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Abstract The paper proposes a refined CT-based 
FE modelling strategy that implements a limit analy-
sis numerical procedure, namely the Elastic Com-
pensation Method (ECM), to estimate a lower bound 
to the collapse load of a human femur. In particular, 
the model geometry was obtained from CT images 
by segmentation of a fresh-frozen human cadaveric 
femur that was discretized with second-order tetrahe-
dral 3D finite elements. A yield criterion of Tsai–Wu-
type, expressed in principal stress space, was adopted 
to model the bone tissues for which the strength 
limit values in tension, compression and shear are 
computed locally from the femoral density distribu-
tion also derived from CT images. The developed 
CT-based numerical technique showed the ability to 
predict, at least for the examined femur for which the 
experimental collapse load is available, a lower bound 

to the collapse load. The proposed approach seems a 
promising and effective tool that could be adopted 
into clinical practice to predict the fracture risk of 
human femur starting from patient-specific data given 
by medical imaging.

Keywords Femur mechanics · Limit analysis · Peak 
load prediction · CT-based FE modelling

1 Introduction

Osteoporosis represents one of the major causes of 
femur fracture. An osteoporotic femur is character-
ized by low bone mass, microarchitectural deteriora-
tion and thus a significant loss of mechanical integrity 
[1, 2]. All these factors make the bone more prone 
to fracture. Currently, clinical practice determines 
fracture risk relying on areal bone mineral density 
(aBMD) measured by Dual-energy X-ray Absorp-
tiometry [3]. The aBMD of a patient is related to a 
reference value for young adults of the same sex by 
using the T-score which is expressed in standard 
deviations (SDs). The T-score describes the number 
of SDs by which the aBMD in an individual differs 
from the mean value expected in young healthy indi-
viduals [4]. The diagnosis of osteoporosis is defined 
as a value for aBMD 2.5 SD or more below the young 
female adult mean (T-score less than or equal to −2.5 
SD). However, aBMD and thus T-score are not always 
effective for identifying cases at high risk of fracture 
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[5]. The aBMD measured by DXA provides only a 
two-dimensional (2D) projection of a three-dimen-
sional (3D) structure and cannot capture 3D bone 
geometry and micro-structure. Moreover, the DXA-
based aBMD does not account for many mechanical 
phenomena affecting the bone strength that concur 
to femur fracture [6, 7]. As a result, the fracture risk 
assessment is a challenging task for clinicians. In this 
context, an impressive number of patient-specific 
finite element (FE) models of the femur from Com-
puted Tomography (CT) images have been developed 
[8–11] to overcome aBMD limitations in identify-
ing cases at high risk of fracture being able to bet-
ter model the personalized mechanical determinants 
of fracture. While they are able to improve the pre-
diction of ex-vivo measured femoral strength when 
compared to aBMD [12–14], in in-vivo applications 
the improvement over DXA-based aBMD in predict-
ing, for example, hip fracture risk is different among 
the studies and depends mainly on the clinical patient 
cohort investigated [15–18].

The interest in this problem has stimulated dif-
ferent research strategies proposed in the relevant 
literature. However, some approaches, such as those 
implying the implementation of damage and frac-
ture propagation models [9, 19, 20] or which inves-
tigate post-elastic phenomena up to failure [21, 22], 
although interesting from a research point of view, 
are currently not easily applicable to real problems 
especially in 3D modelling. In the Authors’ opin-
ion, mechanics-based approaches, not dependent on 
the identification of the elastic characteristics of the 
material as well as on accurate post-elastic modelling, 
but oriented to predict just the peak load of the bone 
at a state of incipient collapse may add a significant 
improvement in a reliable prediction of bone fracture 
risk.

