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Abstract
Background Strength training as neuromuscular electrical stimulation (NMES) is effective in counteracting age-related 
postural impairments in elderly. However, it remains unknown whether training different muscle groups would entail in 
different adaptations.
Aim To evaluate the effect of NMES training on balance function in healthy inactive elderly, targeting paravertebral muscles, 
in addition to thigh muscles.
Methods Eleven healthy elderly were trained with NMES for 8 week allocated to combined training (CT: quadriceps and 
lumbar paraspinal muscles) or to quadriceps training (QT), after completing lifestyle questionnaire and spine morphology 
measurements. Functional balance, static stabilometry, and isometric strength tests were assessed before and after the train-
ing period.
Results and conclusion The CT group showed a greater improve in static balance control, i.e., reducing the CEA of the CoP 
displacement from 99 ± 38 to 76 ± 42  mm2 (Cohen’s d = 0.947). Benefits for improving static balance through CT might be 
due to NMES training, which increases spinal stabilization.

Keywords Stabilometry · Spine anatomy · Physical stimulation · Exercise therapy · Combined training · Posture

Introduction

Healthy skeletal muscle promotes a broad range of func-
tions, including the maintenance of postural control, mobil-
ity, strength, and metabolic functions, which makes it an 
essential tissue for life [1–3]. Severe sarcopenia is known 
to increase the chances of developing a disability and pre-
mature death [4, 5]. Of particular concern in old age is the 

high incidence of falls, which can lead to devastating con-
sequences [6]. Although postural function impairment is not 
viewed as a typical risk factor for falls, associations between 
posture and body balance or falls in the elderly have been 
shown [7, 8].

The postural output is closely associated with lower 
limbs’ strength and power across all subjects [9]. Recently, 
Andrade and colleagues pointed out that the age-related 
impairment of postural control is mainly due to lower limb 
strength decline and not due to the changes in sensorial inte-
gration [10]. Furthermore, a growing body of evidence sug-
gests that age-related postural changes in spine morphology 
contribute to the increased postural instability which in turn 
entails the increased risk of falls in the elderly [11–13]; for 
instance, Beserra Da Silva and colleagues [14] demonstrated 
on postmenopausal women that trunk extension strength is a 
predictor of falls. Indeed, to counteract the fall risk associ-
ated with age-related osteo-muscular diseases, in addition to 
the strengthening of lower limb muscles [15], and particu-
larly knee extensors [16], it has been suggested to targeting 
trunk and core muscles [17].
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Neuromuscular electrical stimulation (NMES) previ-
ously proved to be effective in attenuating muscle mass and 
strength in both healthy adults [18] as well in people with 
muscle weakness who cannot perform volitional training 
[19]. However, it is still missing evidence about a possi-
ble enhancement of postural adaptations due to training on 
paravertebral muscles, in addition to the usual training of 
large muscle groups of lower limbs. It has been argued that 
supervised protocols of resistance training in older adults 
improved balance to a greater extent, rather than unsuper-
vised protocols [20]. Therefore, NMES training may be pro-
spectively useful for targeting strength protocols in elderly 
in a self-training modality in those conditions where active 
and supervised protocols are hard to implement.

Hence, in this study, we aimed to evaluate the effect of 
paravertebral and thigh muscles NMES training on balance 
function in healthy older people. The authors hypothesized 
that targeting at lumbar paravertebral muscles with electri-
cal stimulation in elderly, which is difficult to stimulate with 
active protocols in elderly in addition to thigh muscles, will 
enhance the training-related benefits to postural health. The 
authors also hypothesized that changes in postural control in 
response to 8-week of NMES training would be detectable 
by stabilometry.

Materials and methods

Participants

Volunteers were recruited from the community according 
to the inclusion criteria: (a) > 65 years old, (b) availability 
to take part in a 8-week lasting training plan in our labora-
tory, (c) being able to carry out stabilometry assessment 
with closed eyes. The exclusion criteria were irregular 
ECG, osteoarticular pathologies, mild to medium cardio-
circulatory pathologies, cancer, non-controlled hyperten-
sion, metabolic, psychiatric, respiratory, neuromuscular or 
genetic disease, and sarcopenia. Only one participant (the 
one coded as Q + Lm1 in the tables) suffered from a ves-
tibular disease in the past. The current report refers to an 
experimental group of 11 Italian volunteers, aged 66–74 
years, retired, living in Abruzzo region, Italy (see Table 1 
for details). Our participants were not involved in physi-
cal activity or exercise protocols. None of them was taking 
any medication targeting muscle function. The study was 
approved by the Ethics Committee of the University “G. 
d’Annunzio” (n.16 of 05/09/2019), conforming to the ethi-
cal standards set by the Declaration of Helsinki and later 
amendments [21]. Informed consent was obtained from all 
individual participants included in the study. A medical 
anamnesis was applied to all the participants by a medical 
doctor prior to the effective recruitment.

