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ABSTRACT
We propose a statistical approach to modelling for predicting and
simulating occurrences of tornadoes and accumulated cost distributions
over a time interval. This is achieved by modelling the tornado intensity,
measured with the Fujita scale, as a stochastic process. Since the Fujita
scale divides tornado intensity into six states, it is possible to model the
tornado intensity by using Markov and semi-Markov models. We
demonstrate that the semi-Markov approach is able to reproduce the
duration effect that is detected in tornado occurrence. The superiority of
the semi-Markov model as compared to the Markov chain model is also
affirmed by means of a statistical test of hypothesis. As an application, we
compute the expected value and the variance of the costs generated by
the tornadoes over a given time interval in a given area. The paper
contributes to the literature by demonstrating that semi-Markov models
represent an effective tool for physical analysis of tornadoes as well as for
the estimation of the economic damages to human things.

KEYWORDS
Tornadoes modelling;
Markov process; semi-Markov
process; reward process

1. Introduction

Every year tornadoes cause deaths and several damages to people and things. Only in the USA, tor-
nadoes killed, on average, more than 100 people per year from 2004 to 2013 (Simmons et al. 2013).
Just to give an example of the monetary damages of tornadoes in the USA, in 2013, the estimated
cost was about 200 millions of dollars (Simmons et al. 2013). In this scenario, the development of
techniques to estimate and model the probabilities of these events is needed and can be of great ben-
efit for the society. Many researchers are working on this subject (see e.g. Boswell et al. 1999; Sisson
et al. 2006; de Melo Mendes & Pericchi 2009; Obeysekera et al. 2011; Bashan et al. 2013; Delphin
et al. 2013). The approaches used can be typically divided into two main groups, one analytical and
another statistical (see e.g. Bryan & Rotunno 2009; Dotzek et al. 2003, respectively).

Here we propose a statistical approach based on semi-Markov model, the approach already used
in many disciplines, as finance or insurance, to model and quantify reward processes (see e.g.
Howard 1971; Balcer & Sahin 1986; De Dominicis & Manca 1986; Masuda & Sumita 1991; Masuda
1993; Soltani & Khorshidian 1998; McClean et al. 2004; Papadopoulou 2004; Stenberg et al. 2006;
Papadopoulou & Tsaklidis 2007; Stenberg et al. 2007; Limnios & Oprisan 2012; Papadopoulou et al.
2012; Papadopoulou 2013; D’Amico et al. 2014b). This kind of models generalize the more common
Markov chain models, and their main feature is the possibility to reproduce the duration effect of
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the considered random phenomenon. This is made possible by considering sojourn times in the
states of the process that are distributed according to any type of probability distribution functions,
non-memoryless distributions included. In this work, we choose to model the tornado’s intensity as
a stochastic process. The tornado’s intensity is measured by the Fujita scale (F-scale) which is an
empirical scale related to the gravity of the damages produced by the tornado. Since the F-scale
divides tornado intensity into six states, it is possible to model the tornado intensity by using semi-
Markov models. The database used in this work is made available from the National Oceanic and
Atmospheric Administration (NOAA) (USA) that counts of more than 60,000 tornadoes from 1950
until 2013. The proposal of a semi-Markov model for modelling tornadoes allows the estimation of
probability of an occurrence of a tornadoes with a certain intensity at each time in a given location.
This also gives the possibility to compute the total costs of damages caused by the tornadoes which
is a relevant indicator of environmental hazards. The paper is organized as follows. In Section 2, we
introduce the database and the object of investigation. In Section 3, we present the semi-Markov
model and the related reward (cost) process. Section 4 shows the main application of the model to
the tornado process. At last, in Section 5, we give some concluding remarks.