In this context, Limit Analysis structural theory 
may represent an interesting approach towards the 
improvement of femoral fracture risk assessment. As 
well known, Limit Analysis allows to predict, with a 
high degree of accuracy, the collapse load of a struc-
ture by only knowing a field of admissible stresses 
normally defined by a stress-based constitutive cri-
terion (Appendix 1). With respect to other strategies 
in the literature, the main advantage of the Limit 
Analysis is its ability to estimate the collapse load 
independently of the deformation or loading history 
without describing post-elastic phenomena, damage 

or fracture propagation. In the present work, the idea 
was to apply this theory in the context of bone biome-
chanics to assess its ability in predicting the collapse 
load for a human bone. To this aim, a Limit Analysis 
approach, whose robustness has already been experi-
mented in different engineering contexts [23, 24], is 
herein adopted. A first attempt in the same direction 
can be found in Pisano et  al. [25]. In that work, the 
theory of Limit Analysis was applied to investigate 
the proximal human femur in sigle-stance leg and 
sideways fall configurations under quasi-static loads. 
In particular, following the static theorem of Limit 
Analysis, a numerical procedure, that allows to evalu-
ate a lower bound to the collapse load of the femur, 
has been implemented. The procedure involves a 
series of elastic analyses, each one carried on for act-
ing loads greater than the ones used in the previous 
analysis, and is named Elastic Compensation Method 
(ECM). Indeed, during each analysis, the elastic mod-
uli of the “femur materials” are appropriately varied/
compensated to obtain a redistribution of the stresses 
that comply with an admissible stress domain, as 
stated by the static approach of limit analysis. The 
procedure is iterative and stops when, by increas-
ing the loads, the redistribution of the stresses is no 
longer possible. However, in the above quoted paper, 
the ECM procedure was implemented considering a 
simplified 3D femoral geometry and, furthermore, 
unchanged values set for the strengths of the constitu-
ent materials (cortical, trabecular, marrow) along the 
whole the femur. In a more recent work [26] a sen-
sitivity analysis has been performed by evaluating 
the influence of the cortical and trabecular thick-
nesses and strengths on the numerical findings. The 
great sensitivity shown by the results, in terms of the 
predicted ultimate load, demonstrates the need for a 
more accurate modeling of both the geometry and the 
strength quantities.

To overcome the weaknesses present in Pisano 
et al. [25, 26] this paper proposes a CT-based Limit 
Analysis numerical approach. The novelties of the 
present approach can be summarized as follows: 
first, a realistic femoral geometry reconstructed 
from CT images has been obtained; second, all the 
constitutive parameters have been derived locally, 
i.e. point by point, as a function of the femoral den-
sity distribution that has been obtained from the 
CT images; finally, a quantitative validation, con-
sidering a comparison with real/experimental data 
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on a specific real femur, has been performed. It is 
important to underline that the proposed method is 
of general applicability, since it allows to take into 
account the loss of resistance correlated to reduc-
tion, if any, of bone density in specific areas. The 
procedure is not specifically oriented to diseased 
femurs but it can easily take into account the pres-
ence of tumors, osteophytes or other pathologies 
that influence the strength values of the bone tissues 
which, as will be clarified below, are the driving 
material parameters of the analysis.

The paper is organized as follows. In Sect. 2 both 
the computational modelling procedure with the con-
stitutive assumptions and the numerical implemen-
tation are described. The main results are reported 
in Sect.  3. Discussion and concluding remarks are 
reported in Sects.  4 and 5, respectively. Finally 
Appendix 1 reports some very basic concepts of 
Limit Analysis theory, whereas in Appendix 2 a flow 
diagram of the numerical implementation is showed.

2  Material and methods

The left fresh-frozen cadaveric femur of a female, 76 
years old, 160 cm in height, 50 kg, who died of renal 
cell cancer has been selected among the specimens 
used in [27]. The femur was characterized by a metas-
tasis located in the femoral neck and was experimen-
tally tested under single leg stance loading configura-
tion up to fracture which was registered at an ultimate 
load of 4500 N [27]. The choice to investigate a met-
astatic femur was merely due to the full availability 
of experimental findings for this case; as said above 
the procedure is not only applicable in case of tumor 
diseases.

2.1  Computational modelling procedure

2.1.1  CT imaging

As described in [27], the femur was CT-scanned 
(Phillips Brilliance 64 CT axial scanner, Eindhoven, 
Netherlands) with a K 2HPO4 calibration phantom. 
The following CT scanner parameters have been used 
for the acquisition: 120 kVp, 250 mAs, 1.25 mm slice 
thickness, and 0.2 ⋅ 0.2 mm pixel size.

