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A B S T R A C T

A novel class of Fibonacci-based high performance tunable hierarchical waveguides is here proposed and
special focus is devoted to the design of adaptive-passive control systems for the Bloch wave propagation.
By exploiting the features of periodic approximants, the metamaterial is conceived by the proper repetition of
an elementary cell along a fixed direction. This elementary cell is made up of two building blocks repeated
according to the Fibonacci sequence, to form a quasi-periodic finite microstructured system The former
building block is made of a homogeneous elastic material, while the latter is a microstructured two-phase
laminate. One of these phases is piezoelectric shunted by a suitably conceived electrical circuit, such that the
constitutive properties of the piezoelectric phase are tuned by adjusting its equivalent impedance/admittance.
Moreover, the overall constitutive properties of the microstructured layer are determined, exploiting the scale
separation, via an asymptotic homogenization scheme. Then, it is possible to determine the frequency band
structure of the tunable waveguide by exploiting the transfer matrix approach. With the aim of providing broad
design directions, attention is paid to characterizing the dispersion waves properties of the tunable Fibonacci-
like superlattices described by several generations of the Fibonacci sequence and for different values of the
orientation angle of the two-phase laminate.
1. Introduction

Recent advances in the field of metamaterials, both concerning
theoretical studies and technological solutions, are paving the way
for appealing applications including waveguiding, focusing, band gaps
control, collimation and wave polarization [1–20]. In this context
acoustic metamaterials are in general designed from phononic crystals,
enriched by local resonators, giving rise to special sub-wavelength
properties. Due to the high flexibility in tailoring their microscopical
architecture, it is possible to obtain extreme macroscopic properties,
well beyond those of the corresponding base materials [21–34]. In
particular, remarkable effort has been devoted to the optimal design
of metamaterials, exploiting parametric and topological optimization
techniques [35–43]. The challenging objective of wave propagation
control can also be achieved through avant-garde techniques involving
the use of active phases that exploit multi-field couplings. The key
point of these approaches is the intriguing possibility of designing novel
metamaterials with tunable constitutive properties without varying
their mass. Specifically, a successful solution consists in conceiving het-
erogeneous periodic devices that include shunted piezoelectric phases,
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i.e. piezoelectric materials coupled in parallel to suitable electrical
circuits, in both active and passive control schemes. These design
strategies are effectively exploited to realize high-performance waveg-
uides and/or acoustic metafilters [44–55]. Most design approaches and
manufacturing methods have been based so far on periodic tessellations
of unit cells in one, two or three dimensions.

On the other hand, quasi-periodic metamaterials, characterized by
non periodic but ordered tessellations, have hardly been researched,
although the peculiar optical behavior of quasi-crystals, recently dis-
covered in [56], seems to suggest a promising potential in the design
of devices with unprecedented global physical properties, for several
applications in different engineering fields. Quasi-crystals exhibit mi-
crostructures that, in a sense, are intermediate between the periodic
crystals and the amorphous ones. In particular, on the one hand crystals
are characterized by optical diffraction figures exhibiting infinitely
countable and well-defined peaks, together with long-range order and
translational symmetry. This is not the case of amorphous materials.
On the other hand, quasi-periodic quasi-crystals keep showing diffrac-
tion figures with infinitely countable and well-defined peaks, as well
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as long-range order, as crystals, but lack translational symmetry, as
amorphous materials. It is noticeably observed that quasi-crystals show
icosahedral symmetry, not achievable in periodic crystals structures
due to the crystallographic restriction theorem.

Quasi-periodic metamaterials are artificial materials made-up from
the regular but not periodic repetition of two or more either homoge-
neous (one-phase) or microstructured (multi-phase) building blocks, re-
sulting into a ordered tessellation having long-range order at the macro-
scopic scale and short-range order at the microscopic one. These tilings
can be obtained in different ways, as for example, aperiodic microstruc-
tures inspired by Voronoi decomposition [57], Pendrose tilings [58],
but also further aperiodically ordered structures obtained via the so-
called inflation (or deflation) procedure, or via projection from higher-
dimensional periodic lattices [59]. One more example of quasi-periodic
composites is given by building blocks, of different kind ranging from
one-phase lattice type up to multi-phase composites, that repeat them-
selves along one or more directions in accordance with the recursive
sequence of (generalized) Fibonacci numbers sequence [60], as well
as the Thue–Morse sequence [61], and the Cantor sequence [62],
resulting in the so-called (generalized) Fibonacci-like, Thue–Morse-like
and Cantor-like superlattices, among others.

The study of wave propagation in infinite mechanical systems with
quasi-periodic topology is often performed resorting to the so-called
periodic approximants [63]. In this context, a quasi-periodic mate-
rial can be obtained from the periodic repetition, along appropriate
periodicity directions, of an elementary cell consisting of building
blocks that repeat themselves to form a finite system with a quasi-
periodic microstructure. As the size of the elementary cell increases,
corresponding to a larger portion of the quasi-crystalline material, an
increasingly accurate characterization of the dispersion properties of
the quasi-periodic metamaterial is obtained. In other terms, a single
portion of the quasicrystal, periodically repeated, can be considered
suitable to represent the whole infinite structure. Focusing the attention
on quasi-periodic mechanical superlattices, to date few examples have
been proposed in literature, with the aim of designing materials with
extreme stiffness and strength as well as for applications devoted to
waveguiding, wave manipulation, filtering among others [64–71], and
still open issues remain to investigate.

Within this scientific framework, we propose novel hierarchical
waveguides, combining possible advantages of Fibonacci based mi-
crostrustures and tunable metamaterials, for the adaptive-passive wave
propagation control. The key idea is exploiting the features of periodic
approximants to design a new class of nested Fibonacci-like superlat-
tices obtained by the suitable repetition of an elementary cell along a
fixed direction. More specifically the elementary cell is made up of
two building blocks that repeat themselves, according to the Fibonacci
sequence, to form a finite system with a quasi-periodic microstructure.
Specifically, one building block is made of a homogeneous elastic ma-
terial, while the second is a microstructured two-phase laminate, with
characteristic size much smaller than that of the corresponding build-
ing block (scale separation assumption). The microstructured laminate
encompasses a piezoelectric phase shunted by a properly conceived
electrical circuit [53]. Therefore the equivalent impedance/admittance
of the electrical circuit can be adjusted in order to tweak the constitu-
tive properties of the shunting piezoelectric phase. It follows that the
constitutive properties of the shunted piezoelectric phase can be fully
adjusted by modifying a tuning parameter governing the properties of
the electrical circuit. By exploiting the scale separation, a first order
asymptotic homogenization scheme is first applied to grasp the overall
constitutive properties of the microstructured building block, that in
turn depends on the tuning parameter. The transfer matrix approach
is then used to determine the dispersion properties of the waveguides,
associated both to different generations of the Fibonacci sequence and
to different values of the orientation angle of the layered two-phase
composite that make up the microstructured building block. A critical
2

investigation of the Fibonacci based hierarchical waveguide behavior is
performed as the tuning parameter changes aimed at providing broad
guidance to inspire optimal design solutions.

The layout of the paper is as follows. In Section 2 the proposed Fi-
bonacci based hierarchical waveguide is described. Section 3 is devoted
to derive the overall constitutive properties of the microstructured
building block via a first order asymptotic homogenization scheme.
In Section 4 the field equations governing the in-plane free Bloch
wave propagation within the hierarchical waveguide are derived and
the frequency band structure is obtained using the transfer matrix
approach. In Section 5 numerical experiments are useful both to in-
vestigate the performances of the waveguide for different generations
of the Fibonacci sequence, and to validate the performances of the
pass and stop bands tunable control of the hierarchical Fibonacci-like
metamaterial. Finally, concluding remarks are discussed in Section 6.