Table 1  Descriptive characteristics of volunteers

FM was estimated from plicometry
PCS and MCS were calculated from SF-12 questionnaire; PA score was calculated by PASE questionnaire; Waist-to-Height and Waist-to-Hip 
are expressed as ratios. The first six subjects performed the combined training (Q + L quadriceps + lumbar paraspinal muscles), the following five 
ones performed the training of thigh (Q quadriceps) only
BMI body mass index, FM fat mass, PCS physical component summary, MCS mental component summary, PA physical activity

Gender Age (years) BMI (kg/m2) FM (%) PCS MCS PA Waist-to-height Waist-to-hip

Q + Lf1 Female 68 28.13 37.32 46.62 51.94 176 0.59 0.82
Q + Lf2 Female 69 26.44 38.56 51.11 54.72 144 0.59 0.90
Q + Lm1 Male 69 25.68 17.71 50.41 56.87 136 0.56 0.94
Q + Lm2 Male 72 28.65 23.35 54.13 49.89 87 0.63 0.98
Q + Lf3 Female 68 26.06 32.23 56.15 42.6 130 0.58 0.93
Q + Lf4 Female 69 22.23 35.29 43.13 54.65 97 0.51 0.84
Q + L group 69.17 (1.47) 26.20 (2.27) 30.74 (8.39) 50.26 (4.79) 51.78 (5.11) 128.33 (32.46) 0.58 (0.04) 0.90 (0.06)
Qm1 Male 69 29.81 27.13 44.40 62.97 99 0.64 1.08
Qf1 Female 69 25.84 35.97 45.48 48.11 104 0.55 0.80
Qf2 Female 66 30.04 40.39 47.70 57.46 165 0.58 0.81
Qf3 Female 74 28.76 39.46 48.08 33.23 90 0.59 0.83
Qm2 Male 74 27.53 22.72 49.10 52.61 146 0.61 1.08
Q group 70.40 (3.51) 28.40 (1.74) 33.13 (7.83) 46.95 (1.94) 50.88 (11.31) 120.80 (32.77) 0.59 (0.03) 0.92 (0.15)



87Sport Sciences for Health (2022) 18:85–96 

1 3

Materials

The neuromuscular activation (warm-up) was performed 
pedaling on a stationary bike (XTPRO Bike600, Techno-
gym, Gambetolla, Italy). The transcutaneous electrical 
stimulation was delivered through a set of four fully gelled 
electrodes with a contact area of 5 × 5  cm2 using a customiz-
able NMES device (Genesy 1200 Pro; Globus Srl, Codogne, 
Italy). Spine morphology was assessed through the 6TVC 
G.O.A.L.S. (Global Opto-electronic Approach for Locomo-
tion & Spine) (Bioengineering & Biomedicine Company 
S.r.l., Italy) stereo-photogrammetric opto-electronic system, 
derived from Optitrack System (Natur- alPoint Inc. USA). 
3D parametric biomechanical model was processed with the 
commercial software package ASAP 3D Skeleton Model 
(Bioengineering & Biomedicine Company S.r.l. Italy). They 
were then tested for spine morphology in the external Labo-
ratory of the “Bioengineering and Biomedicine Company”. 
In this study, a stabilometric and posturometric platform 
with related software (Lizard 3.01, Lizard S.r.l, Perugia, 
Italy) was used to record and report the CoP movements 
in the anterior–posterior (y) and lateral (x) directions. To 
assess bilateral isometric strength of quadriceps, we used 
Maximum Voluntary Isometric Contraction (MVIC) method 
on a leg extension machine (Nessfit NMI 1000, Bcube, Italy) 
equipped with a dynamometer (Tesys 800, Globus, Italy). 
The percentage of Fat Mass (FM%) was estimated based 
on the method of Jackson and Pollock [22]; skinfold thick-
ness was measured with an accurate plicometer (Holtain Ltd, 
UK).

Physical activity (PA) levels were assessed by the Physi-
cal Activity Scale for Elderly (PASE) questionnaire. It is a 
brief tool that focuses on three domains (leisure, household 
and work-related), assessing the PA in older people over a 
1-week time frame. It includes activities common to most 
oldest adults, providing a more comprehensive assessment 
of the overall physical activity of the elderly. In this study, 
the validated version of the original questionnaire adapted to 
Italian culture was used [23]. Health-Related Quality of Life 
(HRQoL) was assessed by the Short Form-12 (SF-12) ques-
tionnaire. It is a 12-item questionnaire that assesses generic 
health outcomes from the patient’s perspective, including 
the impact of possible illnesses on a wide range of func-
tional domains. In this study, the Italian version of the SF-12 
questionnaire was used, and data were scored according to 
Ware et al. [24] to calculate Physical and Mental Component 
Summary (respectively, PCS and MCS) [25].

Research design

This randomized non-controlled trial represents a pilot study, 
as a sub-set of the project “A.M.A. la terza età” (translation: 
“love the old age”), which addresses the exercise-related 

adaptations in elderly and the determinants of muscle 
healthy aging. Before starting with the training, partici-
pants underwent an inclusive check for sarcopenic status, 
controlling for walking speed and handgrip strength [26]. 
The eleven volunteers were randomly assigned to two groups 
and trained with NMES throughout an eight-week period to 
either a combined training (Q + L group: training of quadri-
ceps and lumbar paraspinal muscles; six participants, age: 
69.2 ± 1.5 years, BMI: 26.2 ± 2.3 kg/m2) or to a training of 
quadriceps only (Q group; five participants, age: 70.4 ± 3.5 
years, BMI: 28.4 ± 1.7 kg/m2). All participants were tested 
at the beginning and the end of the 8-week training period 
to examine the static balance adaptations using stabilometry 
and the functional balance using single-leg static balance 
test (or One-Leg Stance test, hereinto Flamingo test) and 
stepping test (or Fukuda-Unterberger stepping test, hereinto 
Fukuda test). In addition, MVIC was measured to assess 
the leg strength of volunteers. At baseline, participants 
completed PASE and SF-12 questionnaire and underwent 
anthropometric measurement. In particular, body mass index 
(BMI) was calculated as weight-to-square height ratio, and 
%FM was estimated as reported in the "Materials" section. 
Physical activity levels, wellness components, and spine 
morphology were assessed to characterize the sample. In 
addition, we measured spine morphology as the assess-
ment of structural components of posture is considered as a 
valid component of physical functions and health in elderly 
individuals [27]. At the end of the training, we provided 
the participants with a report of their results, including the 
baseline measures. On these bases, we suggested them the 
current recommendation for Active Aging [28] and specific 
tips based on our results.

