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Abstract: Expanding knowledge of the molecular mechanisms at the basis of tumor development,
especially the cross-talk between oncogenic pathways, will possibly lead to better tailoring of an-
ticancer therapies. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in cancer
progression, not only because of its antioxidant activity but also because it establishes cross-talk with
several oncogenic pathways, including Heat Shock Factorl (HSF1), mammalian target of rapamycin
(mTOR), and mutant (mut) p53. Moreover, the involvement of NRF2 in gammaherpesvirus-driven
carcinogenesis is particularly interesting. These viruses indeed hijack the NRF2 pathway to sustain
the survival of tumor cells in which they establish a latent infection and to avoid a too-high increase of
reactive oxygen species (ROS) when these cancer cells undergo treatments that induce viral replication.
Interestingly, NRF2 activation may prevent gammaherpesvirus-driven oncogenic transformation,
highlighting how manipulating the NRF2 pathway in the different phases of gammaherpesvirus-
mediated carcinogenesis may lead to different outcomes. This review will highlight the mechanistic
interplay between NRF2 and some oncogenic pathways and its involvement in gammaherpesviruses
biology to recapitulate published evidence useful for potential application in cancer therapy.

Keywords: NRF2; p53; gammaherpesviruses; oxidative stress; reactive oxygen species (ROS); cancer
therapy; chemoresistance; p62/SQSTM1; inflammation; KEAP1; p21; mTOR; NFkB; apoptosis;
autophagy; STAT3

1. Introduction

Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that protects
cells from oxidative stress by regulating various phase II detoxifying/antioxidant enzymes,
such as heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), catalase,
superoxide dismutase (SOD), and glutathione (GSH) [1]. NRF2 activation must be tightly
regulated to sustain cell survival, particularly in cancer cells characterized by a high level
of intracellular reactive oxygen species (ROS) responsible for DNA damage induction [2].
ROS increase in cancer cells may be due to the accumulation of dysfunctional mitochondria
due to the dysregulation of autophagy, particularly in its selective form, mitophagy [3,4]. Of
note, NRF2 plays a key role in regulating several mitochondrial activities, e.g., it increases
the mitochondrial membrane potential (AY) and the availability of substrates for respiration
and adenosine triphosphate (ATP) production [5,6]. NRF2 can also increase nicotinamide
adenine dinucleotide phosphate (NADPH) by up-regulating gene encoding glucose-6-
phosphate dehydrogenase (G6PD), enzymes of the pentose phosphate pathway (PPP),
malic enzyme 1 (ME1), and isocitrate dehydrogenase 1 (IDH1) [6].

NREF2 activation is tightly regulated by Kelch-like ECH-associated protein 1 (Keapl),
an ubiquitin ligase that, in unstressed conditions, interacts with NRF2 triggering its protea-
somal degradation in the cytoplasm [7] (Figure 1a). Oxidative stress and/or electrophilic
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molecules, such as plant-derived phenolic compounds, modify cysteine residues 15, 16,
and 17 within Keap1 protein, changing its conformation and thus preventing its binding
to NRF2 for proteasomal degradation (Figure 1b, left part). Following this “canonical
activation”, NRF2 is stabilized and can then translocate into the nucleus to induce the
transcription of phase II detoxifying/antioxidant target genes, including HO-1, NQO1,
catalase, SOD, and GSH (Figure 1b, right part), to restore cellular redox homeostasis [8].
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Figure 1. Schematic representation of Keapl/NRF2 regulation. (a) In unstressed conditions, Keap1
binds to NRF2, inducing its proteasomal degradation (purple dots). (b) Oxidative stress or elec-
trophilic molecules change Keap1 conformation (inverted T sign), impairing Keap1/NRF2 binding
(left part); NRF2 is therefore stabilized and can translocate into the nucleus to activate the transcription
of phase II detoxifying/antioxidant genes (right part).

Another important molecule involved in NRF2 regulation is p62/sequestosome 1 (SQSTM1),
which induces a “non-canonical stabilization/activation” of NRF2 by triggering Keap1
proteasomal degradation [9-11] (Figure 2a). Such regulation of NRF2 intervenes with
autophagy, whose activation promotes p62/SQSTM1 degradation [9-11] (Figure 2b, left
part). Indeed, the reduction of p62/SQSTM1 (degraded through autophagy) keeps Keapl
stabilized so it can bind NRF2 and induce NRF2 degradation (Figure 2b, right part); on the
other hand, when autophagy is compromised by several means, p62/SQSTM1 accumulates
and binds Keapl triggering Keap1 proteasomal degradation (Figure 2c, lower part), and
inducing the stabilization of NRF2 (Figure 2¢, upper part) [9-11]. In this manner, the
stabilization of NRF2 results as a compensatory mechanism to limit ROS increase due to
autophagy dysregulation.