2. Fibonacci based hierarchical waveguide

We want to design a particular waveguide with hierarchical struc-
ture, obtained by the proper repetition of an elementary cell along a
periodicity vector, resulting in a composite laminate. The elementary
cell is made up of two (possibly microstructured) materials, in the
following referred to as building block 𝐴 and 𝐵, which repeat them-
selves according to the well-known Fibonacci sequence, fulfilling the
following concatenation recursive rule 𝑗 = 𝑗−1𝑗−2 (𝑗 ≥ 2) starting
with 0 = 𝐴 and 1 = 𝐵. The number of building blocks that form the
𝑗 is equal to 𝑛𝑗 = 𝑛𝑗−1 + 𝑛𝑗−2 (𝑗 ≥ 2, 𝑛0 = 𝑛1 = 1), with lim𝑗→∞

𝑛𝑗+1
𝑛𝑗

= 𝜙,

being 𝜙 = (
√

5 + 1)∕2 the so-called golden mean. In this way Fibonacci
generations are 2 = BA, 3 = BAB, 4 = BABBA, 5 = BABBABAB,
6 = BABBABBABAB, 7 = BABBABABBABABABBABAB and so on,
as schematically shown in Fig. 1 where the specific elementary cell
A𝑛 is highlighted using bright colors and capital letters to denote
building blocks. For illustrative purposes, a 2D-view of the elementary
cell A3 associated with the Fibonacci generation 3 at the macroscopic
scale is shown in Fig. 2(a). The cell has out-of-plane thickness 𝑤, the
layer B of thickness 𝑑𝐵 is made of a homogeneous material, while
the layer A, of thickness 𝑑𝐴, is made of a laminated microstructured
material consisting, in turn, of two phases 𝐴1 and 𝐴2, of thickness 𝑑𝐴1
and 𝑑𝐴2, respectively, where the orientation of layers, identified by
the unit vector 𝐚1, can generally be inclined by the 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒
𝜃 with respect to the layer B, identified by the unit vector 𝐞1, see
Fig. 2(b). Finally, Fig. 2(c) illustrates in detail the periodic cell A of the
microstructured building block 𝐴, characterized only by the periodicity
vector 𝐯 = 𝗏2𝐚2 = (𝑑𝐴1+𝑑𝐴2) 𝐚2 given the translational invariance along
𝐚1.

Regarding the constitutive behavior of materials, we assume that
the building block 𝐵 is made of a soft and light linear elastic isotropic
material, while the 𝐴1 layer is made of a rigid and heavy linear
isotropic elastic material and the 𝐴2 layer is made of a linear shunted
piezoelectric material. Each piezoelectric layer, polarized along the out-
of-plane direction, is coupled to an external electric circuit with tunable
impedance/admittance, as schematically shown in Fig. 3(a). It follows
that, the constitutive properties of the piezoelectric shunting can be
tuned by adjusting the characteristic properties of the passive bipole
to obtain a proper control of the spectral properties of the hierarchical
waveguide. By exploiting the scale separation in the building block 𝐴,
i.e. that 𝑑𝐴1 + 𝑑𝐴2 ≪ 𝑑𝐴, we can determine its first order homogenized
response by applying an asymptotic homogenization scheme, as ex-
plained in Section 3. Subsequently, in Section 4 we will study in detail
the band structure of the tunable hierarchical metamaterial consisting
of the building block 𝐵 and a homogenized material, equivalent to the
microstructured building block 𝐴, in the so-called high fidelity frequency
range. This range is defined as the frequency range in which the
Floquet–Bloch spectra, obtained both considering the building block
𝐴 as homogenized and that considering the building block 𝐴 as mi-

crostructured, are in excellent agreement. It is important to note that
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Fig. 1. Fibonacci generations of the hierarchical composite material made up of building blocks 𝐴 and 𝐵. Each generation 2, 3, 4, 5, 6, 7 is repeated periodically along
the periodicity vector.
Fig. 2. (a) 2D view of the elementary cell A3 corresponding to the Fibonacci generation 3 at the macroscopic scale; (b) zoomed view of the microstructured building block
𝐴 made of a layered composite with local {𝐚1 , 𝐚2} and global {𝐞1 , 𝐞2} orthonormal bases at the microscopic scale; (c) zoomed view of the periodic cell A embedded in the
microstructured building block 𝐴.
this range tends to grow as the separation of scales increases. the
band structure of the tunable hierarchical metamaterial consisting of
the building block 𝐵 and a homogenized material, equivalent to the
microstructured building block 𝐴, in the so-called high fidelity frequency
range. This range is defined as the frequency range in which the
Floquet–Bloch spectra, obtained both considering the building block
𝐴 as homogenized and that considering the building block 𝐴 as mi-
crostructured, are in excellent agreement. It is important to note that
this range tends to grow as the separation of scales increases.

3. Asymptotic homogenization of the layered material

Let us now consider the microstructured building block 𝐴, made of
the repetition of the periodic cell A (in Fig. 2(c)) along its periodicity
vector v. The in-plane governing equations are expressed in component
form with respect to the basis {𝐚1, 𝐚2}, and in the transformed Laplace
space, as follows
(

𝖢𝑚𝑖𝑗ℎ𝑙(𝑠)𝗎̂ℎ,𝑙
)

,𝑗
+ 𝖻̂𝑖 = 𝜌𝑚𝑠2𝗎̂𝑖, (1)

where 𝖢𝑚𝑖𝑗ℎ𝑙(𝑠) are the constitutive tensor components, 𝑠 is the com-
plex Laplace variable, 𝗎̂𝑖 are the in-plane transformed displacement
components, 𝖻̂𝑖 the transformed source term components, 𝜌𝑚 is the
mass density and the comma denotes the generalized partial derivative
with respect to 𝗑𝑗 , i.e. the components of the in-plane position vector
𝐱 = 𝗑𝑗𝗮𝑗 ∈ R2, with 𝑖, 𝑗, ℎ, 𝑙 = 1, 2. Due to the periodic repetition of
layers 𝐴1 and 𝐴2, both the constitutive tensor and the mass density
are A-periodic and satisfy translation invariance with respect to 𝐚1 thus
being 𝑥1-independent, so that

𝖢𝑚
(

𝗑 𝐚 + 𝑛𝐯, 𝑠
)

= 𝖢𝑚
(

𝗑 𝐚 , 𝑠
)

,

3

𝑖𝑗ℎ𝑙 𝟤 2 𝑖𝑗ℎ𝑙 𝟤 2
𝜌𝑚
(

𝗑𝟤 𝐚2 + 𝑛𝐯, 𝑠
)

= 𝜌𝑚
(

𝗑𝟤 𝐚2
)

, ∀𝗑𝟤 𝐚2 ∈ A, (2)

where 𝑛 ∈ Z and 𝐯 = 𝗏𝟤 𝐚2 is the periodicity vector. Note that the
components 𝖢𝑚𝑖𝑗ℎ𝑙 of the linear elastic phase 𝐴1 are 𝑠-independent,
while those of the shunting piezoelectric phase 𝐴2, polarized along the
out-of-plane direction and denoted with the apex 𝑆𝐴2, are in general
𝑠-dependent and, accordingly with [53], take the following form

𝖢
𝑆𝐴2
𝑖𝑗ℎ𝑙 (𝜆(𝑠)) = 𝖢

𝐴2
𝑖𝑗ℎ𝑙 +

𝖾
𝐴2
𝑖𝑗3 𝖾̃

𝐴2
3ℎ𝑙

𝛽𝑆𝐴2
33 (𝜆(𝑠))