2.1.2  Geometry reconstruction and FE meshing

First, the CT images were segmented using a semi-
automatic procedure to reconstruct the femoral geom-
etry considering the portion of the femur comprised 
from the mid-diaphysis to the femoral head (ITK-
Snap 3.2.0, University of Pennsylvania) (Fig. 1). The 
cartesian reference system is characterized by the z 
axis aligned with the diaphyseal axis, the x axis ori-
ented in the medio-lateral direction or radial direction 
and the y axis aligned in antero-posterior direction. 
Then, femur geometry has been meshed through sec-
ond-order displacement-based tetrahedral elements 
in Comsol Multiphysics (Comsol, v.6.0 COMSOL, 
Stockholm, Sweden). The FE-mesh was characterized 
by 6.2 ⋅ 105 elements with an average element side 
size of about 1.5 mm (Fig. 1).

As will appear clearer below, such a dense discre-
tization is important because it allows us to consider, 
within each element of the FE model, the actual tissue 
strength parameters, evaluated through CT images. 
Moreover, a finer mesh allows to implicitly account 
for the presence of osteoporosis, tumors or other 
pathologies that influence the values of these param-
eters and, consequently, the evaluation of the collapse 
load of the femur. Finally, a dense discretization is 
used to better capture the thin cortical thickness that 
characterizes the proximal femur with the aim of 
reducing the partial volume effect (PVE) that impacts 
the finite element results. Regarding the convergence 
behavior of the numerical model it is important to 
highlight that the ECM, grounding on elastic analy-
ses, does not have particular numerical drawbacks of 
convergence related to the mesh configuration. The 
element size of the mesh exhibits the usual limita-
tions of all the displacement based FE procedures that 
determine the stress as secondary variables.

2.1.3  Material’s model and constitutive assumptions

Cortical and trabecular bone tissues have been 
assumed to be characterized by a transversally iso-
tropic and orthotropic behavior, respectively. The 
corresponding constitutive parameters have been 
obtained from the density distribution derived from 
the CT images. In detail, the density distribution 
has been obtained by interpolating the Hounsfield 
Unit (HU) value of each CT voxel and then applying 
empirical relationships. Specifically:
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• HU values were converted to equivalent mineral 
density values ( �K2PO4

 , g/cm3 ) through the follow-
ing calibration equation that was obtained using a 
K2PO4 liquid phantom [27]: 

• ash density ( �ash , g/cm3 ) was calculated using 
�K2PO4

 density through the following relation [27]: 

• apparent density ( �app , g/cm3 ) was derived from 
the �ash ( �ash∕�app = 0.6 ) [28]. Figure 2 shows the 
distribution of �app along the femur. To address 
the PVE in the region where the cortex is thin as 
the femoral neck, the �app at any node of the bone 
surface has been compared to the corresponding 
value of the nearest internal node. If the value of 
�app was lower than the �app of the nearest internal 
node, the apparent density of the node of bone sur-
face has been corrected and the �app of the nearest 
internal node has been assigned to this node.

To derive the elastic material properties the rela-
tionships used in [29] have been implemented. In 
detail the following relationships have been used:

(1)�K2PO4
= 10−3 × (0.8072 × HU − 1.6);

(2)�ash = 0.877 × 1.21 × �K2PO4
+ 0.08;

• for trabecular bone ( 𝜌app < 0.81 g/cm3 ) 

Fig. 1  Femur geometry reconstructed by segmenting the CT dataset (left) and second-order displacement-based tetrahedral mesh 
(right)

Fig. 2  Distribution of �
app

 in a coronal section of femur 
( y = 205 mm)
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• for cortical bone ( �app ≥ 0.81 g/cm3 ) 

The material orthotropy has been accounted for by 
assuming the axes of the material reference system 
oriented in the following way: axis 1 oriented along 
the medio-lateral or radial direction; axis 2 aligned 
along the anterior-posterior direction; axis 3 oriented 
along the axis of diaphysis. As such, in the previous 
relationships, if the material parameter is labeled with 
1 means that the material direction is mediolateral, if 
the parameter is labeled with 2 means that the mate-
rial direction is anterior-posterior and if it is labeled 
with 3 the direction is axial.