Similarly to p62, p21(Cip1/WAF1) (target of oncosuppressor p53) can bind to Keapl
and interrupt the Keap1/NRF2 interaction, activating NRF2 [12]. Moreover, a direct inter-
action between NRF2 and p21(Cip1/WAF1) has been also reported [12]. Post-translational
modifications, such as phosphorylation, may also regulate NRF2 nuclear translocation.
Intriguingly, phosphorylation may influence NRF2 activity both positively and negatively,
depending on the residues that undergo phosphorylation and on the kinases that mediate
this process. For example, protein kinase C (PKC) may positively influence NRF2 activ-
ity [13], while glycogen synthase kinase 33 (GSK-3§3) inhibits it [14], underscoring the
complex mechanisms involved in the regulation of NRF2 activity.
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Figure 2. Schematic representation of autophagy/p62/Keapl/NRF2 regulation. (a) p62/SQSTM1,
herein shortened as p62, triggers a basal Keap1 proteasomal degradation (yellow dots) controlling
NRF2 stabilization/activation. (b) Autophagy activation degrades p62 (left part, blue dots), stabilizing
Keapl that can bind NRF2 and induce NRF2 degradation (right part, purple dots). (c) When
autophagy is compromised (red cross), p62 accumulates and can bind Keap1 and trigger Keapl
proteasomal degradation (yellow dots), inducing the stabilization of NRF2.

2. NRF2 and Oncogenic Pathways

Another fundamental function of NRF2 is to counteract inflammation that, along
with ROS detoxification, plays a key role in preventing carcinogenesis, as evidenced by
several studies performed in vitro and in vivo in animal models [15]. The role of NRF2 in
inflammation and carcinogenesis mostly depends on its interaction with several molecular
pathways. One of the most relevant pathways interacting with NRF2 is represented by heat
shock factor 1 (HSF1), the master regulator of the heat shock response. HSF1 and NRF2 con-
trol overlapping target genes such as heat shock protein (HSP)70 and p62/SQSTM1 [16,17].
HSP70 plays a crucial role in the folding of proteins involved in key processes, such as the
DNA damage response (DDR) of both DNA single and double-strand breaks [18]. HSP70
also sustains lysosomal membrane stability. In this regard, we have demonstrated that the
pharmacological inhibition of HSP70 triggers necroptotic cell death in lymphoma cells due
to the leakage of lysosomal proteases into the cytosol [19]. Of note, HSP70 collaborates
with HSP90, another chaperone whose function is crucial for the folding of a variety of
proteins, including oncogenes such as c-Myc and mutant p53 (mutp53) [20-24].

The other common target of NRF2 and HSF1 is p62/SQSTM1, known to play a pro-
tumorigenic role not only because it promotes NRF2 stabilization [9] but also because it
activates pro-survival molecular pathways such as nuclear factor kappa B (NFkB) and mam-
malian target of rapamycin (mTOR) [25] (Figure 3a). It has been suggested that autophagy
suppresses tumorigenesis by eliminating p62/SQSTM1 [26] (Figure 3b). Interestingly, it has
been shown that the reduction of p62/SQSTM1 and its effect on NRF2 may increase ROS levels
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and the release of inflammatory cytokines by stromal fibroblasts, promoting epithelial cell
carcinogenesis [27]. Thus, it is known that oxidative stress induces DNA damage and cancer
onset and that long-lasting chronic inflammation may favor all steps of carcinogenesis [28].
Hence, NRF2 transient activation is considered to be mainly cytoprotective during the first
phases of carcinogenesis because it limits both DNA damage and inflammation.
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Figure 3. Role of p62/SQSTM1 in tumorigenesis. (a) P62/SQSTMI, herein shortened as p62, is a
common target of NRF2 and HSF1 activates pro-survival molecular pathways such as NFkB and
mTOR that promote tumorigenesis. (b) The degradation of p62 by autophagy activation counteracts
the first phases of tumorigenesis.