−
⎛

⎜

⎜

⎝

𝖢
𝐴2
𝑖𝑗33 +

𝖾
𝐴2
𝑖𝑗3 𝖾̃

𝐴2
333

𝛽𝑆𝐴2
33 (𝜆(𝑠))

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝖢
𝐴2
33ℎ𝑘 +

𝖾
𝐴2
333 𝖾̃

𝐴2
3ℎ𝑙

𝛽𝑆𝐴233 (𝜆(𝑠))

𝖢
𝐴2
3333 +

𝖾
𝐴2
333 𝖾̃

𝐴2
333

𝛽𝑆𝐴233 (𝜆(𝑠))

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

where 𝖢
𝐴2
𝑖𝑗ℎ𝑙 are the components of the fourth order elasticity tensor,

𝖾
𝐴2
𝑖𝑗3 are the components of the third order stress-charge coupling tensor

of the piezoelectric material and 𝖾̃
𝐴2
𝑝𝑞𝑠 = 𝖾

𝐴2
𝑞𝑠𝑝 its transpose. Moreover,

the auxiliary 𝑠-dependent function 𝛽𝑆𝐴2
33 (𝑠) = 𝛽𝐴2

33 (1 + 𝜆(𝑠)) is intro-
duced, being 𝛽𝐴2

33 the component of the second order permittivity tensor
and being 𝜆(𝑠) = 𝐿𝐴2𝑌 𝑆33(𝑠)∕(𝑠 𝛽

𝐴2
33 𝛥

𝐴2 ) the so-called tuning function
with linear dependence on the generic equivalent shunting admittance
𝑌 𝑆33(𝑠), which is expressed in terms of one or more tuning parameters
defining the properties of the electrical circuit at hand. Note that 𝛥𝐴2

is the in-plane area of the piezoelectric layer 𝐴2, and 𝐿𝐴2 = 𝑤. It is
worth-noting that the constitutive relation of the shunted piezoelec-
tric material, in Eq. (3), is obtained from an in-plane condensation
of those associated to a three-dimensional orthotropic piezoelectric
material with polarization along the out-of-plane direction. It results
in-plane uncoupled constitutive equations, formally equivalent to the
equations of a linearly elastic dielectric material [72]. It follows that
the components of the equivalent constitutive tensor related to the
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Fig. 3. (a) Scheme of the elementary cell in the building block 𝐴 containing the shunted piezoelectric material; (b) Periodic cells for generations 2, 3 and 4 together with
ocal coordinate systems along each layer.
𝖢𝐴1111(𝑠) =
𝜁2𝖢𝐴1

1111𝖢
𝑆𝐴2
2222 + 𝜁 (𝖢

𝑆𝐴2
1111𝖢

𝑆𝐴2
2222 − (𝖢𝐴1

1122)
2 + 2𝖢𝐴1

1122𝖢
𝑆𝐴2
1122 − (𝖢𝑆𝐴2

1122)
2 + 𝖢

𝐴1
1111𝖢

𝐴1
2222) + 𝖢

𝑆𝐴2
1111𝖢

𝐴1
2222

(𝜁 + 1)(𝖢𝐴1
2222 + 𝜁𝖢

𝑆𝐴2
2222)

,

𝖢𝐴2222(𝑠) =
(𝜁 + 1)𝖢𝐴1

2222𝖢
𝑆𝐴2
2222

𝖢
𝐴1
2222 + 𝜁𝖢

𝑆𝐴2
2222

,

𝖢𝐴1212(𝑠) =
(𝜁 + 1)𝖢𝐴1

1212𝖢
𝑆𝐴2
1212

𝖢
𝐴1
1212 + 𝜁𝖢

𝑆𝐴2
1212

,

𝖢𝐴1122(𝑠) =
𝖢
𝑆𝐴2
1122𝖢

𝐴1
2222 + 𝜁𝖢

𝐴1
1122𝖢

𝑆𝐴2
2222

𝖢
𝐴1
2222 + 𝜁𝖢

𝑆𝐴2
2222

,

𝜌𝐴 =
𝜌𝐴1𝜁 + 𝜌𝐴2

1 + 𝜁
, (4)

Box I.
𝐶

N
i
c
b
t
i
a
s
p
t
a
−
p
w
t

4

i

hunted piezoelectric material only depend on the constitutive tensor
omponents of the piezoelectric phase and on the electrical circuit
dmittance.

By exploiting the asymptotic homogenization scheme, consistently
ith [73,74], the overall 𝑠-dependent first order constitutive tensor

omponents of the microstructured building block 𝐴 together with the
verall mass density are determined and result as given in Box I. where
= 𝑑𝐴1∕𝑑𝐴2 and the apex 𝐴𝑖 refers to 𝑖th of the two layers. It is impor-

ant to underline that the 𝑠-dependent perturbation functions involved
n the determination of overall properties are 𝑥1-independent and
herefore they depend exclusively on the geometric ratio 𝜁 . Changing
rom the orthonormal basis {𝗮1, 𝗮2} to the basis {𝐞1, 𝐞2}, see Fig. 2(b),

the components of the transformed constitutive tensor vary accordingly
with the transformation law 𝐶𝐴𝑖1𝑗1ℎ1𝑘1 = 𝖢𝐴𝑖𝑗ℎ𝑘𝑄𝑖𝑖1𝑄𝑗𝑗1𝑄ℎℎ1𝑄𝑘𝑘1 , where
the rotation tensor components are 𝑄11 = cos(𝜃), 𝑄12 = sin(𝜃), 𝑄21 =
− sin(𝜃), 𝑄22 = cos(𝜃) and the angle 𝜃 is positive if the rotation is clock-
wise. Specifically, the 𝑠-dependent overall elastic tensor components in
the basis {𝐞1, 𝐞2} become

𝐶𝐴1111(𝑠) = 𝖢𝐴1111 cos
4(𝜃) +

(

2𝖢𝐴1122 + 4𝖢𝐴1212
)

cos2(𝜃) sin2(𝜃) + 𝖢𝐴2222 sin
4(𝜃),

𝐶𝐴2222(𝑠) = 𝖢𝐴2222 cos
4(𝜃) +

(

2𝖢𝐴1122 + 4𝖢𝐴1212
)

cos2(𝜃) sin2(𝜃) + 𝖢𝐴1111 sin
4(𝜃),

𝐶𝐴1212(𝑠) =
(

𝖢𝐴1111 − 2𝖢𝐴1122 + 𝖢𝐴2222
)

cos2(𝜃) sin2(𝜃) + 𝖢𝐴1212 cos
2(2𝜃),

𝐶𝐴1122(𝑠) =
(

𝖢𝐴1111 − 4𝖢𝐴1212 + 𝖢𝐴2222
)

cos2(𝜃) sin2(𝜃)

+ 𝖢𝐴1122
[

cos4(𝜃) + sin4(𝜃)
]

,

4

l

𝐶𝐴1112(𝑠) = 𝖢𝐴1111 cos
3(𝜃) sin(𝜃) − 1

4
(

𝖢𝐴1122 + 2𝖢𝐴1212
)

sin(4𝜃)

− 𝖢𝐴2222 sin
3(𝜃) cos(𝜃),

𝐴
2212(𝑠) = 𝖢𝐴1111 cos(𝜃) sin

3(𝜃) + 1
4
(

𝖢𝐴1122 + 2𝖢𝐴1212
)

sin(4𝜃)

− 𝖢𝐴2222 sin(𝜃) cos
3(𝜃). (5)

ote that in the particular case of significant technological interest,
n which the equivalent electrical circuit is characterized by a purely
apacitive admittance 𝑌 𝑆33(𝑠) = 𝑠𝐶, the tuning function turns out to
e 𝑠-independent, i.e. 𝜆 = 𝐶𝐿𝐴2∕(𝛽𝐴2