It is important to underline that the real values of 
the elastic moduli, and of the related elasticity laws, 
are irrelevant for the determination of both the value of 
the collapse load here searched, as well as the type of 
collapse mechanism. This irrelevance, in the addressed 
context of plastic collapse analysis, can be explained 

(3)

E33 = 2671�2.29
app

;

E11∕E33 = 0.47�0.12
app

E22∕E33 = 0.76�0.09
app

(4)

G12∕E33 = 0.26�0.24
app

G32∕E33 = 0.29�0.17
app

G13∕E33 = 0.45�0.18
app

(5)

�12 = 0.27�−0.09
app

�13 = 0.14�−0.16
app

�23 = 0.14�−0.07
app

(6)

E33 = 2671�2.29
app

E11∕E33 = 0.57

E22∕E33 = 0.57

(7)

G12∕E33 = 0.2

G13∕E33 = 0.29

G23∕E33 = 0.29

(8)

�12 = 0.4

�13 = 0.37

�23 = 0.37

by the concept of limit/collapse load itself. Indeed, 
the collapse mechanism initiates when the acting load 
reaches its limit value, leading to a deformation process 
of exclusively plastic nature that overlaps the state of 
stress as well as the elastic and plastic strains already 
accumulated at the moment of the incipient collapse. 
These, let’s say, pre-collapse-stresses and pre-collapse-
strains remain unchanged after the beginning of the 
collapse mechanism, the structure essentially behaving 
as if it were rigid in that state, but capable of produc-
ing incipient plastic strains. Due to the infinitesimal 
assumption of the mentioned pre-collapse-strains, by 
applying the principle of effects superposition, it can 
be assert that the mechanism of collapse can be studied 
neglecting the state of pre-collapse-strains and therefore 
considering the structure as if it were rigid-plastic. The 
rigid plastic model, often invoked by the plastic col-
lapse design, underscores the idea that elastic strains, 
regardless of the specific constitutive law governing 
the material’s behavior, are essentially irrelevant when 
determining collapse load and the associated collapse 
mechanism. For the reasons above, the Limit Analysis 
performed by ECM does not need the real elastic con-
stants, however, to initialize the iterative ECM proce-
dure one choice can be to start with a model that has the 
elastic moduli given by Eqs. (3–8).

For the evaluation of the collapse load is instead 
crucial the correct definition of bone strengths param-
eters which, in this article, unlike what was proposed 
in [25], have been derived from the bone density dis-
tribution of the femur. The strength limits were given 
by empiric correlations [30] according to experimental 
data reported in [31]. In particular, assuming that the 
indices i = 1, 2, 3 and j = 1, 2, 3 refer to the direction 
and plane of orthotropy, within the nth finite element of 
the discretized model, the limit values in compression, 
tension, and shear are assumed in function of the �app 
distribution and are given by the following relationships 
[30–32]:

(9)�̂�−
3,n

= 102𝜌1.86
app,n

(10)�̂�−
1,n

= �̂�−
2,n

= 0.6�̂�−
3,n

(11)�̂�+
i,n

=
1

2
�̂�−
i,n
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It is worth to remark that the strengths parameters 
determine the admissible stress domain of the bone 
tissue and eventually the value of the collapse load.

2.1.4  Tsai–Wu yield criterion

For the femur’s tissues a constitutive behavior that 
satisfies the Tsai–Wu criterion [33] was assumed. 
Precisely, the Tsai–Wu criterion is used to fix a stress 
admissible domain, herein named Tsai–Wu-type yield 
surface. Considering again the n th element of the FE 
mesh, the Tsai–Wu-type yield surface, in the princi-
pal stress space, can be written as [25]

where Gii,n , Fiiii,n and Fiijj,n are stress coefficients 
as specified below, while �11,n , �22,n and �33,n are 
the principal stresses. For the n th element, the 
stress coefficients are expressed by the following 
relationships:

in which �̂�+
i,n

 , �̂�−
i,n

 and �̂�ij,n are the strength limit values 
in tension, compression, and shear, respectively, as 
given by (Eqs. 9–12).