2. Database

The data used in this work come from NOAA’s National Weather Service and they are freely avail-
able on the website www.spc.noaa.gov/wcm/#data. Almost 60,000 events from 1950 to 2013 are col-
lected in the database, all of them geographically distributed in the USA (as it is possible to see in
Figure 1). For each event, date, time, state, F-scale, injuries, fatalities, starting latitude and longitude,
ending latitude and longitude are recorded. The physical quantity of our interest is the F-scale. This
is an empirical scale that measures tornado intensity based on the damage produced to man-made
structures. It can be also related to the wind speed, for example, for a tornado classified F0, the wind
speed can go from 64 to 116 m/s, instead for an F5 tornado from 419 to 512 m/s (Fujita 1973). As it
is well known, the F-scale admits six values of tornado intensity that goes from F0 to F5. Given that
it is a discrete scale, the tornado intensities, measured by the F-scale, can be naturally modelled

Figure 1. Geographical distribution of the database’s events, extrapolated from http://www.spc.noaa.gov/gis/svrgis/images/
tornado.png.
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through a discrete-state stochastic model. For the present work, we choose to use a semi-Markov
model.

3. Semi-Markov process

We define an homogeneous semi-Markov process with values in a finite state space E D {1, 2, ..., m}
(see e.g. Limnios & Oprisan 2001; Janssen & Manca 2006). Let (V, F, P) be a probability space; we
consider two sequences of random variables J D {Jn}n 2 IN and T D {Tn}n 2 IN, where

Jn : V!E ; Tn : V! I N:

They denote the state and time of the nth transition of the system, respectively. In our applica-
tion, Jn is the intensity of the nth tornado and Tn the time of its occurrence.

We assume that (J, T) is a Markov renewal process on the state space E £ IN with kernel Qij(t), i,
j 2 E, t 2 IN. The kernel has the following probabilistic interpretation:

P
�
Jnþ1 ¼ j;Tnþ1 � Tn � tjsðJh;ThÞ; h� n; Jn ¼ i

� ¼
P
�
Jnþ1 ¼ j;Tnþ1 � Tn � tjJn ¼ i

� ¼ QijðtÞ; (1)

where (s(Jh, Th), h � n) represents the set of past values of the Markov renewal process (J, T).
Relation (1) asserts that the knowledge of the last tornado’s intensity suffices to give the conditional
distribution of the couple (Jn C 1, Tn C 1 ¡ Tn), whatever the past values of the variables might be.

It is simple to realize that pij :¼ P
�
Jnþ1 ¼ jjJn ¼ i

� ¼ lim
t ! 1 QijðtÞ; i; j 2 E; t 2 I N, where P D

(pij) is the transition probability matrix of the embedded Markov chain Jn.
Simple probabilistic reasoning allows the computation of the conditional probability distribution

of the sojourn time Tn C 1 ¡ Tn in the state Jn given that the next visited state is Jn C 1. In formula,

GijðtÞ :¼ P
�
Tnþ1 � Tn�tjJn ¼ i; Jnþ1 ¼ j

� ¼
QijðtÞ
pij

if pij 6¼ 0

1 if pij ¼ 0:

8><>: (2)

The Gij(¢) denotes the waiting time distribution function in state i given that, with the next transi-
tion, the process will be in the state j. The sojourn time distribution Gij(¢) can be any distribution
function. We recover the discrete-time Markov chain when the Gij(¢) are all geometrically distrib-
uted. Therefore, we should find out whether the inter-arrival times between two tornadoes of given
intensities follow a geometric distribution or not. This is a primary question to which we will
respond in the next section.

Now it is possible to define the time homogeneous semi-Markov chain Z(t) as

ZðtÞ ¼ JNðtÞ; 8 t 2 I N; (3)

where NðtÞ ¼ supfn 2 I N : Tn � tg. Then, Z(t) represents the state of the system for each waiting
time.

At this point, we introduce the discrete backward recurrence time process linked to the semi-
Markov chain. For each time t 2 IN, we define the following stochastic process:

BðtÞ ¼ t � TNðtÞ: (4)

We call it discrete backward recurrence time process. It denotes the time elapsed from the occur-
rence of the last tornado to the current time t.
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The joint stochastic process (Z(t), B(t), t 2 IN) with values in E £ IN is a Markov process.
That is,