33 𝐴
𝐴2 ), as well as the constitutive

ensor components 𝖢𝑆𝐴2
𝑖𝑗𝑘𝑙 . In this case, the complex frequency 𝑠 is purely

maginary, i.e. 𝑠 = 𝜄𝜔, being 𝜄 the imaginary unit and 𝜔 ∈ R the
ngular frequency of Bloch waves. It is also noted that, considering a
hunted orthotropic piezoelectric material polarized along the out of
lane direction, the constitutive tensor components 𝖢

𝑆𝐴2
𝛼𝛼𝛽𝛽 (𝛼, 𝛽 = 1, 2)

urns out to be a function of the tuning variable 𝜆 and has vertical
symptotes for the resonance value of the tuning parameter 𝜆𝑅 =
(

1 + 𝑒𝐴2
333𝖾̃

𝐴2
3ℎ𝑙∕

(

𝐶𝐴2
3333𝛽

𝐴2
33

))

, see [53] for a detailed description of the
eculiar constitutive behavior of the shunting phase. Note that the case
ith 𝜆 = 0 corresponds to a non shunted piezoelectric material, i.e. to

he case of open circuit or of standard piezoelectric material.

. Acoustic dispersion properties of the waveguide

We are herein interested in investigating the free wave propagation
n the hierarchical microstructured waveguide considering an equiva-

ent electrical circuit characterized by a purely capacitive admittance.
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To this aim, we define the in-plane governing equations in component
form with respect to the basis {𝐞1, 𝐞2}, and in the frequency domain at
the macroscopic scale
(

𝐶𝑀𝑖𝑗ℎ𝑙 𝑢̂ℎ,𝑙
)

,𝑗
+ 𝜌𝑀𝜔2𝑢̂𝑖 = 0, (6)

where 𝐶𝑀𝑖𝑗ℎ𝑙 are the constitutive tensor components, 𝜌𝑀 is the mass
density. Note that the components 𝐶𝑀𝑖𝑗ℎ𝑙 are A𝑛 -periodic and satisfy
the translation invariance along the layering direction. According to
the Floquet–Bloch theory, the solution of field equations in a quasi-
periodic waveguide can be written, by exploiting the so-called Bloch
decomposition, as

𝐮̂(𝑥1, 𝑥2, 𝜔) = 𝐰̂(𝑥2, 𝜔)𝑒𝜄𝐤⋅𝐱 , (7)

where the vector 𝐰̂(𝑥2, 𝜔) = 𝑤̂𝑖(𝑥2, 𝜔)𝐞𝑖 collects the Bloch amplitudes
that are A𝑛 -periodic and satisfy the translation invariance along 𝐞1.
Moreover 𝐤 = 𝑘𝑖𝐞𝑖 is the wave vector. By plugging Eqs. (7) in (6) we
obtain
(

𝐶𝑀𝑖2ℎ2𝑤̂ℎ,2
)

,2 + 𝜄𝑘𝑗
[

(𝐶𝑀𝑖𝑗ℎ2 + 𝐶
𝑀
𝑖2ℎ𝑗 )𝑤̂ℎ,2 + 𝐶

𝑀
𝑖2ℎ𝑗,2𝑤̂ℎ

]

− (𝐶𝑀𝑖𝑗ℎ𝑘𝑘𝑘𝑘𝑗 − 𝜌
𝑀𝜔2𝛿𝑖ℎ)𝑤̂ℎ = 0.

(8)

Focusing the attention on a single layer 𝛤 (with 𝛤=A,B) the fol-
lowing system of second order ordinary differential equations in the
𝑥2-variable is obtained

𝐶𝛤𝑖2ℎ2𝑤̂ℎ,22 + 𝜄𝑘𝑗 (𝐶
𝛤
𝑖𝑗ℎ2 + 𝐶

𝛤
𝑖2ℎ𝑗 )𝑤̂ℎ,2 − (𝐶𝛤𝑖𝑗ℎ𝑘𝑘𝑘𝑘𝑗 − 𝜌

𝛤𝜔2𝛿𝑖ℎ)𝑤̂ℎ = 0. (9)

By switching to the operatorial form, Eq. (9) becomes

𝐂2𝐰̂′′ + 𝐂1𝐰̂′ + 𝐂0𝐰̂ = 𝟎, (10)

where apex ′ denotes the 𝑥2- derivative and 𝐂2, 𝐂1 and 𝐂0 are 2 × 2
matrices collecting the coefficients of the field equation. By introducing
the 4-component vector 𝐯̂ = (𝐰̂′ 𝐰̂)𝑇 in the state space, the following
equivalent system of first order differential equations, governed by two
4 × 4 coefficient block matrices, is obtained
[

𝐂2 𝟎
𝟎 𝐈

]

𝐯̂′ +
[

𝐂1 𝐂0
−𝐈 𝟎

]

𝐯̂ = 𝐃1𝐯̂′ + 𝐃0𝐯̂ = 𝟎. (11)

The general solution of the first order ordinary differential system (11)
can be written, by invoking the matrix exponential formalism, as

𝐯̂ = 𝑒−𝐃
−1
1 𝐃0𝑥2𝐜, (12)

defined except for the vector of constants 𝐜. Similarly the traction vector
𝐬̂ is defined

𝐬̂(𝑥1, 𝑥2, 𝜔) = 𝐭̂(𝑥2, 𝜔)𝑒𝜄𝐤⋅𝐱 , (13)

as a function of the vector 𝐭̂ collecting the relevant stress tensor
components

𝐭̂(𝑥2, 𝜔) = (𝜎̂21 𝜎̂22)𝑇 , (14)

where the apex 𝑇 denotes the transpose. It is useful to define the
following block vector collecting the Bloch amplitudes and the tractions

𝐲̂(𝑥1, 𝑥2, 𝜔) =
[

𝐰̂(𝑥1, 𝑥2, 𝜔)
𝐬̂(𝑥1, 𝑥2, 𝜔)

]

= 𝑒𝜄𝐤⋅𝐱
[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]

𝐯̂(𝑥1, 𝑥2, 𝜔), (15)

and by plugging (12) in (15), the compact form of the solution is
obtained as

𝐲̂(𝑥1, 𝑥2, 𝜔) = 𝑒𝜄𝐤⋅𝐱
[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]

𝑒−𝐃
−1
1 𝐃0𝑥2𝐜. (16)

Let us consider the single 𝑚th layer, pertaining to the elementary cell
shown in Fig. 3(b) for generations 2, 3 and 4, respectively, having
thickness 𝑑𝑚. A proper local coordinate system is herein defined, in
which 𝑥1 and 𝑥2 axes are parallel and orthogonal to the layering,
5

respectively, so that the 𝑚th layer lies in the range −𝑑𝑚∕2 ≤ 𝑥2 ≤ 𝑑𝑚∕2. A
The generalized vector 𝐲̂ at the upper (+) and lower (−) boundaries of
the layer is thus defined as

𝐲̂+𝑚 = 𝐲̂(𝑥1, 𝑥2 =
𝑑𝑚
2
, 𝜔) = 𝑒𝜄(𝑘1𝑥1+𝑘2

𝑑𝑚
2 )

[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]

𝑒−𝐃
−1
1 𝐃0

𝑑𝑚
2 𝐜, (17)

and

𝐲̂−𝑚 = 𝐲̂(𝑥1, 𝑥2 = −
𝑑𝑚
2
, 𝜔) = 𝑒𝜄(𝑘1𝑥1−𝑘2

𝑑𝑚
2 )