To ensure that the yield surfaces correspond to an 
ellipsoidal shape the following inequality must be 
also satisfied for each element:

It is important to highlight that each mesh element 
is characterized by a specific yield surface due to the 

(12)�̂�ij,n = 0.25�̂�−
i,n

(13)

G11,n�11,n+G22,n�22,n + G33,n�33,n + F1111,n�
2

11,n

+ F2222,n�
2

22,n
+ F3333,n�

2

33,n
+

2F1122,n�11,n�22,n + 2F1133,n�11,n�33

+ 2F2233,n�22,n�33,n = 1

(14)Gii,n =
1

�̂�+
i,n

−
1

�̂�−
i,n

(15)Fiiii,n =
1

�̂�+
i,n
�̂�−
i,n

(16)Fiijj,n =
1

2

(
1

�̂�+
i,n
�̂�−
i,n

+
1

�̂�+
j,n
�̂�−
j,n

−
1

�̂�2

ij,n

)

(17)Fiiii,nFjjjj,n − F2

iijj,n
≥ 0.

fact that the strength limit values are density-depend-
ent, see again Eqs. (9–12).

2.1.5  Loading and constraints

The femur is subjected to the load Fref  defined in the 
form of Fref = PDpref  with PD a scalar design load 
multiplier (as will be better specified in Sect.  2.1.4) 
and pref  a resultant reference load. In detail, pref  has 
been defined as pref =

∑
i p

i with pi denoting the 
loads applied at all i-nodes located on a circular sur-
face of 10 mm in diameter at the top of the femoral 
head with an orientation of 15°with respect to the 
diaphyseal axis (z-axis). Here, it has been considered 
that pref =

∑
i p

i is equal to 1000 N. In terms of con-
straints, the distal part of the femoral shaft was fully 
fixed. The applied boundary and loading conditions 
reproduce indeed the experimental setup given in [27] 
to which the reader can refer for details.

2.2  Numerical implementation of limit analysis

The Limit Analysis (Appendix 1) has been imple-
mented, in the shape of the above quoted ECM, 
within the commercial FE program Comsol Mul-
tiphysics (Comsol, v.6.0 COMSOL, Stockholm, 
Sweden).

The ECM is a FE-based iterative procedure aimed 
at calculating a lower bound multiplier PLB of the col-
lapse load that allows the construction of a femoral 
stress field that is statically and plastically admissible 
i.e. a field in which all the stress points are located 
inside or, at least, on the yield surface, being also sat-
isfied the equilibrium conditions. The ECM performs 
a sequence of linear elastic analyses, each character-
ized by a fixed load multiplier PD . For each sequence 
a certain number of iterations is carried out. Lets 
indicate with v = 1...V  the sequences of linear elastic 
analyses and with k = 1...K the iterations in each 
sequence v. So, the first sequence of linear elastic 
analyses corresponds to v = 1 . For a certain sequence 
v, the implementation starts to assign the load 
Fv = Pv

D
pref  on the constrained femur. The multiplier 

Pv
D
 remains fixed during the sequence v. The term P1

D
 

represents the first starting value of the scalar design 
load multiplier. Under these conditions the first itera-
tion k, i.e. the first linear elastic analysis of the 
sequence v, starts. During this iteration for each ele-
ment n of the FE mesh the material moduli Ek−1

ij,n
 , Gk−1

ij,n
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and �k−1
ij,n

 are assigned to the femur. In particular, for 
k = 1 the values of Ek−1

ij,n
 , Gk−1

ij,n
 and �k−1

ij,n
 are expressed 

by Eqs.  (3–8). At this point the first linear elastic 
analysis of sequence v is performed to calculate the 
associated stress field. In detail, for each element of 
the mesh a stress value is computed by averaging the 
principal stresses values computed within the Gauss 
Points of the element. For each element n this stress 
value corresponds to a point ℙk−1

n
 in the principal 

stress space. Lets indicate with � the origin of this 
space. The quantity �����⃗𝕆ℙ

k−1
n

∕|�����⃗𝕆ℙ
k−1
n

| represents the 
direction that identifies the stress point ℙk−1

n
 of the 

current element n in the principal stress space. In the 
same space the Tsai–Wu-type surface, pertinent to the 
specific element, is also represented. For the current 
element n lets then indicate with ℙY(k−1)

