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Abstract
Balanced sampling is a randommethod for sample selection, the use ofwhich is prefer-
able when auxiliary information is available for all units of a population. However,
implementing balanced sampling can be a challenging task, and this is due in part to the
computational efforts required and the necessity to respect balancing constraints and
inclusion probabilities. In the present paper, a new algorithm for selecting balanced
samples is proposed. This method is inspired by simulated annealing algorithms, as
a balanced sample selection can be interpreted as an optimization problem. A set of
simulation experiments and an example using real data shows the efficiency and the
accuracy of the proposed algorithm.

Keywords Balanced sampling · Auxiliary variables · Sampling algorithms ·
Simulated annealing

1 Introduction

Balanced sampling refers to a class of techniques aimed at randomly selecting units
from a given population. The selection of balanced samples was first introduced by
Gini (1928) and later recalled by Yates (1946) and Thionnet (1953), stimulating from
then on an increasing interest in addressing, by means of balancing, several practical
survey sampling problems (see for example Falorsi and Righi 2008; Grafström and
Tillé 2013; Brus 2015; Benedetti and Piersimoni 2017; Chauvet 2017; Marazzi and
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Tillé 2017; Tillé et al. 2018; Chauvet and Le Gleut 2019; Kermorvant et al. 2019). The
peculiarity of balanced sampling consists of exploiting a priori auxiliary information
available for all units of a population at the design stage, so that the expansion estimator
(Narain 1951; Horvitz and Thompson 1952) returns the balancing variables totals
known at the population level. The stronger the correlation among the variables of
interest and the balancing variables, the higher the effiency of a balanced sampling
design in estimating the population total.

Several contributions have been proposed in literature to select balanced samples
(for a review seeValliant et al. 2000).All themethods are configured as partial solutions
for a variety of reasons, the main of which are a considerable computing time when
several balancing variables are used (e.g. in enumerative sampling; Ardilly 1991), and
problems in respecting the original inclusion probabilities (e.g. in rejective sampling;
Hájek 1981). A general solution for balanced samplingwas finally proposed byDeville
and Tillé (2004), whose cubemethod allows for the selection of balanced samples with
equal or unequal inclusion probabilities and any number of auxiliary variableswith fast
execution time (Chauvet and Tillé 2006; Grafström and Lisic 2016). This method is
based on a random transformation of the inclusion probabilities vector to drawa sample
that exactly, or at least approximately, satisfies the original inclusion probabilities
and balancing equations (Tillé 2011). Deville and Tillé (2004) provided a solution
that allows for the selection of approximate balanced samples, while respecting the
inclusion probabilities (for an exhaustive presentation of the cube method, see Deville
and Tillé 2004; Tillé 2006).

The selection of balanced samples may be viewed as a constrained optimization
problem with discrete variables and a solution may be borrowed from physics. In
particular, a Markov chain Monte Carlo method aimed at solving complex combina-
torial problems, such as e.g. the traveling salesman problem, is awell-known simulated
annealingmethod (Kirkpatrick et al. 1983). Thismethod uses theMetropolis-Hastings
algorithm for approximating the global optimum of a given function and is a prefer-
able alternative when the approximation of a global optimum is more important than
finding a precise local one. For a review of the applications of simulated annealing, see
e.g. Aarts and van Laarhoven (1987). In the present paper, we show that a deterministic
version of simulated annealing may be applied in sampling context to select high qual-
ity, fixed-size balanced samples. A very fast algorithm called Simulated Annealing for
Balanced Sampling (sabs) is presented and its quality in terms of sample balance and
respect of inclusion probabilities is evaluated by means of Monte Carlo simulations.
A comparison with the cube method is also carried out. The paper is structured as
follows. In Sect. 2, preliminaries and notations are given. In Sect. 3, the new algorithm
is presented and both technical and theoretical aspects are detailed. In Sect. 4, results
of a simulation study exploring several scenarios are presented. Section 5 is devoted
to the practical application of the algorithm to a real data-set. Finally, Sect. 6 discusses
the results and concludes.
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2 Preliminaries and notation

Let U be a finite population of size N composed by k units, with k ∈ {1, ..., N }.
Let denote with y the variable of interest and with yk, k ∈ U , the value of y in the
k − th population unit. The aim is to estimate the population total Y = ∑

k∈U yk . Let
S be a random fixed-size sample defined as a subset ofU selected under a probability
distribution p(·) and according to a without replacement sampling design, such that
Pr(S = s) = p(s)where