Procedure

Intervention: NMES training

The NMES training consisted of three sessions per week for 
an 8-week period. All volunteers performed 5 min of neu-
romuscular activation (warm-up) pedaling on a stationary 
bike. NMES training of quadriceps muscle group was set 
according to our laboratory protocol previously described 
in [29], while NMES training of lumbar paraspinal muscles 
(targeting the lumbar multifidus) was experimentally set 
according to the previous work by the groups of Baek and 
Kim [30, 31]. In both cases, electrodes were placed follow-
ing skin preparation with an alcohol wipe.

For the NMES of the quadriceps, volunteers were seated 
in a relaxed position with a knee joint fixed at a 90° knee 
extension. After cleaning the skin with an alcohol wipe, 
two active electrodes were placed over the motor points of 
vastus lateralis and vastus medialis previously identified 
by palpation, and two dispersive electrodes were placed 
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approximately 5 cm below the inguinal crease. The NMES 
training lasted 18 min in total. Rectangular wave pulsed cur-
rents (75 Hz frequency, 400 µs pulse width) were delivered 
with a rise time of 1.5 s, a steady tetanic stimulation time of 
4 s, and a fall time of 0.75 s (total duration of the contrac-
tion: 6.25 s) with a rest interval of 20 s between contractions.

Volunteers undergoing the combined NMES training fol-
lowed the quadriceps NMES by 15 min NMES of lumbar 
paraspinal muscles. Four electrodes were placed bilaterally 
at the vertebral levels of L4 and L5, as described by the 
groups of Baek and Kim [30, 31], identified previously by 
iliac crest palpation. Volunteers were seated in a relaxed 
position, which was empirically set based on a prior set of 
trials involving different volunteers trying different posi-
tions. Biphasic wave pulsed currents (50 Hz frequency, 
300 µs pulse width) were delivered with a ramp-up for 1 s, 
a steady tetanic stimulation time of 8 s, and a ramp down 
for 1 s (total duration of the contraction: 10 s) with a rest 
interval of 10 s between contractions. Frequency and time 
were applied according to previous work by [30, 31]. The 
transcutaneous electrical nerve stimulation (TENS) [32] was 
applied for the rest interval. This novel setting was applied 
to provide a more comfortable experience for the elderly 
volunteers, which was again previously tested empirically.

For both NMES training protocols, the intensity was 
monitored during each session and gradually increased to 
reach the maximum tolerable intensity, corresponding to the 
individual’s pain threshold. After the first instructed trials, 
volunteers were allowed to freely adjust the intensity during 
the training session without feeling discomforts. Maximum 
intensities reached at the end of the NMES training ranged 
from 25 to 35 mA and from 35 to 45 mA for quadriceps and 
lumbar multifidus, respectively.

Variables: spine morphology measurements

We used the method described in [33] and [34]. In brief, 
recordings were based on a 6TV cameras (resolution 1.3 
Mp, 120 fps) stereo-photogrammetric opto-electronic sys-
tem. The calibrated acquisition volume was 3 × 3 × 2 m with 
a computed mean error range of 0.3–0.4 mm. For data pro-
cessing, a complete 3 day parametric biomechanical human 
skeleton model has been implemented. It is based on 27 pas-
sive retro-reflective markers accurately positioned and glued 
on the human body, referred to anatomical landmarks identi-
fied by palpation [35]. Participants were required to maintain 
the neutral standing posture, with the upper arms relaxed 
along the side of the body, eyes looking directly ahead in the 
horizontal plane, feet apart at about pelvis width, and heels 
aligned on a line parallel to the frontal plane. At least five 
subsequent two-second lasting acquisitions at 120 Hz sam-
pling rate have been recorded. All measurements were taken 
between 12 noon and 7.00 pm. The subjects were asked to 

avoid any intensive training and/or hard physical activity 
before the postural assessment. For the current study, we 
used four quantitative biomechanical parameters. In the fron-
tal plane, we used the average frontal offsets (ASO) and the 
average frontal global offsets (AGO). These are the com-
puted means of horizontal distances of each labeled spine 
landmark with respect to: the vertical axis passing by S3 
(ASO), and to the vertical axis passing through the mid-
point between the heels (AGO). In the sagittal plane, we 
used the kyphosis angle (KA) and the lordosis angle (LA), as 
the computed angles in the identified kyphosis and lordosis, 
properly identified according to real spine curvature spatial 
changes at the limit-vertebrae and not strictly limited to the 
thoracic and lumbar anatomical regions.