n
 the stress 

point lying on the corresponding Tsai–Wu surface on 
the direction �����⃗𝕆ℙ

k−1
n

∕|�����⃗𝕆ℙ
k−1
n

| . If for the element n the 
quantity |�����⃗𝕆ℙ

k−1
n

| results greater than |�����⃗𝕆ℙ
Y(k−1)
n

| the 
stress point of the element is outside from the corre-
sponding Tsai–Wu surface. For all elements for which 
this condition is verified (i.e. the pertinent Tsai–Wu 
yield condition is violated by the “element stress”) 
the material element properties Ek−1

ij,n
 and Gk−1

ij,n
 are 

reduced using the following relationships

whereas, indeed, the Poisson ratios �k−1
ij,n

 are kept con-
stant and thus �k

ij,n
= �k−1

ij,n
 . Once the update of (ele-

ment) material properties is completed (i.e. per-
formed in all the elements whose stress ℙk−1

n
 was 

outside the pertinent Tsai–Wu surface), the algorithm 
locate the maximum stress in the whole mesh, i.e. the 
stress point farthest away from Tsai–Wu-type surface, 
say ℙk−1

max
 , and locate the corresponding stress at yield, 

say ℙY(k−1)
max

 . If |�����⃗𝕆ℙ
k−1
max

| is greater than |�����⃗𝕆ℙ
Y(k−1)
max

| the 
algorithm performs a new FE analysis, within the 
current elastic sequence v, under the same load 
Fv = Pv

D
pref  , but with the new (i.e. reduced where 

necessary) material parameters, calculated by 
Eqs. (18 and 19), to try to redistribute all the stresses 
out of the admissible domains. The iterations are 

(18)Ek
ij,n

= Ek−1
ij,n

[|�����⃗𝕆ℙ
Y(k−1)
n

|

|�����⃗𝕆ℙk−1
n

|

]2

(19)Gk
ij,n

= Gk−1
ij,n

[|�����⃗𝕆ℙ
Y(k−1)
n

|

|�����⃗𝕆ℙk−1
n

|

]2

performed until all stress points are below or reach 
their corresponding yield values. If this happens at 
the iteration k = K , at this iteration a statically and 
plastically admissible stress field is obtained and Pv

D
 

is definitively a lower bound of the collapse load. 
Thus, a new sequence v = v + 1 of elastic analyses 
starts by setting the load as Fv+1 = Pv+1

D
pref  with 

Pv+1
D

> Pv
D
 . The iterative stress redistribution proce-

dure continues up to a further load increase does not 
allow all the stress points to be brought below or onto 
the yield surface. The greater value of PD adopted in 
the iterative procedure for which the stresses can be 
redistributed gives the searched (maximum) lower 
bound multiplier PLB and eventually, a (lower bound) 
prediction of the limit load PLBpref .

It is worth noting that the iterative elastic analyses 
involved within the ECM are aimed to redistribute 
the stresses making the method very different either 
from an evolutive step-by-step analysis (grounded on 
elastic-predictor/plastic-corrector schemes) or from 
the so-called “element kill strategies”. In the ECM, 
as effect of the redistribution, during the iterations the 
elements can change their stress state, from an elastic 
stress state to a stress state exceeding the yield value 
and viceversa.

Numerical simulations have been run on a mul-
tiprocessor Intel(R) Xeon(R) 8-core Bronze 3206R 
16 GB of RAM, requiring averagely 1  h of compu-
tational time per each iteration k in each sequence v 
of FE analyses. In Fig. 5 a flow diagram of the ECM 
is shown.

3  Results

For the examined femur, a first sequence of elastic 
analyses started considering P1

D
= 3.0 . The value 4.2 

is the maximum load multiplier for which it was pos-
sible to redistribute the stresses within all the FEs 
in the mesh. Therefore the computed PLB is equal to 
4.2 and the corresponding estimated failure load FLB 
is 4200 N. This result is very encouraging as it rep-
resents an effective lower bound to the experimental 
collapse load recorded in 4500 N. In Fig. 3 the load 
multiplier versus iteration number is shown during 
the last redistributable sequence of FE analyses.