∑
s⊂U p(s) = 1, for each s ∈ U . A randomsamplemay also

be defined as a discrete random non-negative vector a = (a1, ..., ak, ..., aN )T, where
ak indicates the number of selections of the unit k ∈ U in the sample. The variable ak is
an inclusion indicator, which is, in without replacement sampling, equal to 1 if the unit
k is selected in the sample, and 0 otherwise (i.e. following a Bernoulli distribution).
The inclusion probability πk is the probability for the unit k to be selected in the
sample. This probability is derived from the chosen sampling design as πk = Pr(k ∈
S) = Ep(ak) = ∑

s⊂Us�k p(s), for each k ∈ U . In a design-based perspective, it is
possible to estimate the population total Y by using the expansion estimator (Narain
1951; Horvitz and Thompson 1952) of the total Ŷ = ∑

k∈S
yk
πk

= ∑
k∈U

ykak
πk

, with
πk > 0.

Let zk = (zk1, ...zk j , ..., zk J )T be a vector of J auxiliary variables known for all the
units in the populationU , such that the knowledge of zk allows for the computation of
J totals as Z j = ∑

k∈U zk j , j = 1, ..., J . When a sample is selected, the expansion
estimator of J auxiliary variables can be computed as Ẑ j = ∑

k∈S
zk j
πk

. A sampling

design p(s) is said to be balanced on the vector of the auxiliary variables zTk =
(z1, ..., z J ) if and only if it satisfies the balancing equations

∑

k∈S

zk
πk

=
∑

k∈U
zk .

The selection of a balanced samplemay be a challenging task because it is a problem
that cannot satisfy non-integer constraints. Indeed, theremay exist a rounding problem
that prevents the exact satisfaction of the balancing constraints. Therefore, the aim
of this study is to find a design that exactly, or at least approximately, satisfies the
balancing equations. The rounding problem becomes less relevant when the sample
size is high, but this condition may not be compatible with the practical constraints
of the conduction of a survey. In addition, the respect of the inclusion probabilities
cannot be overlooked, as they are not always satisfied with some balanced sampling
methods.

Moreover, balanced sampling may be formulated and solved as a linear program-
ming problem. In this respect, to each sample is assigned a cost function C(s), which
is equal to zero if the sample is perfectly balanced and has greater values as the sam-
ple becomes increasingly unbalanced. The aim here is to find a sampling design p(s)
that minimizes the mean cost

∑
s⊂U C(s)p(s), subject to the constraint to respect the

inclusion probabilities
∑

s⊂U p(s) = 1 and
∑

s⊂U ,s�k p(s) = πk, with k ∈ U .
Deville and Tillé (1998) demonstrated that the solution to the problem leads to the

selection of a minimal support design. Unfortunately, applying linear programming
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is, in most cases, unfeasible, as it is necessary to enumerate all the possible samples.
Therefore, the number of samples 2N is too big to be a suitable solution. This reveals
the need for a balanced sampling design to avoid such enumeration. In this respect,
the cube method proposed by Deville and Tillé (2004) allows one to consider the
2N possible samples as 2N vectors in R

N . This method provides a general solution
to balance on several variables, with equal and unequal inclusion probabilities. The
cube method is based on a random transformation of the inclusion probabilities vector
and a sample is obtained when the inclusion probabilities are exactly satisfied and the
balancing equations are satisfied as well as possible (Deville and Tillé 2004; Chauvet
and Tillé 2006).

3 Simulated annealing-based algorithm

In balanced sampling, the aim, according to a multivariate distribution with condi-
tions on the support, is to select a random sample of fixed-size. Simulated annealing
may represent a suitable solution since it can be used to generate samples from
any high-dimensional distribution if the probability function is known. Exploiting
the idea at the basis of the method, a combinatorial optimization problem can be
viewed as a stochastic process (Robert and Casella 2013), in which local conditional
distributions are dependent from a global control parameter, i.e. the so-called temper-
ature (for a readable explanation, see Geman and Geman 1984). Simulated annealing
requires the generation of a finite sequence of decreasing values of the temperature
(the annealing schedule) according to a probabilistic decreasing function (i.e. the
Metropolis-Hastings algorithm), in order to converge toward a set of global optimal
solutions (i.e. obtaining the minimum energy states). The parallelism with sampling
problems easily follows. Specifically, let’s define an energy function

f (a) =

√
√
√
√

∑J
j=1

(
Ẑ j − Z j

)2

J
.