Variables: static stabilometry

During the stabilometry, the room was silent, and the assess-
ment was performed with the volunteer standing barefoot 
on the stabilometric platform (Lizard 3.01®, Italy). Arms 
were held at the sides, and volunteers stood still focusing on 
a target located directly ahead on the white wall, approxi-
mately 1.5 m apart. Heels were positioned apart, forming a 
30° angle as described in [36], touching the baseline with the 
second metatarsal and the center of the heel of each foot on 
each of the two 15° reference lines. The standardization was 
provided by positioning the lateral malleolus perpendicu-
larly to the smaller reference line (see Fig. 1). The studied 
stance was bipedal with the eyes open (EO) and eyes closed 
(EC), which was tested for 51.2 s. The parameters were: 
Path Length (PL), Mean Path Velocity (MVP), Confidence 
Ellipse Area (CEA), Variance of Speed (Var S), Load Dis-
tribution Difference (LDD), Confidence Ellipse Axis Ratio 
(AP/ML Range Ratio). Romberg Index (RI) of PL, MVP 
and CEA were calculated as (EC/EO) × 100. The test was 
performed only once [37], and the data were recorded by the 
Lizard processing software (Lizard 3.01®, Italy).

Variables: functional balance measurements

The Flamingo test was applied following literature [38]. To 
be specific, volunteers were asked to stand freely on one foot 
for as long as possible, with the other foot raised, focusing 
on a spot on the wall at eye level in front of him with eyes 
open. The investigator interrupted the test after 30 s, or if the 
subject touched the floor with the raised leg. Compensatory 
arm movements were accepted during the test. To prevent 
falls or injuries, an investigator stood close to the volunteer 
throughout the experimental session. The investigator used 
a stopwatch to measure the amount of time the subject was 
able to stand on one limb. The best time of three trials was 
recorded for each limb.
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The Fukuda test was applied following literature [39]. 
To be specific, volunteers stood in the center of one circle 
(drawn on the ground) with feet close together. They were 
asked to raise one leg and then the other and to step in place 
at normal walking speed, with eyes closed. Both arms were 
stretched in front of the individual and raised to 90°. When 
50 steps were completed, volunteers were asked to remain 
standing, and the angle of rotation and distance of displace-
ment were measured. The angle of rotation was the amount 
of turning of the body around its vertical axis. The distance 
of displacement was the distance the individual moved from 
the start position.

Variables: maximum bilateral isometric contraction or leg 
strength test

The MVIC test was performed according to a previ-
ous study [40]. Briefly, volunteers sat on a leg extension 
machine (Nessfit NMI 1000, Bcube, Italy) equipped with 
a dynamometer (Tesys 800, Globus, Italy) with knee and 
hip joint angle positioned at 90°, fastened to the chair, and 
they were required to push as hard as possible for 5 s. The 
test was carried out three times with recovery time > 2 min, 
and the best performance was recorded and used for later 
statistical analysis.

Statistics

The statistical analysis was carried out using GraphPad 
Prism Software, version 8 (GraphPad Software, La Jolla, 
USA), and the R-based open-source software Jamovi Ver-
sion 1.2.5.0 (retrieved from https:// www. jamovi. org). PL, 
MVP, CEA, Var S, LDD, and AP/ML Range Ratio, both in 
EO and EC condition were tested for the comparison (pre 
vs post-intervention) × (combined training vs quadriceps 
training). RIs and MVIC were tested for the (pre vs post-
intervention) comparison. After the assumption checks for 
normality of distribution (Shapiro Wilk’s test) and homosce-
dasticity (Levene’s test), considering the number of repeated 
measures (two) and the absence of missing point, ANOVA 
for repeated measure was used [41]. Partial η2 was used as 
the effect size measure. Tukey’s correction for multiple com-
parisons was used for post hoc tests.

Considering the results of two reliability studies, one 
referred to young [42] and the other to elderly [43] vol-
unteers, PL, CEA and LDD were analyzed further. To be 
specific, each experimental group was tested with Bayes-
ian paired-sample t test, hypothesizing a reduction of the 
values after the training period. Cauchy’s distribution 
with λ = 0.707 was used arbitrarily for a priori distribu-
tions. Bayes Factor  (BF10) was calculated, and BF robust-
ness checks were performed across a wide range of prior 

distributions. Considering the small sample size, Cohen’s d 
was adjusted to Cohen’s dunbiased [44] as follows:

Results

The volunteers were compliant to the proceeding of the 
study and successfully concluded the training period. 
Anthropometric characteristics of the participants revealed 
1 out of 11 obese (9%), 9 overweight (82%) and 1 with nor-
mal weight, according to the typical BMI cut-offs (18–25, 
25–30, and > 30 kg/m2 for normal weight, overweight, and 
obese, respectively). Waist-to-hip ratio, an index for pre-
dicting the risk for non-communicable diseases in elderly 
has been widely established (Corrêa, Thumé, De Oliveira & 
Tomasi, 2016), ranged from 0.51 to 0.64. Their waist-to-hip 
ratio was higher than the typically recommended value of 
0.50 [45] in all the participants. Mean PASE total score was 
124.90; this result cannot be used to contextualize physical 
activity levels of our participants, as usually PASE scores 
are used to stratify on tertiles the participants [46, 47]; our 
participants reported a PASE score lower than the Italian 
reference [23] (125 ± 31 and 159 ± 78, respectively). The 
SF-12 questionnaires results were: Physical Component 
Summary (PS) = 48.8 ± 4.0 and Mental Component Sum-
mary (MS) = 51.4 ± 8.0; basing on large references [48], 
these results identify our participants healthy, both for physi-
cal and mental components. Compared to the data obtained 
from ten countries about volunteers aged 65–74 years, the 
mean PCS of our participants was higher than all the refer-
ences, while the mean MCS was higher than 3 out of 10 
references, including the Italian one [49].

Results of spine morphology measurements are shown in 
Table 2. Concerning spine morphology, the participants had 
greater angles (both for frontal and sagittal plane measures) 
than normative values of young healthy adults [33], reflect-
ing, as expected, an impaired spine health. In particular, their 
spine morphology showed a high heterogeneity in the frontal 
plane deformities, and consistent and marked deformities in 
the sagittal plane; in particular, all of the tested volunteers 
had a kyphosis angle > then 40°, confirming the age-related 
hyperkyphosis [13].

