were without bone to implant contact (Figure 7a), while L2 and SBAE
samples were completely covered with a thick layer of new bone (Figure 7b,c). A higher red
color intensity around the crestal area in L2 was detected compared to the SBAE. However,
in L2 it was possible to observe little spot areas of peri-implant new bone deposition with
low red color intensity (L* = +42.54, a* = +17.36, b* = +24.53) (Figure 7b). The body of L2 and
SBAE fixture was totally covered by the bone with a deep red color intensity. An intimate
contact to the implant body was observed in L2 sample (Figure 7b). In SBAE samples,
the bone in contact to the implant body showed a lower red color intensity (Figure 7c).
At 200× magnification, clear bone difference behavior between the three surfaces was
detected (Figure 8).

Figure 6. After 15 days, histological analysis of SBAE (a), L1 (b), and L2 (c) of the osseointegration healing process at 100×
magnification.
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Figure 7. After 30 days, histological analysis of SBAE (a), L1 (b), and L2 (c) of the osseointegration healing process (100×
magnification).

Figure 8. After 15 days histological analysis of SBAE (a), L1 (b), and L2 (c) of the osseointegration healing process at 200×
magnification.

In L1, the bone apposition was not continuous, and several areas of the implant surface
showed no bone contact. In the deeper zone between implant threads, the bone contact
was present only in a few spots (Figure 8a). In the L2 and SBAE, the bone apposition was
more continuous, showing the bone flowing above the implant surfaces with small but
significant differences (Figure 8b,c). In L2 sample, a homogeneous bone layer completely
covered the implant surface in deep connection. The bone showed no color difference
between the contact bone to the mature peri-implant lamellar bone, except in some lighter
red spot areas (Figure 8b). In the SBAE sample, the bone closest to the implant showed
several immature bone areas connected to the mature peri-implant lamellar bone and some
areas totally without bone connection to the implant surface (Figure 8c).

3.3. Histomorphometric Analysis

The bone to implant contact around the implant showed a careful difference between
the three groups analyzed (Table 2).
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Table 2. BIC% values recorded on the L1, L2, and SBAE titanium implants after 15 and 30 days.

Samples vs. Time 15 Days 30 Days

L1 5.2 ± 3.1 56.2 ± 1.3
L2 42.1 ± 2.6 82.4 ± 2.2

SBAE 23.3 ± 3.9 77.3 ± 0.4

After 15 days, the BIC value was low with 23 (±3.8) mean rate. The L1 sample
showed a mean BIC value of 5.2 (±3.1), L2 value of 42.1 (±2.6), and SBAE value of 23.3
(±3.9). After 30 days, a great bone improvement around the implant fixture was detected,
but significant differences between the three groups. In L1, the mean BIC value was 56.2
(±1.3), in L2 was 82.4 (±2.2), and SBAE was 77.3 (±0.4). The Wilcoxon test statistical
analysis, showed a statistically significant difference of L2 BIC percentage compared to
SBAE or L1 (p < 0.05) in both periods analyzed (15 or 30 days) (Figure 9). The Dynamic
Osseointegration Index medium value showed the higher result in L2 samples (2.83),
high in SBAE (2.60), while in L1 the value was lower (1.91). After 15 days, DOI1 in L2
samples showed higher value (2.81) compared to SBAE (1.5) and L1 (0.38). After 30 days,
DOI2 in SBAE samples was higher (3.6) compared with L1 (3.4), and L2 (2.83) samples
(Figure 9).

Figure 9. Bone to Implant Contact of L1, L2, and SBAE surfaces histomorphometric analysis. At 15 and 30 days, the L2 sam-
ples showed a statistically significantly high BIC percentage compared to SBAE and L1 (p < 0.05). Dynamic Osseointegration
Index: Medium value after 30 days. The higher value is obtained for L2 compared to L1 and SBAE.

4. Discussion

Dental implantology is a standard procedure for edentulism rehabilitation with high
predictability rates [27–30]. Several studies have been carried out to demonstrate the
osseointegration and its key factors [31–34]. However, in several studies, there are dif-
ferent bias and errors that do not allow us to understand the titanium surface role in
osseointegration process because often only in vitro experimental studies are performed
with oncological cells [9,35] able to grow on all surfaces, but above all these model are
unable to reproduce the proper biological osseointegration process. Furthermore, in several
studies, the new surfaces are compared with machined surfaces as a control [14,36,37] and
again, quantitative morphological and non-qualitative biological analyzes are performed
to determine if a surface influences the osseointegration [38,39].
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Finally, several in vitro studies were performed without in vivo human or animal
research on mesenchymal cells or osteoblasts [40–42].

The present study would understand if and how the implant surface plays a crucial
role in the osseointegration, if the technology used to obtain the surface modification is
able to influence the bone formation around the implant, and if the osseointegration is a
constant biological process.