This represents a mean quadratic distance function among the estimated totals and
the known totals of the balancing variables, for any possible configuration of the
sample a ∈ {0, 1}N . Note that any distance function can be used as an energy function
and no restrictions exist on it. Clearly, if f (a) = 0, the balance of the sample is
exactly satisfied. The proposed sampling algorithm works to achieving this condition,
by searching an optimal configuration. Hence, for configuration a(i) obtained at the
i − th attempt of the algorithm, it may be possible to obtain another configuration
a(e), in which the inclusion indicator label is randomly exchanged among two units
at each iteration, ensuring the respect of the sample size. The second configuration is
preferred to the first if f

(
a(e)

)
< f

(
a(i)

)
, using a deterministic approach, following

the idea of Besag (1986) in the image processing context. The maximum number of
iterations is equal to MAX IT ER, where each iteration consists of N attempts, and
where MAX IT ER is chosen by the user and N is the population size. Therefore,
the algorithm performs a maximum of MAX IT ER · N attempts. The procedure
stops if a pre-fixed respect of minimal balancing constraints is reached. Thus, a final
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configuration is always obtainable and no restrictions on summary index used in the
convergence (CONV ) check are needed.

Algorithm 1 sabs: simulated annealing-based algorithm for selecting balanced sam-
pling.

Start with the initial configuration a(1), given by a simple random sample of size n;
d = ∞;
p = 1;
i = 1;
while d > CONV & p <= MAX IT ER do

c = 1;
while d > CONV & c <= N do

randomly select one unit k in the current configuration a(i), i.e. a(i)
k = 1;

randomly select one unit l not selected in the current configuration a(i), i.e. a(i)
l = 0;

define the new configuration a(e), given by a(i) but with the two previously selected units k and

l interchanged, i.e. a(e)
k = 0 and a(e)

l = 1;
if f (a(e)) < f (a(i)) then

a(i+1) = a(e);
else

a(i+1) = a(i);
end

d = max

(
|Ẑ−Z|

Z

)

;
c++;
i++;

end
p++;

end
The last selected configuration represents the selected sample.

This procedure implies that a local minimum, not necessarily a global one, is
reached. The way to avoid the entrapment in local minima lays in the use of a proba-
bilistic decreasing rule, such as in traditional implementation of simulated annealing.
Unfortunately, the main contraindication is to require strong computational efforts,
because the temperature needs to be decreased very slowly so that all possible solutions
may be visited. This makes this procedure difficult to be used in practice, especially
with a high number of balancing variables and with large populations. In addition, the
search for global optima may produce undesirable solutions in terms of the selected
samples. However, according to our computational experience, this algorithm is based
on a deterministic decreasing rule that ensures the balancing constraints can be satis-
factorily achieved in a reasonable number of iterations and obtains first-order inclusion
probabilities very close to those desired, as showed in the following section.

From a practical point of view, the sabs selects a set of fixed-size random samples
without replacement, according to the initial vector of inclusion probabilities. This
means that for each configuration, it is possible to resort to the expansion estimator
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Table 1 Generated populations
according to Uniform, Normal,
Exponential, and Bimodal
distributions, summarized for
the population sizes

Distribution N
1000 5000 10000

Uni f orm U1 U5 U9

Normal U2 U6 U10

Exponential U3 U7 U11

Bimodal U4 U8 U12

and to exploit its properties in total estimation, variance, and variance estimation
(Horvitz and Thompson 1952).

4 Simulation experiments

In order to check the properties of the proposed sampling algorithm, several simulation
experiments were carried out. Twelve populations have been generated according to
different distributions and sizes. Indeed, an Uniform U ∼ (0, 1), a Normal N ∼

(0, 1) + 6, an Exponential Exp ∼ (0.5), and a Bimodal defined as a mixture of
normals Bim ∼ 0.4N (2, 0.25) + 0.6N (4, 0.25), each with population sizes equal to
1000, 5000 and 10000 units, have been considered. These populations are referred to
as U1 - U12, and a summary of the characteristics is reported in Table 1.

For each population, J = 3; 5; 10 independent auxiliary variables have been gener-
ated, for a total of 36 scenarios.We considered a relevant number of auxiliary variables
in order to evaluate the performance of the proposed method in the presence of a vast
information asset.