Another important pathway that may directly interact with NRF2 is the phosphatidyli-
nositol 3-kinase (PI3K)/AKT/mTOR, which is involved in regulating a variety of vital
cellular processes [29]. This pathway has been reported to regulate NRF2 positively and
negatively, depending on the cellular context [30]. Although further investigations will better
clarify the relationship between NRF2 and mTOR, it has been reported that mutations in
the Nrf2 gene increase the susceptibility of cancer cells to the cytotoxic effects of mTOR in-
hibitors [31]. Regarding the interplay between NRF2 and mTOR, we have recently shown that
the mTOR/p-4EBP1 axis is hyper-phosphorylated following NRF2 activation by Dimethyl
fumarate (DMF) [32], a molecule that induces the succination and inactivation of KEAP1 [33].
The activation of mTOR represents a mechanism of resistance of primary effusion lymphoma
(PEL) cells undergoing DMF treatment, even if this molecule can still impair PEL survival.
Indeed, DMF treatment induces de-phosphorylation and, therefore, inactivation of signal
transducers and activators of transcription 3 (STAT3), a pro-survival transcription factor con-
stitutively activated in PEL [32,34]. The cytotoxic effect of DMF against PEL correlates with
ROS reduction; hence the traditional knowledge that ROS are only harmful by-products of
respiration is being replaced by the finding that they are also important signaling molecules
able to sustain oncogenic pathways [35]. In addition, we also found that DMF increases
phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, which represents another
mechanism of resistance to the treatment due to the induction of pro-survival autophagy [32].
Furthermore, NRF2 inhibition by Brusatol, a quassinoid extracted from Brucea javanica able to
interfere with NRF2-mediated defense mechanisms [36,37], can restore cancer cell chemosen-
sitivity [38,39]. This indicates that a fine regulation of NRF2 activation is required to balance
cancer cell survival /death outcomes [40].

As anticipated above, a key role in NRF2 regulation is played by its phosphorylation
mediated by several kinases, whose activation may be influenced, in turn, by NRF2, in
feedback loops. Among those kinases, there are the above-mentioned PI3K/AKT and
ERK1/2, but also protein kinase C (PKC) [13], c-jun N-terminal kinase (JNK) [41], and p38
MAPK [42]. Interestingly, the activation of NRF2 can negatively influence nuclear factor
kappa B (NFkB), the master regulator of cytokines transcription [43]. This may be one of
the mechanisms through which NRF2 counteracts the production of pro-inflammatory
molecules, including IL6, IL13, TNFx, COX2, and iNOS. Even if NRF2 and STAT3 [44]
can oppositely regulate the initial steps of tumorigenesis, they may synergize to sustain
tumor progression, as reported in the case of breast cancer [45], for example. Interestingly,
both STAT3 and NRF2 can be phosphorylated by PERK (protein kinase R-like ER kinase)
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either directly or indirectly through the phosphorylation of GSK3f during the activation
of the unfolded protein response (UPR) [46]. UPR is a protective mechanism that helps
cells cope with endoplasmic reticulum /ER stress [47]. However, while the direct phos-
phorylation of NRF2 by PERK results in NRF2 activation, the one mediated by GSK33
inhibits NRF2 [46]. Notably, although UPR is mainly a cell adaptive response to stress, a
delicate balance of the activation of its three sensors, namely PERK, IRE1 (inositol-requiring
enzyme 1) alpha, and ATF6 (cyclic AMP-dependent transcription factor-6), dictates the
final cell death/survival outcome [48]. This decision is also influenced by the pathways
activated/inhibited downstream of the UPR sensors, which include NRF2 [47].

3. Interplay between NRF2 and p53

NRF2 may cross-talk with wild-type (wt) and mutant (mut)p53, inhibiting the wtp53
oncosuppressor functions and strengthening the mutp53 oncogenic functions. Both effects
contribute to tumor progression and cancer cell resistance to the cytotoxic effects of an-
ticancer therapies. The oncosuppressor p53 is the sensor of DNA damage that activates
target genes involved in cell cycle arrest, senescence, or apoptosis, according to the extent
of genotoxic damage [49,50]. In particular, high-intensity DNA damage mainly promotes
wtp53 apoptotic function [51,52], and the impairment of apoptosis results in the loss of
efficacy of cytotoxic therapies [53]. Interestingly, NRF2 and wtp53 share similarities in
regulating the redox state, and they may also control each other [54]. Mild stress mainly
activates wtp53 to induce p21, which may contribute to NRF2 stabilization [12], leading to
cell protection from ROS-induced DNA damage [55]. On the other hand, high-intensity
DNA damage, such as the oxidative stress, by inducing p53 post-translational modifica-
tions, specifically triggers wtp53 apoptotic activity [50-52] along with repression of NRF2
target genes, including x-CT, NQO1, and GST [56]. In this manner, p53/NRF2 interplay
may balance the cell’s death/survival decision based on mild/severe stress (Figure 4).