[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]

𝑒𝐃
−1
1 𝐃0

𝑑𝑚
2 𝐜. (18)

The vector of constants 𝐜 is obtained from (18) as

𝐜 = 𝑒−𝐃
−1
1 𝐃0

𝑑𝑚
2

[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]−1

𝑒−𝜄(𝑘1𝑥1−𝑘2
𝑑𝑚
2 )𝐲̂−𝑚, (19)

and is then plugged in (17) resulting in

𝐲̂+𝑚 = 𝑒𝜄𝑘2𝑑𝑚
[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]

𝑒−𝐃
−1
1 𝐃0𝑑𝑚

[

𝟎 𝐈
𝐂2 𝜄𝐂2𝑘2

]−1

𝐲𝑚
− = 𝐓𝛤𝑚 𝐲̂

−
𝑚, (20)

being 𝐓𝛤𝑚 the transfer matrix of the single layer 𝛤 depending both on
the angular frequency 𝜔 and the wave number 𝑘1. At this point, by
recalling the continuity condition between adjacent layers, defined as

𝐲̂+𝑚 = 𝐲̂−𝑚+1, (21)

it follows that the relation between the lower boundary of the first layer
and the upper boundary of the 𝑛th layer results defined

𝐲̂+𝑛 = 𝐓(1,𝑛)𝐲̂
−
1 , (22)

with the (𝜔 , 𝑘1)-dependent transfer matrix of the entire elementary cell
being defined as

𝐓(1,𝑛) =
𝑛
∏

𝑚=1
𝐓𝛤𝑚 , (23)

where the index 𝑛 unequivocally denotes the Fibonacci generation 𝑛
made up of a number of elements equal to 𝑛 =

1
√

5

[

𝜙𝑛−2 − 𝜓𝑛−2 + 𝜙𝑛−1

−𝜓𝑛−1
]

, with 𝜙 the golden mean, the auxiliary variable 𝜓 = − 1
𝜙 and

𝑛 ≥ 2. Moreover, in order to consider the hierarchical waveguide char-
acterized by an elementary cell consisting of the Fibonacci generation
𝑛, the Floquet–Bloch boundary conditions are exploited as

𝐲̂+𝑛 = 𝑒𝜄𝑘2𝑑 𝐲̂−1 , (24)

being 𝑑 = 𝐴
𝑛 𝑑𝐴 + 𝐵

𝑛 𝑑𝐵 the characteristic size of the elemen-
tary cell in the direction perpendicular to the layering, where 𝐴

𝑛 =
1
√

5

[

𝜙𝑛−3 − 𝜓𝑛−3 + 𝜙𝑛−2 − 𝜓𝑛−2
]

and 𝐵
𝑛 = 𝑛 − 𝐴

𝑛 are the numbers
f building blocks 𝐴 and B in the elementary cell, respectively.

By plugging (24) in (22), the following eigenproblem describing the
ropagation of Bloch waves is defined
(

𝐓(1,𝑛) − 𝜇𝐈
)

𝐲̂−1 = 𝟎, (25)

here 𝐈 is the identity matrix and 𝜇 = 𝑒𝜄𝑘2𝑑 plays the role of the Floquet
ultiplier. In the particular case, of great applicative interest analyzed

n the illustrative examples, of waves propagating along the direction
rthogonal to the layering, i.e. with 𝑘1 = 0, the problem (25) turns
ut to be standard linear eigenproblem, where 𝜇 is the eigenvalue and
he wave form 𝐲̂−1 is the eigenvector. In such a context to ensure non-
rivial solutions, the characteristic equation (𝜇) = det(𝐓(1,𝑛) −𝜇𝐈) = 0

must be satisfied. More specifically, the characteristic equation can be
written in the form

(𝜇) = 𝐼0𝜇
4 + 𝐼1𝜇3 + 𝐼2𝜇2 + 𝐼3𝜇 + 𝐼4, (26)

here 𝐼0, 𝐼1, 𝐼2, 𝐼3 and 𝐼4 are the principal invariants depending on
he angular frequency 𝜔. By recalling that the transfer matrix 𝐓(1,𝑛) is
ymplectic, it follows that its characteristic polynomial is palindromic,
o that the principal invariants fulfill the relations 𝐼0 = 𝐼4 = 1, 𝐼3 = 𝐼1.

−1
s known, if 𝜇 is a root of the characteristic polynomial, 𝜇 is also a
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root. Therefore, by exploiting the mapping 𝑧 = 𝜇 + 𝜇−1, the following
characteristic polynomial of reduced order is obtained

̃(𝑧) = 𝑧2 + 𝐼1𝑧 + (𝐼2 − 2) = 0, (27)

where the invariants 𝐼1 and 𝐼2 take the form

𝐼1 = −tr
(

𝐓(1,𝑛)

)

,

𝐼2 = −1
2

tr
(

𝐓2
(1,𝑛)

)

+ 1
2

(

tr
(

𝐓(1,𝑛)

))2
.

(28)

fter finding the roots of the reduced polynomial (27), recalling the
nverse mapping 𝜇 = (𝑧 ±

√

𝑧2 − 4)∕2, the roots of polynomial (26) are
nequivocally determined, as

1,2 =
−𝐼1 +

√

𝐼21 − 4
(

𝐼2 − 2
)

4
± 1

4

√

(

−𝐼1 +
√

𝐼21 − 4
(

𝐼2 − 2
)

)2
− 16,

3,4 =
−𝐼1 −

√

𝐼21 − 4
(

𝐼2 − 2
)

4
± 1

4

√

(

−𝐼1 −
√

𝐼21 − 4
(

𝐼2 − 2
)

)2
− 16.

(29)

y exploiting the relation 𝜇𝛼 = 𝑒𝜄𝑑𝑘
(𝛼)
2 , with 𝛼 = 1,… , 4, it is possible to

etermine the wave number 𝑘(𝛼)2 , in terms of the angular frequency 𝜔,
s
(𝛼)
2 (𝜔) =

ln(𝜇𝛼(𝜔))
𝜄𝑑

= 1
𝑑

(

arg (𝜇𝛼(𝜔)) − 𝜄
1
2
ln (|𝜇𝛼(𝜔)|

2)
)

, (30)

defining the complex frequency band structure of the hierarchical
waveguide within its periodicity range for ℜ(𝑘2) ∈ (−𝜋∕𝑑, 𝜋∕𝑑], ℑ(𝑘2) ∈

, and 𝜔 ∈ R. In the case of horizontal layers, with 𝜃 = 0, it is possible
o demonstrate that Eq. (22), after proper manipulations, specializes
n
[

𝐲̂+𝑛𝑆
𝐲̂+𝑛𝐶

]

=

[

𝐓𝑆
(1,𝑛)

𝟎
𝟎 𝐓𝐶

(1,𝑛)

]

[

𝐲̂−1𝑆
𝐲̂−1𝐶

]

, (31)

being the vectors 𝐲̂±𝑗𝑆 =
[

𝑤̂±
1(𝑗)𝜎̂

±
12(𝑗)

]𝑇
, 𝐲̂+𝑗𝐶 =

[

𝑤̂±
2(𝑗)𝜎̂

±
22(𝑗)

]𝑇
with 𝑗 equal

to 1 or 𝑛, and 𝐓𝑆
(1,𝑛)

, 𝐓𝐶
(1,𝑛)

the 2 × 2 transfer matrices related to shear
(𝑆) and compressional (𝐶) waves propagating along the 𝐞2 direction,
respectively. It follows that two uncoupled eigenproblems are defined
in the form
(

𝐓𝛹(1,𝑛)
− 𝜇𝐈

)