P½ZðTÞ ¼ j;BðTÞ ¼ v 0 jsðZðhÞ;BðhÞÞ; h� t;ZðtÞ ¼ i;BðtÞ ¼ v�
¼ P½ZðTÞ ¼ j;BðTÞ ¼ v 0 jZðtÞ ¼ i;BðtÞ ¼ v� ¼: bfb

ijðv; v 0 ; tÞ:

with the following evolution equation (see e.g. D’Amico & Petroni 2012):

bfb
ijðv; v 0 ; tÞ ¼ dij

½1�P
a2EQiaðt þ vÞ�

½1�P
a2EQiaðvÞ� 1fv 0¼tþvg

þ
X
k2E

Xt

s¼1

Qikðsþ vÞ � Qikðsþ v � 1Þ
½1�P

a2EQiaðvÞ�
bfb

kjð0; v 0 ; t � sÞ:
(5)

Expression (5) provides the probability of having a tornado of intensity j after t ¡ v0 periods and
no additional tornado within the times {t ¡ v0 C 1, t ¡ v0 C 2, …, t} given that the last tornado
occurred v periods before the present time and was of intensity i.

We can now define the accumulated discounted reward (cost), ξ(t), during the time interval (0, t],
by the following relation:

ξðtÞ ¼
XNðtÞ

n¼1

cJn e
�dTn ; (6)

where cJn is the cost caused by the nth tornado that had an intensity Jn. This cost has to be dis-
counted using a deterministic force of interest d and the time Tn of occurrence of the event. The total
damage over the time interval [0, t] is obtained by summation over the random number of torna-
does N(t) up to time t.

In the application section, we will compute the expected value E[ξ(t)] and the second-order
moment E[ξ2(t)]. For an extended treatment of the semi-Markov reward process (see e.g. Stenberg
et al. 2006).

4. Application to real data

4.1. Test

The first step of our application is to test the validity of the Markov hypothesis by means of a statisti-
cal test of hypothesis proposed by Stenberg et al. (2006) and shortly described in this article. The
geometric distributions for the waiting times are of specific parameters for Markov models. Other
distributions for the sojourn times show that the Markov modelling is inappropriate. The probabil-
ity distribution function of the sojourn time in state i before making a transition in state j has been
denoted by Gij( ¢ ). Define the corresponding probability mass function by

gijðtÞ ¼ PfTnþ1 � Tn ¼ tjJn ¼ i; Jnþ1 ¼ jg ¼
GijðtÞ � Gijðt � 1Þ if t> 1

Gijð1Þ if t ¼ 1:

(
(7)

Under the geometrical hypothesis, the equality gij(1)(1 ¡ gij(1)) ¡ gij(2) D 0 must hold, and then a
sufficiently strong deviation from this equality has to be interpreted as an evidence against the
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Markovian hypothesis and in favour of the semi-Markov model. The test statistic is as follows:

bSij ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nði; jÞp ðbg ijð1Þð1� bg ijð1ÞÞ � bg ijð2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibg ijð1Þð1� bg ijð1ÞÞ2ð2� bg ijð1ÞÞq ; (8)

where N(i, j) denotes the number of transitions from state i to state j observed in the sample andbg ijðxÞ is the empirical estimator of the probability gij(x) which is given by the ratio between the num-
ber of transition from i to j occurring exactly after x unit of time and N(i, j). This statistic, under the
geometrical hypothesis H0 (or Markovian hypothesis), has approximately the standard normal dis-
tribution (see Stenberg et al. 2006).

We applied this procedure to our data to execute tests at a significance level of 95%.
Because we have six states, we estimated the 6 £ (6 ¡ 1) waiting time distribution functions
and for each of them we computed the value of the test statistic (8). The geometric hypothesis
is rejected for 17 of the 30 distributions. In Table 1, we show the results of the test applied to
the waiting time distribution functions for few states.The large values of the test statistic sug-
gest the rejection of the Markovian hypothesis in favour of the more general semi-Markov one.