Figure 4 shows the distribution of the Von Mises 
stresses at the coronal section for the last converged 
sequence of the analysis. The values of these stresses 
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are the real ones only in the portions of the bone 
exhibiting collapse where, as stated by Limit Analy-
sis theory, the unicity of the stresses is assured. The 
stresses out of the zones where the collapse mecha-
nism is at an incipient state are not unique and so 

they have only a qualitative nature. Nevertheless, the 
distribution of the Von Mises stresses at their thresh-
old value shown in Fig.  4 locate the femur’s zones 
in which failure/plastic mechanisms are at an incipi-
ent stage. It is worth noting how the areas of higher 
stresses are consistent with the failure mechanism 
recorded during the experimental test shown in Fig-
ure 8 in the paper [27].

4  Discussion

For the first time a CT-based FE modelling strategy 
has been applied within a numerical Limit Analysis 
method of general applicability, such as the ECM, to 
predict the collapse load of a real femur, for which 
are available experimental results. An accurate recon-
struction of the femoral geometry, used for the elas-
tic numerical analyses involved by the approach, 
has been obtained using CT images. Moreover, 
CT images have been used to derive a more coher-
ent identification of the mechanical material param-
eters. The numerical method is robust and has the 
undoubted advantage of being based only on elastic 
analyses of the femur model and on the knowledge 
of bone’s strength values. The small gap between 
the two failure load values, numerical and experi-
mental, is particularly significant in this case of bone 
with tumor pathology for which it would not have 
been possible to take into account the reductions in 
strengths of some parts of the bone if not by assuming 
variable strengths values related to the density evalu-
ated starting from CT images.

Even if the numerical result, in terms of predicted 
collapse load, is very good when compared with the 
experimental one, some limitations must be men-
tioned. The use of a single cadaveric femur represents 
one of the main limitations of the present work. The 
aim of this work was indeed to try to apply a well-
established methodology in solid mechanics to a real-
istic femur deriving all parameters from CT images 
to understand the applicability and performance of 
the method. The application of such a method to bone 
was reported in [25]. In that work Pisano et al. [25] 
reported a good performance of the approach when 

Fig. 3  The load multiplier versus iteration number during the 
last redistributable sequence of FE analyses

Fig. 4  Distribution of the von Mises stress measure (in MPa) 
at the coronal section y = 205 mm
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they compared their results with those available in the 
literature. However, they used a simplified geometry 
that can not account for subject-specific aspects of 
both bone geometry and material properties that may 
affect the mechanical response of the femur and thus 
the collapse load prediction. These subject-specific 
aspects can be included using CT images. In addi-
tion, deriving the information from diagnostic data 
as CT images open towards the application of the 
method in the clinical practice for the femur fracture 
risk assessment. Starting from this work and prior the 
application of this approach to clinical patients, the 
study needs to be extended to a wider sample size, as 
well as different loading conditions need to be inves-
tigated, to support and validate proposed preliminary 
findings and quantify the improvement with respect to 
other strategies developed in the literature. All these 
aspects will be object of future work. It is important 
to highlight that due to the limitation related to the 
use of a single femur, this first work must be consid-
ered as a proof-of-concept and the findings derived 
from this work can not be considered exhaustive and 
needed further investigations.

In the view to translate this approach into clinical 
practice it is important to account for multiple load-
ing conditions spanning a domain of plausible force 
directions to identify subject-specific bone weakness 
as demonstrated in [15]. It is important to highlight 
that the proposed methodology is suitable to simulate 
static loading conditions but is limited in the view of 
application of dynamic loads.

Another limitation is represented by the empirical 
expressions used to move from bone density measure-
ments to material strengths parameters. Furthermore, 
the metastasis present on the analyzed femoral neck 
was not treated with the aid of a different constitutive 
model, but was accounted for implicitly through the 
correlated reduction of bone density, and the conse-
quent loss of resistance, of the involved area. As such, 
the possibility of incorporating a specific constitutive 
description for the metastatic region will be investi-
gated in a future work.