𝐲̂−1𝛹 = 𝟎, (32)

where 𝛹 is equal to 𝑆 and 𝐶 alternately. The corresponding character-
istic polynomial is

𝛹 (𝜇) = 𝐼𝛹0 𝜇
2 + 𝐼𝛹1 𝜇 + 𝐼𝛹2 , (33)

where 𝐼𝛹0 = 𝐼𝛹2 = 1, and the invariant 𝐼𝛹1 can be expressed as

𝐼𝛹1 = −tr
(

𝐓𝛹(1,𝑛)

)

. (34)

Furthermore, it is worth pointing out that in order to determine the
dispersion relation of Bloch waves characterized by a generic wave
vector 𝐤, it is possible to impose that the coefficients matrix of the
homogeneous algebraic Eq. (25) is singular. In this way the so-called
characteristic equation  (𝐤, 𝜔) = det (𝐓(1,𝑛) − 𝜆𝐈) = 0 is obtained,
where 𝐤 ∈ C2, and 𝜔 ∈ R, describing the dispersion relation in the
implicit form. The complex spectrum is in general determined from the
intersection of two hypersurfaces, fulfilling the following relation
{

Re
(

 (𝜔,Re(𝑘1), Im(𝑘1),Re(𝑘2), Im(𝑘2))
)

= 0
Im

(

𝐹 (𝜔,Re(𝑘1), Im(𝑘1),Re(𝑘2), Im(𝑘2))
)

= 0.
(35)

Note that, setting 𝑘2 = 0 it is possible to determine the complex
spectrum associated to waves propagating along the layering direction.
This problem was also investigated, with an alternative procedure, for
isotropic linear elastic layers in [73,75].
6

5. Illustrative examples

This Section is devoted to present some illustrative examples. Focus
is on a class of Fibonacci-based hierarchical waveguides with building
blocks 𝐴 and 𝐵 (with 𝑑𝐴∕𝑑𝐵 = 2) made up as described below.
Specifically, the building block 𝐵 is made of a soft matrix of epoxy
resin Epotek 301, a passive polymer material, with elastic properties
𝐸= 3.6 GPa and 𝜈=0.35, dielectric constant 𝛽=3.187 ⋅10−11 C/(Vm)
and mass density 𝜌=1150 kg/m3, see [76]. On the other hand, the
microstructured building block 𝐴 is manufactured as follows. The layer
𝐴1 is made of steel with 𝐸=210 GPa, 𝜈=0.3, dielectric constant 𝛽=8.854
⋅10−12 C/(Vm) and mass density 𝜌= 7500 kg/m3.

Moreover, the layer 𝐴2, i.e. the shunted piezoelectric element,
is made of Polyvinylidene fluoride (PVDF) in parallel to an electri-
cal circuit with purely capacitive equivalent admittance, as shown in
Fig. 3(a). The electromechanical properties of PVDF, polarized along
the out of plane direction, are taken from [77] and are listed below.
The non vanishing components of the elasticity tensor are 𝐶𝐴2

1111 = 𝐶𝐴2
2222

= 4.84 ⋅1009 Pa, 𝐶𝐴2
3333 = 4.63⋅109 Pa, 𝐶𝐴2

1122 = 2.72⋅109 Pa, 𝐶𝐴2
1133 = 𝐶𝐴2

2233
= 2.22⋅109 Pa, 𝐶𝐴2

1212=1.06⋅109 Pa, 𝐶𝐴2
1313 = 𝐶𝐴2

2323 = 5.26⋅107 Pa. The
non vanishing components of the stress-charge coupling tensor are
𝑒𝐴2
113 = 𝑒𝐴2

223=-1.999 ⋅10−3 C/m2, 𝑒𝐴2
311 = 𝑒𝐴2

322=4.344 ⋅10−3 C/m2, 𝑒𝐴2
333=-

1.099 ⋅10−1 C/m2. Furthermore, the non vanishing components of the
dielectric permittivity tensor are 𝛽𝐴2

11 = 𝛽𝐴2
22 = 6.641 ⋅10−11 C/Vm, and

𝛽𝐴2
33 =7.083 ⋅10−11 C/Vm.

More specifically, Section 5.1 is focused on the characterization of
acoustic properties of the Fibonacci-based waveguide in the case of
an equivalent electrical circuit with zero capacitance, i.e. with open
circuit. Attention is paid to the influence of the orientation of the
microstructured layers in the building block 𝐴 on the frequency band
structure of the periodically repeated Fibonacci generations 𝑗 , within
the validity of scale separation principle and in the high-fidelity fre-
quency range. Finally, in Section 5.2 the design of the high-performance
acoustic waveguide is proposed. By modifying the tuning parameter,
the constitutive properties of the piezoelectric shunting material can
be adaptively controlled, as well as the dispersive properties of the
hierarchical Fibonacci-like tunable superlattice.

5.1. Frequency band structure

We initially focus on the case in which the tuning parameter 𝜆
vanishes, corresponding to a non shunted piezoelectric material. In
this framework, in Fig. 4 the frequency band structure in terms of the
dimensionless frequency 𝜔∕𝜔𝑟 (with 𝜔𝑟 =

(

2𝑑𝐵
√

𝜌𝐵∕𝐸𝐵
)−1

and the
apex referring to the building block 𝐵) is investigated, as the generation
varies between 2 and 7, for the orientation angle 𝜃 = 0. As already
shown in Eq. (31), in this case the transfer matrix is block diagonal,
and therefore it is possible to investigate the shear and compressional
wave propagation in an uncoupled way. The frequency band structure
associated to waves propagating in the direction perpendicular to the
main stratification, that is characterized by a wave vector 𝐤 = 𝑘2𝐞2,
are shown in Fig. 4(a) and Fig. 4(b), for shear and compressional
waves respectively. It is important to note that, for both the set of
spectra, frequency ranges that fall into band gaps for all generations
after a certain generation 𝛼 , with 𝛼 ∈  ∗ are found. The band
gaps containing these frequency ranges for the various subsequent
generations with 𝛼 > 2 are referred to as main band gaps (pointed out
with the repeated number 3). Moreover, in the particular case where
𝛼 = 2 they are referred to as full main band gaps (pointed out with
numbers 1 and 2). The main band gaps and/or the full main band gaps
delimit areas of the spectrum (highlighted by the colored boxes) within
which each pass band (black rectangles), going from one generation to
the next, fragments giving rise to an increasing number of pass band
that follows the recursive rule of Fibonacci numbers ie 1, 1, 2, 3, 5, 8,
. . . . For both these class of band gaps, it is in general observed that the
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Fig. 4. Frequency band structure for waves characterized by a wave vector 𝐤 = 𝑘2𝐞2 with 𝜆 = 0, 𝜃 = 0 and generations ranging from 2 to 7. (a) Shear waves; (b) Compressional
waves.
amplitude remains approximately unchanged across generations, while
the central frequency undergoes a clear reduction between the 𝛼 and
the 𝛼+1 generations and then stabilizes on a certain value.

Furthermore, considering the second full main band gaps, between
2 and 3, a considerable amplitude reduction both for shear and
compressional waves. As expected, the frequencies that define the
limits of the pass bands associated with the compression waves are
greater than the corresponding ones of the shear waves. By the way
of example, referring to the case of shear waves already reported
in Fig. 4(a), the frequency band structure associated to generations
2 − 7 is shown in Fig. 5. It is confirmed the fragmentation of the
frequency spectrum, between two subsequent main band gaps, as the
generation number increases, as well as it is noted that with the growth
of generation numbers, the branches of the dispersion spectra become
flatter. Moreover, the band gap zones are reported versus 𝜃 for different
generations of the Fibonacci-like superlattice in Appendix.