Our participants showed a good balance status: only 
2 out of 11 had lower values than normative values of 
one-leg stance (open eyes, best of three trials, clustered 
by age group and gender) [50]. Concerning the Flamingo 
test, after the training period were shown impairments in 
3/6 and 1/5 participants (Q + L and Q group, respectively) 
and improvements in 1/6 and 2/5 participants (Q + L and Q 

d unb = d

(

1 −
3

4df − 1

)

.

https://www.jamovi.org
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group, respectively) (see Table 3). Concerning the Fukuda 
test, the angle of rotation was reduced in 4/6 and 3/5 par-
ticipants (Q + L and Q group, respectively) while the dis-
tance of displacement was reduced in 1/6 and 2/5 par-
ticipants (Q + L and Q group, respectively) (see Table 3); 
to be specific, the distance of displacement moved from 
110 ± 38 cm to 93 ± 42 cm after the training period in 
the Q + L group, and from 92 ± 59 to 89 ± 39 cm in the Q 
group, while the angle of rotation moved from 41 ± 33° to 
56 ± 44° in the Q + L group and from 15 ± 17° to 28 ± 12° 
in the Q group.

Individual plus whole group values are shown in 
Table 3 (Q + L group) and Table 4 (Q group), and statisti-
cal comparisons are shown in Tables 5 and 6. MVIC did 
not significantly change after the training period, ranging 
from 381 ± 108 N to 373 ± 133 N in the Q + L group after 
the training period, and from 447 ± 100 N to 435 ± 111 N 
in the Q group. Taking into account RM-ANOVA results 
(Table 2), Bayesian statistics and  dunb (Table 3), and Mag-
nitude-Based Decision references [51], the Q + L train-
ing resulted better than the Q training in improving static 
balance control, with likely beneficial effect in reducing 
CEA (open eyes condition) and possibly beneficial effects 
in reducing PL (open eyes condition) and LDD (closed 
eyes condition). The achieved statistical power (1 − β) 
for within–between interaction of CEA with open eyes 
was computed as 0.98 with the software G*Power Ver-
sion 3.1.9.3 [52]. To be specific, volunteers of Q + L group 
reduced the CEA with open eyes after the training of 25% 
on average, ranging from 99 ± 38 to 76 ± 42  mm2.

Discussion

To our knowledge, this is the first study evaluating static 
balance adaptations in response to NMES training of 
lumbar multifidus and vastus lateralis in healthy elderly. 
All in all, the participants of the current study can be 
defined as healthy elderly, substantially inactive, with an 
anthropometric status linked with high cardiovascular and 
metabolic risk, with an unhealthy spine morphology, but 
with a high wellness status, good strength and functional 
mobility, and non-sarcopenic. We compared the effect 
of two NMES training protocols with regard to strength, 
stabilometry and functional balance measures. From our 
results, the effect of NMES for improving maximum 
strength (measured by MVIC test) was unclear, as well as 
for improving functional balance (measured by Flamingo 
test and Fukuda test). Instead, despite the failing of find-
ing statistical significance, a comprehensive evaluation 
of statistical testing revealed the combined training (of 
quadriceps and lumbar paraspinal muscles), rather than 
quadriceps training, to be likely or possibly beneficial for 
improving static balance. To be specific, the most likely 
results involved a reduction of CEA with open eyes, fol-
lowed by the reduction of LDD with closed eyes and the 
reduction of PL with open eyes. These parameters were 
shown to be reliable in young adults [42], allowing further 
wide studies aiming to define the age-related normative 
values.

Basing on these prospective pieces of evidence, and 
according to the repeatability results of stabilometry 
parameters in elderly [43], we support the use of CEA 
parameter to determine training-related adaptation of static 
balance. Indeed, despite the condition “narrow stand eyes 
closed” has been proved to be the most reliable position 
[43], measuring CEA with normal standing position (feet 
slightly apart with an open angle) could also be adopted. 
PL with open eyes and LDD with closed eyes deserve fur-
ther evaluations. With this regard, it should be of interest 
to go ahead with the results of Bernard and colleagues, 
who demonstrated the ones with the lowest initial level 
of balance control obtain more benefits from a postural 
control training program [53], defining which parameters 
may be the most adequate in monitoring balance control 
adaptations in healthy and clinical elderly.

The importance of lower limb strength for allowing a 
good postural control in elderly has been demonstrated [10]. 
In addition, a systematic review conducted by Granacher 
and colleagues [17] concluded trunk muscle strength to be 
important in fall prevention and rehabilitation program, as 
an additional or alternative method to balance and resistance 
training. One of the reasons behind the likely more beneficial 
effect of the combined training may lie in the effectiveness 

Table 2  Postural characteristics of volunteers of both groups (Q + L: 
quadriceps + lumbar paraspinal muscles; Q: quadriceps; f: females; 
m: males), by the mean of frontal (ASO and AGO) and sagittal plane 
(KA and LA) measures [33]

Regarding ASO and AGO, values < 0 give offsets towards the left 
side, > 0 towards the right side
ASO average frontal spinal offset, AGO average frontal global offset, 
KA kyphosis angle, LA lordosis angle

ASO (mm) AGO (mm) KA (degree) LA (degree)