Besides the model validation, the model veri-
fication, i.e. robustness and sensitivity analyses, 
is an important step to extract clinically relevant 

recommendations. Robustness of ECM approach 
has been proved by applying the method to struc-
tures made of different materials like composites, 
complying with a Tsai–Wu-type criterion [23, 34, 
35], or reinforced concrete, obeying to a Menetrey-
Willam-type criterion [24, 36, 37]. In terms of 
sensitivity analysis, a first investigation has been 
performed to evaluate the influence of the cortical 
and trabecular thicknesses and strengths values on 
the numerical prediction of femoral collapse load 
in a simplified geometry [26]. However, due to the 
importance of evaluating the influence of modelling 
choices on the estimation of collapse load, a deeper 
investigation about the influence of the relations 
used to derive the strength limit values from the 
CT-based bone density distribution using a realistic 
femur is of outmost importance.

Another validation of the use of Limit Analysis in 
this context would be the implementation of a numer-
ical method based on the kinematic theorem of Limit 
Analysis, to be able to calculate an upper bound to 
the collapse load and therefore be aware of the actual 
range of values in which the true collapse load falls. 
The calculation of a lower bound may, in fact, be 
overly conservative.

Moreover, a consistent and precise identification/
prediction of the collapse mechanism can be obtained 
by kinematic approach where the areas that are at an 
incipient collapse state are precisely located in terms 
of displacement rates distributions characterizing the 
real collapse mechanism. The application of a kine-
matic numerical method of Limit Analysis is the sub-
ject of an ongoing research work.

5  Conclusion

The article has presented the application of an itera-
tive numerical procedure of Limit Analysis which 
uses only elastic analyses and needs only an accu-
rate evaluation of the material strengths no matter of 
the real values of the elastic material constants. The 
procedure, known as Elastic Compensation Method, 
gives a prediction of the collapse load of a human 
femur. The numerical model was set up on the basis 
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of CT images obtained by segmentation of a cadav-
eric femur for which experimental data was avail-
able. The accurate CT based reconstruction of the 
femur geometry and the detailed evaluation of the 
density-based resistance parameters of the material 
has allowed the appropriate calibration of the numeri-
cal mechanical model giving a numerical predic-
tion of collapse load very close to the one evaluated 
experimentally.

Even if a more robust validation of the method by 
expanding the sample size and the loading conditions 
is a mandatory step forward to validate proposed pre-
liminary findings, the encouraging result may open 
towards to the possibility to apply the method to spe-
cific patients for their fracture risk assessment.
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Appendix 1: Basic concepts of limit analysis 
theory

The Limit Analysis furnishes an estimate of the load 
at which a structure collapses relying only on the 
structural configuration (i.e. geometry, loads, con-
straints) on the one hand and plasticity conditions 
on the other hand. The Limit Analysis is based on 
two theorems i.e. the Lower-Bound theorem and the 
Upper-Bound theorem based on a static approach and 
a kinematic approach, respectively. The present work 
is focused on the Lower-Bound theorem or the static 
approach and for this reason only this latter approach 
is recalled in the following.

Static approach of limit analysis
A generic reference load pref  acting on a structure 

can be multiplied by a scalar load multiplier PD iden-
tifying with F = PDpref  the static load that acts on 
the structure ( F = PDpref  can be obviously intended 
as a distribution of loads acting on the structure). The 
multiplier PD can be increased form zero up to a limit 
value labelled as Pu for which the stress distribution 
in the structure is statically and plastically admissi-
ble, i.e the corresponding stress field is in equilibrium 
with the applied load Fu = Pupref  and in the whole 
structure, the yield condition is satisfied as f (�) ≤ 0 . 
This procedure characterizes the static approach of 
the Limit Analysis in which the safety scalar load 
multiplier corresponds to the maximum load multi-
plier PD , say PLB , for which the stress distribution in 
the structure is statically and plastically admissible. 
For the computed PLB results that PLB ≤ Pu . Knowing 
the PLB , a lower bound estimate of the collapse load 
is given by FLB = PLBpref .

Appendix 2: Flow diagram of the ECM

In Fig.  5 the numerical FE-based procedure of the 
ECM is reported.
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