The frequency spectrum accounting for both shear and compres-
sional waves, characterized by a wave vector 𝐤 = 𝑘2𝐞2, is determined
according to Eq. (30) and is shown in Fig. 6 as the angle 𝜃 changes.
More specifically, Figs. 6(a), (b), (c), (d) refer to 𝜃 = 0, 𝜋∕6, 𝜋∕4, 𝜋∕2,
respectively. As it clearly emerges from Eq. (5), when 𝜃 ∈ (0, 𝜋∕2)
the building block 𝐴 is characterized by anisotropic constitutive ten-
sors, while when 𝜃 = 0, 𝜋∕2 it is orthotropic with evident outcomes
on spectral dispersive properties of the Fibonacci-based hierarchical
waveguide. Also in this case it is possible to find full main band gaps,
the first of which is numbered in figure. Its amplitude tends to remain
constant, while the central frequency tends to decrease compared to the
first generation. It can also be observed that in Fig. 6(b), corresponding
to 𝜃 = 𝜋∕6, the full main band gap is split in two in 6 by a pass band
associated with an almost local mode with approximately evanescent
bandwidth. Differently from before, the areas of the spectrum between
two main band gaps and/or full main band gaps no longer respect
the Fibonacci recursive rule relative to the number of pass bands in
successive generations. It is noteworthy that the same applies also in the
case of 𝜃 = 0 for which the diagram is shown in Fig. 6(a). Irrespective
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of 𝜃, as the order of generation increases, on the one hand there is an
increase in the overall amplitude associated with the various stop bands
that fall within the frequency range considered and, on the other hand,
as expected, an increasing complexity and jaggedness of the frequency
spectrum.

5.2. Wave propagation control

Attention is now focused on the comparison between the frequency
band structure obtained for 𝜆 = 0, i.e. in the case of non shunted
piezoelectric phase 𝐴1, and 𝜆 → 𝜆+𝑅 (with 𝜆𝑅 ≃ −1.0368 for shunted
phase made of PVDF polarized along the out of plane direction) for
generations 2 and 3, as the angle 𝜃 changes.

First the case of generation 2 is considered. In Fig. 7(a) and 7(b)
the band gap zones for 𝜆 = 0 and 𝜆 → 𝜆+𝑅 are reported, respectively,
versus 𝜃. In general, it emerges that, as 𝜆 tends to 𝜆+𝑅, the low-frequency
band gap zones become noticeably wider, thus demonstrating the effec-
tiveness of the tunable metamaterial as acoustic waveguide as 𝜃 varies.
In fact, very high amplifications are noted for a wide range of 𝜃. As
an example, note that for values of 𝜃 ≃ 𝜋∕4 the amplification factor
is about 7, for 𝜃 ≃ 3𝜋∕8 is about 10, while for 𝜃 ≃ 5𝜋∕6 for 𝜆 = 0
the band gap is practically evanescent, whereas for 𝜆 → 𝜆+𝑅 it becomes
comparable with the maximum value. On the other hand, for 𝜃 values
about 0 and 𝜋∕2 it emerges, as expected, a reduced effect of the tunable
electrical circuit. For 𝜃 ≈ 0 and 𝜃 ≈ 𝜋∕2, indeed, the building block
𝐴 is characterized by orthotropic constitutive tensors, thus the tuning
parameter 𝜆 does not influence the dispersion curves associated with
shear waves, as it emerges from Eqs. (3)–(5). Moreover, it is observed
that moving from 𝜆 = 0 to 𝜆 → 𝜆+𝑅, the maximum value of the first
band gap amplitude is shifted from 𝜃 ≃ 𝜋∕10 to 𝜃 ≃ 𝜋∕4. Interestingly,
a symmetrization of the band gap zones with respect to 𝜃 ≈ 𝜋∕4 in
frequency range considered is observed.

Additionally, for 𝜆 = 0 in Fig. 8(a) and 𝜆 → 𝜆+𝑅 in Fig. 8(b) plots
of Floquet–Bloch spectrum in terms of the dimensionless frequency
𝜔∕𝜔 versus the dimensionless wave number 𝑘 𝑑 are reported for to
𝑟 2
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Fig. 5. Floquet–Bloch spectra for shear waves characterized by a wave vector 𝐤 = 𝑘2𝐞2 with 𝜆 = 0, 𝜃 = 0 for different generations: (a) 2; (b) 3; (c) 4; (d) 5; (e) 6; (f) 7.
𝜃 = 0, 𝜋∕6, 𝜋∕4, 𝜋∕2 in red, green, blue and black, respectively for a wide
range of frequencies. More specifically, it emerges that for 𝜃 = 0, 𝜋∕2,
the first band gap falls within the 1st and the 2nd optical branches,
while for 𝜃 ∈ (0, 𝜋∕2) it falls within the 2nd acoustic and the 1st optical
branches. Focusing on the case with 𝜃 = 𝜋∕4, in Fig. 9 the frequency
band structure for 𝜆 = 0 and 𝜆 → 𝜆+𝑅 are compared. In this case for
𝜆 = 0, Fig. 9(a), ten stop bands are detected in the frequency range
considered. On the other hand, it emerges that moving to 𝜆 → 𝜆+𝑅,
Fig. 9(b), a considerable lower spectral density is shown for the optical
branches, and in general the band gap amplitudes tend to amplify, as
also noted for the low frequency band gap, between the 2nd acoustic
and the 1st optical branches. Besides, the first pass band amplitude
remains almost the same as a function of 𝜆, while in the considered
8

frequency range pass band amplitude related to optical branches tend
to decrease.

As a further investigation, we focus on both dimensionless band gap
amplitude 𝐴𝑠∕𝜔𝑟 and central frequency 𝜔∕𝜔𝑟 with respect to the tuning
parameter 𝜆∗ = 𝜆 − 𝜆𝑅. In Fig. 10 the blue curves refer to first band
gap while the red curves to second one. Concerning the first band gap,
it can be noted that both the band gap amplitude, Fig. 10(a), and the
central frequency, Fig. 10(b), increase as 𝜆∗ decreases, i.e. when 𝜆 tends
to 𝜆𝑅. Focusing on the second gap, on the one hand it is confirmed that
when 𝜆 approaches to 𝜆𝑅 the dimensionless band gap amplitude takes a
maximum value, but, on the other hand, a qualitative different behavior
is exhibited. It is, indeed, noted that for 𝜆∗ ≈ 0.0017 the amplitude
𝐴 ∕𝜔 tends to vanish. The trend of 𝜔∕𝜔 remains qualitatively similar
𝑠 𝑟 𝑟
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Fig. 6. Frequency band structure for waves characterized by a wave vector 𝐤 = 𝑘2𝐞2 with 𝜆 = 0 and generations ranging from 2 to 7. (a) 𝜃=0; (b) 𝜃 = 𝜋∕6; (c) 𝜃 = 𝜋∕4; (d)
𝜃 = 𝜋.
to the corresponding one exhibited by the first band gap except for
𝜆∗ ≈ 0.0017, highlighted with a gray dot.