Currently, there is no agreement if the implant surface plays a crucial role during os-
seointegration and how it performs. Indeed, in 2008 and 2012 in animal model and in vitro
study, respectively, Yeo et al. [43] and Jimbo at al. [44] showed how the design factor and
the surface characteristics seem to not play a crucial role in the early bone response. In 2012,
Choi at al. [45] in rabbit model and in 2013 Larsson et al. [46] in different surface-modified
titanium implants with different characteristics detected no significant difference in the
bone response two weeks after implant insertion. Instead, in 2016, Trisi et al. [14] affirmed
that the uniform roughness of a laser treated implant surface showed significantly higher
BIC percentage compared to machined implant surfaces in the sheep animal model. In 2009,
Lang et al. [47] in an experimental study, and Wennerberg in a systematic review [11],
affirmed that the surface properties seem to determine the osseointegration process. In 2010,
Teté et al. in vitro showed how a novel anodized nano-titanium implant surface, compared
with sandblasted and machined, influenced human osteoblasts behavior and growth [6].
In 2019, Romero-Ruiz et al. in minipig showed after 4–8 weeks a high osteoconductive
activity and mature lamellar bone tissue production in SLA®® and SLActive®® compared
to ContacTi®® surfaces [48]. Szmukler-Moncler et al. in 2004 affirmed how 10–20 surface
micron/macro-roughness were able to promote bone tissues growth inducing stable anchor-
age, while micro-roughness around 1–2 micron favors cell adhesion and proliferation on
titanium surfaces [49]. In 2000, Ricci et al. [25], and in 2008, Weiner et al. [18], showed a
closer bone and soft tissue adaptation induced by laser micro-textured surfaces in BioLok
Laser-Lok®® implant system. In previous in vitro research carried out and published in
2020, the authors showed the active role of the implant surface during the initial phases of
bone matrix deposition and growth onto different surfaces compared with the sandblasted
and acid-etched (SBAE) as a gold standard [20]. In the present in vivo study, to reduce
the odds and to reproduce the natural bone healing conditions, the authors placed dental
implants with the same height and diameter in sheep tibia. Two different ytterbium laser
surfaces were textured with different complex procedures to obtain two different innovative
tailor-made titanium implants compared with a Zirti sandblasted and acid etching surface
used as control.

4.1. Histological Analysis

After 15 days, the histological analysis showed a clear difference of osseointegration
process around the three different implants with a higher red color intensity and high
CM-X mean value in L2 implant compared with L1 and SBAE. After 30 days, a high bone
contact to the implant fixture was detected in all samples. However, at high magnification,
L2 and SBAE samples were completely covered with a thick layer of new bone, while in L1,
the apical areas showed only spot bone deposition area, and several sites showed no bone
to implant contact.

4.2. Histomorphometric Analysis

The histomorphometric analysis verified the histological data at 15 and 30 days with
significantly higher BIC value in L2 sample (42.1 ± 2.6 and 82.4 ± 2.2) compared with
L1 and SBAE. The L1 BIC results showed no significant differences with Ivanoff [50] and
Trisi [14] studies confirming lower osseointegration values compared to L2 and SBAE
samples. Data obtained in animal model confirmed the surface active role during early
phases of the osseointegration. The higher bone differences observed in L2 implants
compared to L1 and SBAE showed how the micro and nano-textures play a crucial role
during healing time with an improvement of bone formation related to the high value of the
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roughness nano-scale and the complexity of the titanium structure. The physical titanium
surface complex texturing like to the dehydrate bone structure, seem to promote the bone
adhesion and growth around the implants. Additionally, the results showed how the alone
surface production technology is not able to influence the bone formation and the quality
of the osseointegration. Indeed considering the two laser implants, during healing time,
higher bone improvement and bone matrix deposition was observed in L2 compared to L1.
Analyzing deeply the different results between L2 and SBAE implants, the surface texture
morphology, and not the manufacturing technology process, seems to be able to influence
the osseointegration, promoting in less time clot adhesion, cells migration, osteoblasts
proliferation, and bone matrix deposition. Regarding the third question, the DOI index
proposed by the authors in addition to the BIC percentage, confirmed the dynamic model of
the osseointegration biological process. The DOI data highlights the different bone behavior
around dental implants. The different growth rate showed higher average values in L2
(2.81) compared to SBAE (2.6) and L1 (1.8). After 15 days, L2 implants showed high DOI1
value (2.8) and abundant mature bone demonstrating a great surface affinity, compared
to SBAE (1.5) and L1 (0.3). Onto these two surfaces, DOI seems to show a lower adhesion
and proliferation capability of the bone around the implants. After further 15 days, the L1
(3.4) and SBAE (3.6) DOI2 showed increasing values, probably related to slow bone tissue
recovery processes, compared to L2 implants (2.83) where the index remains steady stable,
probably related to a bone matrix maturation. Furthermore, the statistical differences
between L1, L2, and SBAE surfaces in Ra and Rq, in relation to the BIC and the DOI value
reported, provide an interesting hypothesis that recognizes in the profile depth value of
the titanium surface, the possible crucial factor able to positively influence the early phases
of osseointegration process.

These promising preliminary data confirmed the different bone tissue behavior around
dental implants and how the surface characteristics play a crucial role during early osseoin-
tegration phases. Moreover, the higher BIC and DOI1 values in the L2 implant are clinically
relevant, in reducing the healing time and increasing the secondary stability allowing early
or immediate implants loading rehabilitation.

5. Conclusions

Further medium-term studies are in progress, to confirm the results obtained in the
present pilot study on a larger sample size for a more reliable statistical comparison. Nev-
ertheless, with the limitations of this preliminary study, it is possible to assess that laser
micro and nano-textured implant surfaces could guarantee high levels of osseointegration.
However, the alone laser treatment, seems not to be able to obtain better osseointegration
compared to gold standard implant surfaces. Therefore, the surface characteristics obtained
with innovative ytterbium laser complex treatment, promoted a higher level of osseointe-
gration with further developments in dentistry and maxillofacial surgical rehabilitations.
Indeed, specific, reproducible, and complex texture laser characteristics, promoted high
BIC and DOI values in L2 compared to L1 and SBAE implants. The adoption of the DOI
index seems to be promising, in addition with the BIC index to evaluate the dynamic bone
response to the implants surface during different phases of osseointegration.
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