Mild stress Severe stress
1 Oxidative stress
P —_ .
( ps3 ) lROS-mduced
e DNA damage

p21

NRF2— @ — Apoptosis
! I

Antioxidative —| DNA damage ——s P53
genes

Figure 4. Interplay between p53 and NRF2. In response to mild stress, wip53 is activated to mainly
induce p21 (instead of apoptotic genes) that contributes to NRF2 stabilization. The antioxidant
function of NRF2 protects cells from the DNA damage that usually triggers p53 apoptotic activation.
Severe oxidative stress, with elevated ROS levels, activates wtp53 apoptotic function and represses the
transcription of NRF2 target genes. The mild/severe stress balances the final NRF2/p53 dependent
cell survival/death decision in a regulatory feedback loop.

We have shown that NRF2 activation, by, for instance, high glucose or natural compounds
(e.g., sulforaphane or curcumin), may reduce p53 apoptotic function [24,38,57,58]. This out-
come depends on the inhibition of homeodomain-interacting protein kinase 2 (HIPK2) [39,59]
that specifically phosphorylates p53 at Ser46 for apoptotic activation [60]. NRF2, by counteract-
ing oxidative stress, reduces the extent of DNA damage responsible for HIPK2 activation [61].
This outcome impairs the HIPK2 /p53 pro-apoptotic activation in favor of the transcription
of p21 that, in turn, sustains NRF2 activation [11]. The interplay between NRF2 and HIPK2
is quite intricate and still not completely unveiled. NRF2 may induce HIPK2 gene transcrip-
tion [62]. The NRF2-induced HIPK2 protein undergoes post-transcriptional modifications
by the redox state, leading to the transcription of several antioxidant genes in common with
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NRE2 (e.g., NQO1, HO-1), thus engaging a pro-survival cross-talk with NRF2 to the detri-
ment of HIPK2 apoptotic activity [62]. NRF2 might also modulate HIPK2 indirectly, at the
protein level, by favoring its proteasomal degradation [63,64]. Interestingly, HIPK2 protein
regulation may influence its kinase and transcriptional activity and have a different impact on
several biological processes [65-69]. In some conditions, HIPK2 may preferentially trigger the
transcription of antioxidant genes and support the NRF2-mediated cytoprotective response
instead of inducing p53 apoptotic activity, although this hypothesis still needs to be clarified.
Therefore, a better understanding of the interplay between the NRF2 and HIPK2/wtp53
pathway could help to elucidate the pro-survival/apoptotic outcome in cancer, especially
in the course of anticancer therapies. Since the NRF2 detoxifying activity is important in
cancer prevention, cancer cells can hijack this protective mechanism to promote tumor pro-
gression [70]. In this regard, NRF2 inhibition could be a valuable strategy for efficiently
reestablishing wtp53 apoptotic activity.

Besides being deregulated at the protein level, p53 is inactivated by gene mutations
in almost 50% of all types of tumors; those missense mutations often diminish the p53
ability to bind specific DNA recognition sequences of wild-type target genes, losing their
oncosupressor function [71]. Mutp53 proteins may sequester various tumor suppressors,
including p53 itself (dominant-negative function) and the family members p63 and p73,
inhibiting their oncosuppressor functions [72]. The characteristic of mutp53 proteins is their
stabilization and increased expression that may depend on binding to cellular chaperones,
including HSP /70 and HSP90 [73]. Although mutp53 proteins do not bind to canonical
target gene promoters, some of them (i.e., R175H and R273H mutants) may still affect
gene transcription by interacting with other transcription factors; this interaction enhances
the oncogenic gain of function (GOF) of mutp53. Including increased cell proliferation,
migration, and invasion, which contribute to various stages of tumor progression and
cancer resistance to therapies [71,73-75].