Now focus is on investigating the behavior of the generation 3.
Again in Fig. 11 the comparison between the frequency band structure
corresponding to 𝜆 = 0 and 𝜆 → 𝜆+𝑅 is performed as 𝜃 varies. As 𝜆
tends to approach 𝜆 , the low-frequency band gap zones extends over
9

𝑅

a wider range of 𝜃. Also in this case the tunable metamaterial delivers
very satisfactory performances, see Figs. 11(a) and (b). Again high
amplifications of band gap amplitudes are noted for a wide range of
𝜃. More specifically, for 𝜃 ≃ 𝜋∕10, corresponding to the maximum am-
plitude for 𝜆 = 0, the amplification factor is about 1.2, for 𝜃 ≃ 𝜋∕4 the
amplification factor achieves the value of about 2.3, while for 𝜃 ≃ 2𝜋∕5
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Fig. 7. Comparison between 𝜆 = 0 and 𝜆 → 𝜆+𝑅 for the case of generation 2. Band gap zones as 𝜃 varies. (a) 𝜆 = 0; (b) 𝜆 → 𝜆+𝑅.
Fig. 8. Comparison between 𝜆 = 0 and 𝜆 → 𝜆+𝑅 for the case of generation 2. Floquet–Bloch spectra for 𝜃 = 0, 𝜋∕6, 𝜋∕4, 𝜋∕2. (a) 𝜆 = 0; (b) 𝜆 → 𝜆+𝑅.
when 𝜆 = 0 the band gap is practically evanescent, whereas for 𝜆 → 𝜆+𝑅
it becomes comparable with the maximum value. Also in this case, it
can be observed that for 𝜃 values about 0 and 𝜋∕2, corresponding to the
case where the building block 𝐴 has orthotropic constitutive tensors,
the tunable electrical circuit exhibits a lower effectiveness, due to the
lack of influence of the tuning parameter 𝜆 on the dispersion curves
associated with shear waves, see Eqs. (3)–(5).

Additionally, for 𝜆 = 0 in Fig. 12(a) and 𝜆 → 𝜆+𝑅 in Fig. 12(b) plots
of Floquet–Bloch spectrum in terms of the dimensionless frequency
10
𝜔∕𝜔𝑟 versus the dimensionless wave number 𝑘2𝑑 are plot for to 𝜃 =
0, 𝜋∕6, 𝜋∕4, 𝜋∕2 in red, green, blue and black, respectively for a wide
range of frequencies. Also in this case, it is observed that for 𝜃 = 0, 𝜋∕2
the first band gap falls within the 1st and the 2nd optical branches,
while for 𝜃 ∈ (0, 𝜋∕2) it falls within the 2nd acoustic and the 1st optical
branches.

Considering the case with 𝜃 = 𝜋∕4, in Fig. 13(a) and (b) the
frequency band structure for 𝜆=0 and 𝜆 → 𝜆+𝑅 are compared. In
Fig. 13(a) with 𝜆 = 0, ten band gaps are found in the frequency range
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Fig. 9. Floquet–Bloch spectra, with stop bands highlighted in blue, for generation 2 and 𝜃 = 𝜋∕4: (a) 𝜆 = 0; (b) 𝜆 → 𝜆+𝑅.

Fig. 10. First (red curves) and second (blue curves) band gaps, for waves characterized by a wave vector 𝐤 = 𝑘2𝐞2, for generation 2 and 𝜃 = 𝜋∕4: (a) dimensionless band gap
amplitude 𝐴𝑠∕𝜔𝑟 as a function of 𝜆∗; (b) central frequency 𝜔∕𝜔𝑟 as a function of 𝜆∗.
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Fig. 11. Comparison between 𝜆 = 0 and 𝜆→ 𝜆+𝑅 for the case of generation 3. Band gap zones as 𝜃 varies. (a) 𝜆 = 0; (b) 𝜆 → 𝜆+𝑅.
Fig. 12. Comparison between 𝜆 = 0 and 𝜆→ 𝜆+𝑅 for the case of generation 3. Floquet–Bloch spectra for 𝜃 = 0, 𝜋∕6, 𝜋∕4, 𝜋∕2. (a) 𝜆 = 0; (b) 𝜆 ≈ 𝜆𝑅.
considered. It stands to reason that for 𝜆 → 𝜆+𝑅, see Fig. 13(b), a
considerable lower spectral density is observed for the optical branches,
as well as the band gap amplitudes tends to amplify, as clearly detected
in the case of low-frequency band gap, between the 2nd acoustic and
the first 1st optical branches.

In Fig. 14 both dimensionless band gap amplitude 𝐴𝑠∕𝜔𝑟 and central
frequency 𝜔∕𝜔𝑟 versus the tuning parameter 𝜆∗ = 𝜆 − 𝜆𝑅 are shown.
Again blue curves refer to the first band gap, while red curves refers to
the second one. For both band gaps the band gap amplitude, Fig. 14(a),
and the central frequency, Fig. 14(b), increase as 𝜆∗ decreases.
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6. Final remarks

New hierarchical waveguides are designed to be used as high per-
formances acoustic filters for the adaptive passive control of wave
propagation. At the macroscopic scale the composite material is made
of the periodic repetition, along a given periodicity direction, of two
different building blocks arranged according to the Fibonacci recursive
rule and forming a hierarchical layered material. Assuming the scale-
separation, at the microscopic scale one building block is, in turn, a
generically oriented layered two-phase composite with a piezoelectric
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Fig. 13. Floquet–Bloch spectra, with stop bands highlighted in blue, for generation 3 and 𝜃 = 𝜋∕4: (a) 𝜆 = 0; (b) 𝜆→ 𝜆+𝑅.
Fig. 14. First (red curves) and second (blue curves) band gaps, for waves characterized by a wave vector 𝐤 = 𝑘2𝐞2, for generation 3 and 𝜃 = 𝜋∕4: (a) dimensionless band gap
amplitude 𝐴𝑠∕𝜔𝑟 as a function of 𝜆∗; (b) central frequency 𝜔∕𝜔𝑟 as a function of 𝜆∗.
phase shunted by an electrical circuit. The first order homogenized
physical properties of such layered microstructure are first determined
exploiting an asymptotic homogenization scheme. Then, the acous-
tic dispersion properties of the waveguide are investigated by using
13
a transfer matrix approach. In this framework, the frequency band
structure is determined for different generations of the Fibonacci se-
quence and for different values of the angle measuring the orientation
of the layered two-phase composite with respect to the macroscopic
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Fig. 15. Band gap zones as 𝜃 varies, with 𝜆 = 0, for different generations: (a) 2; (b) 3; (c) 4; (d) 5; (e) 6; (f) 7.
hierarchical layered material. It emerges that, when the layers at the
two scales share the same orientation and shear and compressional
waves are separately investigated, the main band gaps delimit areas of
the frequency spectrum in which, passing from one generation to the
next, each pass band splits into a number of shorter ones consistently
with the recursive rule of Fibonacci numbers. On the other hand, as
soon as the layers at the two scales have different orientation such
properties, as expected, are lost. In both cases, with the growth of
generation numbers, the number of pass and stop bands increases
and, in general, the dispersion branches of the spectra become flatter.
The effectiveness of the tunable metamaterial as acoustic waveguide
is further tested, for different Fibonacci generations, in the relevant
case of purely capacitive non dissipative electrical circuit. It is proved
that as the tuning parameter approaches the resonance value, the
hierarchical waveguide exhibits strongly improved performances, with
the best behavior delivered for the case the orientation of layers at
the two scales differs by 𝜋∕4. The promising results obtained from
the characterization of the proposed new hierarchical Fibonacci-based
layered material are crucial for the optimal design of tunable acoustic
filters, adapt to a variable performance requirement in real-time.
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Appendix. Band gap zones for different generations and 𝝀 = 𝟎

In Fig. 15, the band gap zones for 𝜆 = 0 are reported versus
𝜃for different generations of the Fibonacci-like superlattice. In general,
it emerges that, as the generation number increases the frequency
band structure appears more and more fragmented, accordingly with
the behavior showed by the frequency spectrum shown in Fig. 5 for
𝜃 = 0.
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