For each of the above-mentioned scenarios, M = 10000 fixed-size samples
have been selected with equal inclusion probabilities and with sampling fractions
f = 0.01; 0.05; 0.1, by means of the sabs and cube methods. Indeed, the proposed
algorithm has been compared with the cube method since it is the most used sam-
pling design for the selection of balanced samples; therefore, it is the most appropriate
competitor. Moreover, in order to investigate some extreme cases as well, four small
populations (U13 - U16) of dimension N = 100 have been generated according to
the aforementioned distributions, with J = 3; 5; 10 independent auxiliary variables.
Here also M = 10000 fixed-size samples have been selected, this time with sampling
fractions f = 0.1; 0.25. Note that the sabs algorithm has been set to stop when the
minimal balancing constraints equal to 0.1% is reached, with a maximum number of
iterations equal to 10 × N .

The simulation focuses on twovery important aspects in the evaluation of a balanced
sampling design: respect of first-order inclusion probabilities and respect of balancing
constraints. The former is investigated by means of the relative Root Mean Squared
Error, defined as:

r RMSEπk =

√
∑N

k=1

(
vk
M −πk

)2

N

f
,

where vk is the number of times the k-th unit is selected in M Monte Carlo replicates.
The difference in the respect of the balancing constraints has been defined as:
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Table 2 Results of the Monte Carlo experiment on populations U1, U2, U3, and U4, generated according
to Uniform, Normal, Exponential, and Bimodal distributions with J = 10 for three sampling fractions
f = 0.01; 0.05; 0.1. Monte Carlo replicates M = 10000

r RMSEπk

U1 (Uni f orm) U2(Normal) U3(Exponential) U4(Bimodal)
f sabs cube sabs cube sabs cube sabs cube

0.01 0.1658 0.0980 0.2034 0.0975 0.2407 0.0974 0.2375 0.1011

0.05 0.0480 0.0423 0.0527 0.0443 0.0573 0.0449 0.0514 0.0434

0.1 0.0313 0.0295 0.0331 0.0295 0.0341 0.0296 0.0314 0.0304

CD

0.01 0.0520 0.1486 0.0141 0.0437 0.0700 0.3480 0.0144 0.0560

0.05 0.0103 0.0288 0.0028 0.0088 0.0124 0.0652 0.0028 0.0112

0.1 0.0051 0.0143 0.0014 0.0044 0.0062 0.0331 0.0014 0.0056

Table 3 Results of theMonte Carlo experiment on populationsU9,U10,U11, andU12, generated according
to Uniform, Normal, Exponential, and Bimodal distributions with J = 10 for three sampling fractions
f = 0.01; 0.05; 0.1. Monte Carlo replicates M = 10000

r RMSEπk

U9 (Uni f orm) U10(Normal) U11(Exponential) U12(Bimodal)
f sabs cube sabs cube sabs cube sabs cube

0.01 0.0998 0.0995 0.1005 0.0987 0.1007 0.1002 0.1012 0.0988

0.05 0.0439 0.0435 0.0436 0.0437 0.0443 0.0434 0.0436 0.0437

0.1 0.0301 0.0304 0.0299 0.0299 0.0299 0.0210 0.0297 0.0296

CD

0.01 0.0038 0.0142 0.0010 0.0044 0.0044 0.0338 0.0010 0.0056

0.05 0.0009 0.0028 0.0009 0.0009 0.0009 0.0067 0.0009 0.0011

0.1 0.0009 0.0014 0.0009 0.0004 0.0009 0.0034 0.0009 0.0006

CD = mean(d),

with d = {d1, ..., dm, ..., dM } and dm = max j

(
Ẑ j,m−Z j

Z j

)

.

Moreover, a comparison in terms of computational time has been performed. In
particular, as an example, we report the elapsed time to select one sample on the
populations generated by U ∼ (0, 1).

4.1 Respect of the inclusion probabilities and of the balancing constraints

The most relevant results of the Monte Carlo experiments on U1 - U4 and U9 - U12
are reported in Tables 2 and 3 and are graphically summarized in Figs. 1, 2, 3 and 4,
while remaining simulation results are reported in the Supplementary Material.

The simulation results motivate the following comments.
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Fig. 1 Results of the Monte Carlo experiment regarding the respect of the inclusion probabilities. Sim-
ulations were performed on populations U1, U2, U3, and U4, generated according to Uniform, Normal,
Exponential, andBimodal distributionswith J = 10 for three sampling fractions f = 0.01; 0.05; 0.1.Monte
Carlo replicates M = 10000. X -axis: rRMSE values; Y -axis: frequency (density) of selected samples

With respect to the inclusion probabilities, the cube method showed better perfor-
mance than the sabs method. Furthermore, the performance difference between the
two methods decreased when the sampling fraction increased. Note that the largest
sampling fraction was considered equal to 10% of the population size. This behaviour
was detected on all of the considered populations.