Among the several oncogenic transcription factors that interact with mutp53 to pro-
mote cancer progression [76] is NRF2, although molecular interplay still needs to be fully
elucidated. Mutp53 has been shown to induce a bi-directional NRF2 target regulation by re-
pressing and activating the NRF2-dependent oxidative stress response [77,78]. Interestingly,
in breast cancer cells, mutp53 interacts at the protein level with NRF2, tuning its activity to
selectively transcribe genes that sustain cancer cell survival under oxidative stress, such
as thioredoxin (TXN) and proteasome system (PSM), and repressing others such as heme
oxygenase 1 (HMOX1) [79]. The interplay between mutp53 and NRF2 contributes to the
increased survival of cancer cells under oxidative stress by, for instance, exploiting the
thioredoxin system. TXN is associated with poor prognosis in breast cancer patients. Thus,
a combination therapy that inhibits both TXN and mutp53 may synergistically reduce
breast cancer cell growth [79]. The oncogenic interplay between NRF2 and mutp53 has
been nicely demonstrated in vivo where, in a K-ras/p53 double mutant mouse model, Nrf2
depletion decreases pancreatic carcinogenesis and cancer invasion [80]. In another study,
five mutp53 proteins have been shown to cooperate with NRF2 to induce the transcription
of 265 proteasome and immunoproteasome genes in triple-negative breast cancer (TNBC)
cell lines [81]. This cooperation enhances the degradation of tumor suppressor proteins and
confers resistance to proteasome inhibitor therapy [81]. In addition, we have demonstrated
that mutp53/HSP90 interaction activates a feedback loop between NRF2 and p62 that
induces cancer chemoresistance in both pancreatic and breast cancer cells [22,24,39]. These
findings suggest that a deeper understanding of the mutp53/NRF2 relationship may pave
the way to new more efficient anticancer strategies.

Hypoxia is a hallmark of solid tumors, and it is responsible for activating hypoxia-
inducible factor-1 (HIF-1) oncogenic signaling to promote tumor progression, invasion,
and chemoresistance [82]. There is an interplay between hypoxia and mutp53. Hypoxia
sustains mutp53 activity, and mutp53 may induce the transcriptional activity of HIF-1 by
stimulating the stability of the oxygen-dependent component of the HIF-1 transcription
factor, that is, HIF-1alpha [83]. Besides HIF-1, tumor hypoxia activates NRF2 signaling to
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promote cancer survival, metastasis, and chemoresistance [64]. However, the two signaling
pathways can also interact. Thus, NRF2 signaling can activate the HIF-1 response by, for
instance, the activation of thioredoxin, though, on the other hand, HIF-1 signaling has been
shown to increase NRF2 activation [64]. We can therefore picture a mechanistic interplay
among mutp53, NRF2, and HIF-1 to sustain their oncogenic functions and promote tumor
progression, invasion, and chemoresistance (Figure 5). Thus, it is conceivable that blocking
one oncogenic pathway may influence other pathways and that synchronously blocking
them may have greater success in anticancer therapy. For instance, mutp53 can be targeted
at the protein level by inhibiting its binding to chaperone [73] or by inducing its autophagic
degradation, as demonstrated by our study [84]. However, the interplay between mutp53
and autophagy is quite complex and context-dependent and needs further understanding
to shape effective anticancer strategies [85].

Mutpis

cancer cell survival
metastasis
chemoresistance

Figure 5. Reciprocal control between mutp53, NRF2, and HIF-1. Mutp53 can sustain NRF2 and HIF-1
activity. NRF2 and HIF-1 can control each other, as well as HIF-1 and mut-p53. The interplay among

the oncogenic pathways contributes to tumor progression, metastasis, and chemoresistance.

Besides mutp53, other oncogenes have been reported to affect NRF2 activity, e.g., Myc
has been shown to activate NRF2 and induce tumorigenesis in cells undergoing carcino-
genic treatment [86]. Interestingly, c-Myc can establish an interplay with wtp53 as well
as with mutp53, inhibiting the first [87] while sustaining the latter to promote pancreatic
cancer cell survival [88].

4. NRF2 and Gammaherpesvirus-Driven Cancers

We have recently shown in vitro that the silencing of p62/SQSTM1 and NRF2 can
counteract the Epstein-Barr virus (EBV)-driven B lymphocyte immortalization [89]. This
effect correlates with the reduction of ROS, the main cause of DNA mutations, and the
down-regulation of ATM. This kinase is essential to sense DNA damage and to trigger the
DDR cascade in response to double-strand DNA breaks. This initiates DNA repair and
helps to prevent the accumulation of DNA mutations. NRF2 or p62 /SQSTM1 knockdown
also induces the downregulation of H2A histone family member X (H2AX) [89], another
key player in DNA repair. Our findings agree with a previous study reporting that H2AX
is degraded in oxidative stress conditions caused by a deficient antioxidant response [90].
NREF2 can also be regulated by the other human gammaherpesvirus [91], namely Kaposi’s
sarcoma-associated herpesvirus (KSHV). This effect has been observed during de novo in-
fection of human endothelial cells [92] or in naturally infected lymphoma cells [93]. In both
cases, NRF2 activation positively regulates viral infection and cell survival/proliferation of
virally infected cells.