Q + Lf1 9.1 28.0 53.6 53.7
Q + Lf2 N.A N.A N.A N.A
Q + Lm1 N.A N.A N.A N.A
Q + Lm2 − 4.0 − 12.3 71.4 38.6
Q + Lf3 1.8 9.7 45.2 32.1
Q + Lf4 N.A N.A N.A N.A
Qm1 − 1.9 14.8 50.0 35.6
Qf1 − 3.3 − 3.1 50.0 47.1
Qf2 N.A N.A N.A N.A
Qf3 − 18.4 − 12.3 51.5 53.5
Qm2 − 2.0 8.4 41.9 41.4



91Sport Sciences for Health (2022) 18:85–96 

1 3

of NMES training for improving the spinal stabilization, 
thanks to an enhanced activation of the deep fibers of mul-
tifidus [32], as demonstrated also in patients with lumbar 
degenerative kyphosis [31]. Aging of the spine contributes 
to the development of painful and debilitating disorders, due 
to the main pathophysiological processes of degeneration 
and bone mass reduction [54]. We think that the time course 
of adaptations related to middle-term training protocols, 

as in the current study, did not allow to counteract these 
processes. However, targeting trunk extensor muscles may 
have caused a greater control of core, resulting in a reduced 
instability during static posture. NMES has the potential to 
increase muscle mass, both in quadriceps and lumbar mus-
cles; interestingly, improving muscle mass of paravertebral 
muscles likely benefits spine morphology and posture main-
tenance [55].

Table 3  Dataset of stabilometry, 
balance, and strength tests of 
the combined NMES (Q + L: 
quadriceps + multifidus; f: 
females; m: males) group

For LDD, positive values refer to higher load on right foot, while negative values higher load on left foot
PL path length, MPV mean path velocity, CEA confidence ellipse area, VarS variance of speed, LDD load 
distribution difference, AP/ML antero–posterior/medio–lateral ratio, Dis. linear displacement, Rot. rotation 
(l towards left side, r towards right side), MVIC maximum voluntary isometric contraction

Q + Lf1 Q + Lf2 Q + Lm1 Q + Lm2 Q + Lf3 Q + Lf4

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

Stabilometry—eyes open
 PL (mm) 277 232 313 218 328 265 406 404 278 274 294 280
 MPV (mm/s) 6.2 5.3 7.4 5.8 7.7 6.3 9.5 9.4 6.4 6.1 7.5 6.9
 CEA  (mm2) 60 39 114 52 87 56 169 155 76 64 89 87
 VarS  (mm2/s2) 16 12 30 19 34 19 43 36 17 13 25 21
 LDD (%) 6.8 − 0.7 0.5 2.9 6 1.5 − 5 − 3.7 8.1 3.9 − 7.1 − 10.2
 AP/ML (%) 36 15 61 31 22 31 68 46 64 32 35 54
 Pre: PL = 316.00 ± 48.38; MPV = 7.45 ± 1.18; CEA = 99.17 ± 38.52; VarS = 27.50 ± 10.37; 

LDD = 1.55 ± 6.47; AP/ML = 47.67 ± 19.04
 Post: PL = 278.83 ± 66.00; MPV = 6.63 ± 1.46; CEA = 75.50 ± 42.07; VarS = 20.00 ± 8.63; 

LDD = − 1.05 ± 5.24; AP/ML = 34.83 ± 13.59
Stabilometry—eyes closed
 PL (mm) 250 211 291 282 592 306 395 335 423 402 402 336
 MPV (mm/s) 5.8 4.8 6.6 7.3 13.4 7.8 8.9 7.9 10.0 9.5 10.7 7.9
 CEA  (mm2) 53 37 72 66 232 69 134 74 174 169 231 117
 VarS  (mm2/s2) 16 9 20 36 124 32 31 25 58 46 120 30
 LDD (%) 9.1 0.8 1.5 2.1 5.6 2.2 − 2.2 − 2.4 7.5 1.1 − 5.6 − 10
 AP/ML (%) 56 35 75 46 27 20 55 34 50 54 46 23
 Pre: PL = 392.17 ± 119.53; MPV = 9.23 ± 2.79; CEA = 149.33 ± 76.95; VarS = 61.50 ± 49.12; 

LDD = 2.65 ± 5.77; AP/ML = 51.50 ± 15.60
 Post: PL = 312.00 ± 63.78; MPV = 7.53 ± 1.53; CEA = 88.67 ± 46.99; VarS = 29.67 ± 12.34; 

LDD = − 1.03 ± 4.70; AP/ML = 35.33 ± 13.05
Stabilometry—Romberg Index
 PL 90 91 93 130 180 115 97 83 152 147 137 120
 MPV 93 91 90 126 174 124 94 84 158 154 143 116
 CEA 90 94 63 126 267 124 80 48 230 263 259 135
 PL = 124.83 ± 37.23 to 114.33 ± 23.96; MPV = 125.33 ± 37.48 to 115.83 ± 25.52;  CEA = 164.83 ± 96.66 

to 131.67 ± 71.79
Fukuda stepping test
 Dis. (cm) 40 35 125 150 100 120 130 55 114 93 150 103
 Rot 43°l 32°r 90°l 112°l 68°l 110°l 18°r 28°l 16°r 40°l 9°l 12°r

One-leg stance test
 Right (s)  > 30  > 30 13 24 10 7  > 30 20  > 30  > 30 27  > 30
 Left (s)  > 30 23  > 30  > 30 7 7  > 30  > 30  > 30  > 30  > 30  > 30

Isometric bilateral strength test
 MVIC (N) 300 299 245 212 396 406 528 599 480 412 337 310