With respect to the balancing constraints, the performances of the sabs was very
encouraging. Themethod showed errors very near to zero, for all three population sizes
and for the smaller sampling fractions considered. The differences in performance
among the sabs and cube methods increased with an increased population size (see
results reported in the Supplementary Material).

The considerations made up until this point were valid for all of the considered
distributions used to generate the populations presented so far.

With regard to the populations of size equal to 100 units, some simulation results
are reported in Table 4, while the extended set-up is reported in the Supplementary
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Fig. 2 Results of theMonteCarlo experiment regarding the respect of the balancing constraints. Simulations
were performed on populationsU1,U2,U3, andU4, generated according to Uniform, Normal, Exponential,
and Bimodal distributions with J = 10 for three sampling fractions f = 0.01; 0.05; 0.1. Monte Carlo
replicates M = 10000. X -axis: rRMSE values; Y -axis: frequency (density) of selected samples

Material. Sampling fractions have been increased compared to previous examples in
order to provide the balancing on the same number of constraints.

The latter populations represent a very particular case due to the very small popu-
lation sizes, which in turn implies very small sample sizes. Neverthless, the behaviour
of the sabs method is confirmed. The performances in respect of the inclusion proba-
bilities remain the best for the cube method, even as they become very similar with the
growth of the sampling fractions. It should be noted that with the bimodal distribution,
the r RMSEπk is practically identical for both methods. In respect of the balancing
constraints, the performances of the sabs were again confirmed as the best for every
distribution and every sampling fraction considered.
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Fig. 3 Results of the Monte Carlo experiment regarding the respect of the inclusion probabilities. Simula-
tions were performed on the populationsU9,U10,U11, andU12, generated according to Uniform, Normal,
Exponential, andBimodal distributionswith J = 10 for three sampling fractions f = 0.01; 0.05; 0.1.Monte
Carlo replicates M = 10000. X -axis: rRMSE values; Y -axis: frequency (density) of selected samples

Table 4 Results of the Monte Carlo experiment on the populations U13, U14, U15, and U16, generated
according to Uniform, Normal, Exponential, and Bimodal distributions with J = 10 for two sampling
fractions f = 0.1; 0.25. Monte Carlo replicates M = 10000.

r RMSEπk

U13 (Uni f orm) U14(Normal) U15(Exponential) U16(Bimodal)
f sabs cube sabs cube sabs cube sabs cube

0.1 0.1032 0.0326 0.1522 0.0281 0.2174 0.0306 0.0293 0.0285

0.25 0.0272 0.0192 0.0403 0.0173 0.0584 0.0176 0.0712 0.0712

CD

0.1 0.0731 0.1559 0.0195 0.0447 0.1060 0.3707 0.0221 0.0625

0.25 0.0289 0.0604 0.0077 0.0180 0.0385 0.1369 0.0085 0.0244
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Fig. 4 Results of theMonteCarlo experiment regarding the respect of the balancing constraints. Simulations
were performed on the populations U9, U10, U11, and U12, generated according to Uniform, Normal,
Exponential, andBimodal distributionswith J = 10 for three sampling fractions f = 0.01; 0.05; 0.1.Monte
Carlo replicates M = 10000. X -axis: rRMSE values; Y -axis: frequency (density) of selected samples

4.2 Time of computation

The computing time needed for the selection of samples for a given sampling method
could be an important factor in both surveys and simulations, especially if it is highly
dependent on N and n. Table 5 reports the average CPU time in seconds taken by
each of the algorithms to select a sample for different populations and sample sizes.
Simulations were performed on a 2.3 GHz Dual-Core Intel Core i5. Samples were
selected using R software. In particular, the sabs algorithm was implemented in C++
via Rcpp; the cubemethodwas implemented bymeans of theBalancedSampling
package (Grafström and Lisic 2016), which is a fast implementation in C++ via Rcpp,
and by means of the sampling package (Tillé and Matei 2009).
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Table 5 Elapsed time in seconds
for the selection of one sample
(average over 10 Monte Carlo
replicates) by means of the sabs
algorithm and of two versions of
the cube method. Populations
used were U1,U5, and U9.
Balancing variables: J = 10.
Sampling fractions
f = 0.01; 0.05; 0.1