Regarding gammaherpesvirus-driven carcinogenesis, it has been shown that, besides
latent antigens, proteins expressed during the activation of the lytic cycle may contribute
to cancer onset [94]. This is mainly because viral lytic proteins promote inflammation
that, as said above, is strictly linked to carcinogenesis. NRF2 plays an important role in
promoting viral replication, as indicated by the fact that the inhibition of NRF2 reduces
the KSHYV lytic cycle [93]. Interestingly, the NRF2 target HSP70 [15] is also indispensable
for KSHYV replication [95]. We have previously shown that the increase of reactive oxygen
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species (ROS), though it promotes the reactivation of KSHV from latency in lymphoma
cells, must be moderate to allow viral replication [96]. Therefore, NRF2 activation is
required to prevent too high an increase in ROS level that could promote cell death before
viral particles are released [96]. This was observed in cells treated with phorbol diester
12-0-tetradecanoylphorbol-13-acetate (TPA), classic viral lytic cycle inducers that can exert
a strong cytotoxic effect against gammaherpesvirus-harboring lymphoma cells [96]. It is
also important to consider that EBV-induced NRF2 activation in monocytic cells contributes
to the immune escape, which could indirectly facilitate cancer onset. We have found
that EBV stabilizes NRF2 in these cells through autophagy inhibition and p62/SQSTM1
accumulation. The reduction of intracellular ROS, consequent to NRF2 activation, impairs
the in vitro differentiation of monocytes into dendritic cells (DCs) [97]. Of note, DCs play
a pivotal role in initiating the immune response toward new antigens, including viral
or tumor antigens. Therefore, reducing their formation has a strong impact on immune
response and viral immune escape.

5. Conclusions

This update on the key role of NRF2 in cancer survival, progression, and chemore-
sistance highlights how several of its induced effects rely on the collaboration of NRF2
with oncogenic pathways, such as HSF1, mutp53, and mTOR, and with pro-tumorigenic
molecules, such as p62/SQSTM1, sometimes in a feedback loop. Of note, we also high-
light how NRF2 activation is exploited by gammaherpesvirus-driven carcinogenesis and
immune suppression (Figure 6).

INFLAMMATION Gammaherpesvirus infection,
replication,
immune suppression,
NFKB  mutps3 virus-associated cancer survival
PI3K/AKT/mTOR Gammaherpesvirus- induced
2 /\ transformation
HSF1 p62/SQSTM1
NFKB

phase II detoxifying/antioxidant enzymes
(HO-1, NQOL1, catalase, SOD, GSH, etc.)

Figure 6. Interplay between NRF2 and oncogenic, pro-survival/inflammatory pathways. Not
applicable Schematic representation of the interaction between NRF2 and several pathways that can
control each other in a feedback loop. The antioxidant activity of NRF2 and its interaction with those
pathways can have a key role in tumor progression.

Interestingly, the NRF2 detoxifying activity, hijacked by cancer cells as a protective
mechanism, particularly in the course of anti-cancer treatments, is also important in cancer
prevention. Therefore, NRF2 manipulation could be a valuable strategy both to prevent
cancer and to inhibit its progression, e.g., through the restoration of wtp53 apoptotic activity.
In addition, given the key role of NRF2 in gammaherpesvirus-driven carcinogenesis,
targeting NRF2 could represent a promising strategy to counteract cancers associated with
them. Indeed, NRF2 manipulation may help to reduce the capability of these viruses to
infect target cells, to prevent the transformation of cells from which their associated cancers
arise, to counteract viral lytic antigen expression and the inflammation that they promote,
and, last but not least, to interfere with their-induced immunosuppression. Of note, in
cancers associated with gammaherpesviruses, both NRF2 inhibition and NRF2 activation
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may represent a promising therapeutic approach, as ROS, unless they are too high, can
sustain pro-survival, oncogenic pathways, such as STAT3 [32,98-101]. In light of these
findings, future studies should be directed to a better understanding of NRF2 biology, its
interaction with oncogenic pathways, and the role of this intricate cross-talk in the different
steps of carcinogenesis to target them properly.
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