381.00 ± 108.28 to 373.00 ± 133.46
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Whereas the training of lower limbs, as well as upper 
limbs, can be performed in healthy elderly with several 
active methods, the training of back muscles represents a 
more difficult challenge and, often, the presence of back 
pain or functional mobility impairments severely limits the 
possibility of active training, unless it is tutored by physi-
otherapists and clinicians [56]. Even more in several clini-
cal conditions, where passive training represents the most 

suitable method to produce muscular exercise [57]. With this 
regard, it has been demonstrated the effectiveness of trunk 
extension strength in limiting the risk of fall [14], a major 
problem in elderly. Therefore, NMES training of back mus-
cles can be adopted where core training, resistance training 
or balance training [58] are severely limited or impossible. 
Since the time course on mobility function in elderly due 
to NMES training varies across tasks [59], both in training 

Table 4  Dataset of stabilometry, 
balance, and strength tests 
of the group who performed 
NMES training of thigh only 
(Q: quadriceps; f: females; m: 
males)

For LDD, positive values refer to higher load on right foot, while negative values higher load on left foot
PL path length, MPV mean path velocity, CEA confidence ellipse area, VarS Variance of speed, LDD load 
distribution difference, AP/ML antero–posterior/medio–lateral ratio, Dis. linear displacement, Rot. rotation 
(l towards left side, r towards right side), MVIC maximum voluntary isometric contraction

Qm1 Qf1 Qf2 Qf3 Qm2

Pre Post Pre Post Pre Post Pre Post Pre Post

Stabilometry—eyes open
 PL (mm) 214 310 295 298 247 218 230 196 265 256
 MPV (mm/s) 5.3 8.4 6.7 6.9 5.7 5.4 5.3 4.6 6.2 5.9
 CEA  (mm2) 40 102 69 68 50 41 47 35 59 61
 VarS  (mm2/s2) 14 55 17 21 21 13 12 8 13 16
 LDD (%) − 2.9 0.6 1.3 0.5 − 0.4 − 0.4 0.7 1.9 7.8 5.9
 AP/ML (%) 61 38 53 34 30 46 35 49 41 47
 Pre: PL = 250.20 ± 31.44; MPV = 5.84 ± 0.61; CEA = 53.00 ± 11.25; VarS = 15.40 ± 3.65; 

LDD = 1.30 ± 3.97; AP/ML = 44.00 ± 12.81
 Post: PL = 255.60 ± 49.30; MPV = 6.24 ± 1.47; CEA = 61.40 ± 26.48; VarS = 22.60 ± 18.72; 

LDD = 1.70 ± 2.49; AP/ML = 42.80 ± 6.46
Stabilometry—eyes closed
 PL (mm) 404 663 617 575 357 260 229 209 374 320
 MPV (mm/s) 9.4 15.9 14.5 13.3 8.2 6.5 4.2 4.7 8.9 7.3
 CEA  (mm2) 45 635 361 257 123 63 45 38 123 98
 VarS  (mm2/s2) 45 N.A 290 109 34 24 11 10 42 30
 LDD (%) − 0.3 5.7 3.2 − 0.9 0.9 − 1.9 2.7 2.7 7.1 3.4
 AP/ML (%) 24 12 53 36 26 24 24 33 54 90
 Pre: PL = 396.20 ± 140.36; MPV = 9.04 ± 3.68; CEA = 139.40 ± 129.87; VarS = 84.40 ± 115.70; 

LDD = 2.72 ± 2.82; AP/ML = 36.20 ± 15.82
 Post: PL = 405.40 ± 201.33; MPV = 9.54 ± 4.80; CEA = 218.20 ± 248.11; VarS = 43.25 ± 44.63; 

LDD = 1.80 ± 3.14; AP/ML = 39.00 ± 30.00
Stabilometry—Romberg Index
 PL 189 214 209 193 145 119 100 106 141 125
 MPV 179 189 217 192 143 119 79 103 143 123
 CEA 111 620 521 379 249 154 95 109 209 161
 PL = 156.80 ± 42.94 to 151.40 ± 48.62; MPV = 152.20 ± 51.10 to 145.20 ± 42.04; 

CEA = 237.00 ± 171.48 to 284.60 ± 214.81
Fukuda stepping test
 Dis. (cm) 150 148 5 56 60 71 122 110 121 60
 Rot 3°r 18°l 18°r 16°r 9°l 40°r 3°l 22°r 43°r 42°r

One-leg stance test
 Right (s)  > 30  > 30  > 30  > 30 22  > 30  > 30 N.A  > 30  > 30
 Left (s) 24  > 30  > 30 24 17 26 19 N.A  > 30  > 30

Isometric bilateral strength test
 MVIC (N) 495 466 307 324 466 483 396 322 571 581
 447.00 ± 100.30 to 435.20 ± 111.43
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and detraining periods, the time course of postural adapta-
tion due to NMES training shall be investigated with larger 
sample studies.