N f sabs (C++) cube (C++) cube (R)

1000 0.01 0.0007 0.0029 0.1028

0.05 0.0008 0.0029 0.1015

0.1 0.0009 0.0028 0.0994

5000 0.01 0.0047 0.0136 0.5236

0.05 0.0049 0.0135 0.5226

0.1 0.0024 0.0133 0.5387

10,000 0.01 0.0099 0.0259 1.1659

0.05 0.0031 0.0275 1.1312

0.1 0.0016 0.0260 1.0600

The sabs algorithm was the least computationally intensive method used, as it
was sensibly quicker than the cube method implemented in both ways. It increased
gradually with n and only proportionally to N , mainly because the number of attempts
was set equal to N . Thus, we can be confident that the sabs algorithm can be effectively
applied without extensive difficulties regarding large population sizes and without any
storage or RAM limitations other than those represented by the size of the frame from
which we wanted to select the sample.

5 An experiment on real data

Real data was used in order to investigate the efficiency of the sampling design when
estimating a target variable in a real context. The dataset we used is freely available
from www.statbel.fgov.be and concerns fiscal statistics on income subject to personal
income tax. Data are related to the 581 Belgian municipalities for the period between
2005–2018. By focusing attention on information related to the last available year,
we aim to estimate the total Belgian net income (Y ) by exploiting the three following
auxiliary variables: the number of declarations with a total net taxable income greater
than zero (z1), the number of declarations where the amount of total taxes is greater
than zero (z2), and the number of residents per municipality (z3). We selected M =
10000 fixed-size samples with equal inclusion probabilities, for sampling fractions
f = 0.01; 0.05; 0.1, by means of the sabs algorithm, the cube method and simple
random sampling without replacement (srswor). The latter was a traditionally used
benchmark in survey sampling. Beside to the computation of r RMSEπk and CD, the
population total of Y was estimated by the expansion estimator Ŷ . We computed the
relative Root Mean Square Error for the estimator, which is defined as r RMSEŶ =
√

∑M
m=1( ˆYm−Y)

2

M
Y . Table 6 shows the results of r RMSEπk ,CD, and r RMSEŶ , obtained

by selecting samples with the three sampling methods considered.
The results of r RMSEπk and CD were in line with those seen in previous sim-

ulations. Indeed, the sabs algorithm demonstrated greater efficiency in respecting
balancing constraints, while also performing worse in the respect of inclusion proba-
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Table 6 Results of the Monte
Carlo experiment on the Belgian
municipalities data for three
sampling fractions
f = 0.01; 0.05; 0.1. Monte
Carlo replicates M = 10000

f sabs cube srswor

r RMSEπk 0.01 0.7109 0.1029 0.0932

0.05 0.3149 0.0437 0.0442

0.1 0.1466 0.0310 0.0307

CD 0.01 0.0098 0.3353 0.4561

0.05 0.0022 0.1378 0.2194

0.1 0.0010 0.0892 0.1594

r RMSEŶ 0.01 0.1348 0.4794 0.5792

0.05 0.0354 0.1685 0.2558

0.1 0.0268 0.1053 0.1776

bilities compared to srswor and the cube method. Clearly srswor shows considerable
superiority compared to other balanced sampling methods, but this advantage is out-
classed by its relevant inferiority in producing efficient estimates of a target variable.
In fact, the ability of the sabs and cube method to efficiently estimate the Y variable
is evident, especially in regard to the former method. Hence, the efficiency of the
proposed algorithm has been showed once again, together with its expendability in
practical contexts.

6 Dicussion and conclusions

In the present paper, a new method of selecting balanced samples by means of a sim-
ulated annealing-based algorithm has been proposed. By exploiting the possibility
of interpreting balanced sampling as an optimization problem, we showed that the
sabs algorithm allows for a quicker selection of well-balanced samples on a wider
set of auxiliary variables, not neglecting a rigorous respect of inclusion probabilities
and a strong efficiency in estimation. An in-depth investigation about both aspects is
necessary in order to prove the employability of a sampling method in practical situ-
ations. In fact, a good respect of balancing constraints results in a possible reduction
of estimation variance, while the respect of inclusion probabilities means a reduction
in estimation bias. Hence, a crucial issue concerns finding a sampling method capable
of combining these two desirable properties. In the present paper, we proved through
extensive simulation experiments, both on simulated and real data, that the sabs algo-
rithm achieves this goal, resulting in a valid and efficient alternative to the well-known
cube method.
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