4.2. Probability transition matrices

To set the Markov model and the semi-Markov one, described in the previous section, we use the
Matlab Application Semi-Markov Toolbox (D’Amico et al. 2014a). This application allows to esti-
mate the transition matrices for Markov and semi-Markov models starting from real discrete data
of a given phenomenon. This application is also able to produce synthetic time series, of the same
length as the real one, by means of Monte Carlo simulation. The Monte Carlo algorithm consists of
repeated random sampling to compute successive visited states of the random variables {J0, J1, ...} up
to the horizon time L. The difference between semi-Markov and Markov models is that, in the first
case, the jump times {T0, T1, ...} between successive transitions are considered as a random variable.
The algorithm for semi-Markov model consists of four steps:

(1) Set n D 0, J0 D i, T0 D 0, horizon timeD L;
(2) Sample J from bpJn and set Jn C 1 D J(v);
(3) SampleW from bGJn;Jnþ1 and set Tn C 1 D Tn CW(v);
(4) If Tn C 1 � L stop

else set n D n C 1 and go to (2).
We show the results of the application in terms of transition probability matrices of the two con-

sidered models later. Particularly, in Figure 2, we show graphically the transition probability matrix
of the Markov model.

In Figures 3 and 4 instead, we show the transition probability matrices of the semi-Markov
model. The different matrices are plotted by varying the time t, by fixing v D 1 (Figure 3), while the
different matrices are plotted by varying the backward v, by fixing t D 1 (Figure 4). As it is possible
to note the dependence of the tornado process by the backward is stronger with respect to time
dependence. This is evident in Figure 4, where for little variations of the backward we have great

Table 1. Results of the test.

State State Score Decision

i D 1 j D 2 9.79 H0 rejected
i D 1 j D 3 4.43 H0 rejected
i D 3 j D 1 4.24 H0 rejected
i D 4 j D 1 5.50 H0 rejected
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variation on the probability transition matrices. From Figure 4, we highlight the strong dependence
of the process from backward by observing extreme states. For example, if we have an F5 tornado
(state 6), we can observe that the probability to have, in the next step, a tornado with the same inten-
sity increases with the increasing of backward, going from 0.27 for v D 1 to 0.62 for v D 6. A similar
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Figure 2. Transition probability matrix of the embedded Markov model.
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Figure 3. Transition probability matrix of the semi-Markov model varying the time t.
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observation can be made for the virtual transition on the state 1, which corresponds to F0 intensity
where we have a variation from 0.51 to 0.75, respectively, for v equal to 1 and 6. More generally, we
can note, at the increasing of backward, a movement of probability mass on the main diagonal of
the transition probability matrices.

4.3. Cost application

As a further application we apply the cost model to the tornado time series. Particularly, we trans-
form the original process into cost that a State has to pay due to tornado damages. To do this, we
apply the results of Simmons et al. (2013). The F-scale is then transformed into costs, by associating
to each grade a cost in the following way: 8689$, 62,440$, 121,141$, 146,564$, 177,824$ and 89,192$
that are, respectively, the mean costs of tornado degrees 0, 1, 2, 3, 4 and 5. As previously said, we
compute the expected value and the variance of the accumulated discounted cost (see Figures 5 and
6, respectively). In both figures, the continuous lines are referred to real data while the dashed lines
to the synthetic one. In these figures, we show the quantities as a function of the number of torna-
does and we highlight the dependencies with the actual state i and the backward process v by varying
them. It is possible to affirm that the semi-Markov model well caught the behaviour of real data. It is
possible to note that the results, in term of goodness of fit, for the mean of the accumulated dis-
counted cost remain almost constant for large number of successive tornadoes, instead the variance
starts to diverge near 40 successive tornadoes in both examples plotted.
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Figure 4. Transition probability matrix of the semi-Markov model varying the backward v.
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5. Conclusion

In this paper, we model the statistical behaviour of tornadoes in a vast region of the USA. To do this,
we use a first-order semi-Markov model that is more general of the Markov chain model. We show,
through a statistical test, that the latter one is not able to capture the duration effect of the tornadoes.
The more general semi-Markov model in fact, by considering the time of permanence in a given
state as generated by non-memoryless distribution, is able to reproduce the duration effect. More-
over, since we believe that the costs of the tornado damages are a serious problem related to this nat-
ural phenomenon, as an economic application, we compute the expected value and the variance of
the accumulated discounted cost and we show its dependency by the intensity and the duration of
the initial tornado. We have shown that the model is able to capture statistical feature of tornado
occurrence, intensity and damages costs. It can then be used to make statistical prediction of those
quantities.
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