The study did not come without limits. Internal validity is 
threatened in this study, since the absence of control group. 
However, there were difficulties in recruiting a control group 

Table 5  Statistical comparison 
of stabilometry and quadriceps 
strength

For each parameter, repeated measures (RM)-ANOVA was used to test the intervention (RM: pre vs 
post) × group (quadriceps + lumbar paraspinal muscles vs quadriceps only) comparison. Partial η2 (η2

p) is 
reported as effect size. Post-hoc tests are reported for both groups
Q + L combined training (quadriceps + lumbar muscles), Q quadriceps training, PL path length, MPV mean 
path velocity, CEA confidence ellipse area, VarS variance of speed, LDD load distribution difference, AP/
ML antero–posterior/medio–lateral ratio, RI Romberg Index, MVIC maximum voluntary isometric contrac-
tion of bilateral leg extension, N.A. not applicable

Eyes RM
p (η2

p)
RM × group
p (η2

p)
Group
p (η2

p)
Q + L
p

Q
p

PL Open 0.275 (0.131) 0.150 (0.216) 0.146 (0.220) 0.247 0.992
MPV Open 0.566 (0.038) 0.121 (0.246) 0.176 (0.193) 0.372 0.871
CEA Open 0.358 (0.095) 0.073 (0.315) 0.136 (0.229) 0.188 0.877
VarS Open 0.984 (0.000) 0.102 (0.269) 0.417 (0.074) 0.549 0.632
LDD Open 0.272 (0.132) 0.149 (0.217) 0.670 (0.021) 0.244 0.992
AP/ML Open 0.281 (0.128) 0.366 (0.091) 0.725 (0.014) 0.447 0.999
PL Closed 0.366 (0.091) 0.258 (0.140) 0.524 (0.047) 0.424 0.998
MPV Closed 0.493 (0.054) 0.236 (0.152) 0.630 (0.027) 0.491 0.981
CEA Closed 0.882 (0.003) 0.275 (0.131) 0.345 (0.099) 0.875 0.810
VarS Closed 0.083 (0.328) 0.667 (0.024) 0.554 (0.045) 0.639 0.447
LDD Closed 0.076 (0.308) 0.260 (0.138) 0.561 (0.039) 0.152 0.947
AP/ML Closed 0.220 (0.162) 0.094 (0.280) 0.593 (0.033) 0.154 0.981
RI of PL N.A 0.382 (0.086) 0.754 (0.012) 0.145 (0.220) 0.795 0.977
RI of MPV N.A 0.329 (0.106) 0.861 (0.004) 0.241 (0.149) 0.805 0.937
RI of CEA N.A 0.900 (0.002) 0.492 (0.054) 0.125 (0.242) 0.971 0.938
MVIC N.A 0.477 (0.058) 0.889 (0.002) 0.372 (0.089) 0.969 0.930

Table 6  Additional statistics 
of the three stabilometric 
parameters chosen basing 
on previous evidence about 
reliability [42, 43]

Mean and standard error of differences (mean diff. and SE diff., respectively) are reported, along with 90% 
credible intervals (CI), effect size (Cohen’s dunb) and Bayes Factor  (BF10)
Q + L combined training group (quadriceps + lumbar muscles), Q quadriceps training group, PL path 
length, CEA confidence ellipse area, LDD load distribution difference

Eyes Mean diff SE diff 90% CI Cohen’s  dunb BF10

Q + L Q Q + L Q Q + L Q Q + L Q Q + L Q

PL (mm)
 O 37 − 6 15 24 6

68
− 55
44

0.834 − 0.085 3.506 0.341

 C 80 − 10 42 64 − 5
− 165

− 145
126

0.653 − 0.054 2.113 0.360

CEA  (mm2)
 O 23 − 8 8 14 6

40
− 38
21

0.947 − 0.215 4.757 0.282

 C 61 − 79 27 129 7
114

− 354
196

0.786 − 0.219 3.070 0.280

LDD (%)
 O 2.6 − 0.4 1.5 0.9 − 0.5

5.7
− 2.4
1.6

0.583 − 0.150 1.726 0.308

 C 3.7 0.9 1.4 1.8 0.8
6.5

− 3.1
4.9

0.897 0.176 4.162 0.580
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where the contextual variables affecting static balance were 
identical to our experimental group, such as physical activity 
level, sight and vestibular function, anthropometry, previous 
injuries, wellness, and lifestyle habits. Former physical life-
style history may have biased the results, even though it has 
demonstrated that former athletic activity history provides 
no protection for the age-related-onset postural impairment, 
whereas current activity does [60]. Positively, participants 
were not aware of the effect of NMES on the static balance 
nor they received any feedback about their results of sta-
bilometry before the end of the study protocol. One strength 
of this study was that we carefully controlled historical 
events during the training period, which may have influ-
enced the outcomes, such as sight or vestibular diseases, or 
osteo-muscular disorders. Moreover, an 8-week period alone 
unlikely affects static balance in healthy elderly. External 
validity may also have been threatened in this study due to 
the general intrinsic limit of NMES interventions involving 
its intensity, which is based on individual threshold comfort 
[19].

Finally, larger sample would allow to discriminate the 
effectiveness of training diverse muscle groups, solely or 
combined, compared to a control group, and the time course 
of adaptations; to extend the results of this study, a third 
group who train only lumbar paraspinal muscles, plus a 
fourth group as control should be included.

Conclusions

Healthy elderly, substantially inactive, with unhealthy 
anthropometric status and spine morphology, non-sarco-
penic, benefit from a NMES training applied on both quadri-
ceps and lumbar paraspinal muscles. We demonstrated a 
more beneficial effect of the combined training (quadriceps 
and lumbar paraspinal muscles) in respect to the training 
applied on quadriceps only. This was possibly due to the 
effectiveness of NMES training for improving spinal stabi-
lization. Therefore, passive training on lumbar paravertebral 
muscles can be a suitable method for positively affecting 
postural control in elderly. The possible beneficial effect in 
improving static balance, as found in this study, should be 
translated and verified in those clinical conditions where 
active training could not be performed to produce muscular 
exercise.
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