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Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitat-
ing consequences that require substantial medical care. Interestingly, these conditions share common physiological charac-
teristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation 
and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of 
excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for 
guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for 
guanosine impedes the development of structure–activity research programs to develop guanosine derivatives for therapeutic 
purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its 
neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involv-
ing adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the 
protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R 
and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine 
levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as 
neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
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Introduction

Ageing of the population is a worldwide phenomenon that 
increases the risk factor for neurodegenerative diseases, 
mental disorders, and tumours that affect the central nervous 
system (CNS) [1, 2]. These illnesses, including Alzheimer's, 
Parkinson's, Huntington's disease (i.e., AD, PD and HD, 
respectively), and gliomas, can be hereditary or sporadic and 
could be triggered by environmental factors. Additionally, it 
should be mentioned that the occurrence of mental disorders 
is markedly higher in people diagnosed with neurodegen-
erative diseases [3]. The worldwide count of people with 
AD dementia, prodromal AD, and preclinical AD has been 
estimated at 32, 69, and 315 million, respectively, which 
collectively comprises 416 million across the continuum of 
AD, or 22% of the population aged 50 years and older [4]. 
On the other hand, approximately 19.3 million new cancer 
cases (18.1 million excluding non-melanoma skin cancer) 
and nearly 10 million cancer-related deaths (9.9 million 
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excluding non-melanoma skin cancer) occurred worldwide 
in 2020 [5]. Therefore, the combination of cancer and neu-
rodegenerative diseases accounts for the highest mortality 
rates. Intriguingly, some recent observational studies have 
reported the appearance of an inverse correlation between 
cancer and neurodegenerative diseases [6, 7]. Consequently, 
further exploration of the mechanistic basis of this inverse 
relationship appears to be of vital importance in improving 
the design and development of innovative therapies for these 
devastating diseases.

The pathogenesis of neurodegenerative diseases involves 
several key factors, such as protein aggregation, oxidative 
stress, neuroinflammation, and marked imbalance in gluta-
matergic neurotransmission [8]. The amino acid glutamate 
is the main excitatory neurotransmitter of the mammalian 
CNS, mediating the processes of intercellular communica-
tion, plasticity, cell growth, and differentiation. Thus, glu-
tamate is behind important brain functions such as learn-
ing and memory, emotion and motivation, and locomotor 
activity [9]. Significantly, increased glutamate levels within 
the synaptic cleft give rise to excitotoxicity, a phenomenon 
driven by the excessive activation of ionotropic glutamate 
receptors (iGluR), such as N-methyl-D-aspartate (NMDA) 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors, along with G protein-coupled metabo-
tropic glutamate receptors (mGluR). This excessive activa-
tion of glutamate receptors leads to ionic influx, increased 
reactive oxygen species (ROS), mitochondrial dysfunction, 
and calcium overload. These processes promote alterations 
in oxidative metabolism and mitochondrial dynamics, ulti-
mately contributing to neurodegenerative [10] and neuropsy-
chiatric [11] disorders. Consequently, understanding the 
endogenous mechanisms used by the CNS to counteract exci-
totoxicity is crucial. Here, we focus on the role of guanine-
based purines (GBPs), including guanosine, as endogenous 
neuroprotective and antiproliferative agents.

Adenosine signalling in the brain: Beyond 
receptors

Adenosine, an adenine-based purine, plays a pivotal role 
in various physiological processes. Its significant functions 
include a negative chronotropic impact on the heart, vasodil-
atation of the coronary arteries, and involvement in ischemia 
[12]. These initial observations not only shed light on the 
various effects of adenosine but also laid the foundation for 
the purinergic signalling field by establishing its connec-
tion to specific adenosine receptors. Interestingly, within 
the brain, adenosine serves as a neuromodulator, actively 
participating in pivotal processes such as synaptic plastic-
ity (implicated in learning and memory), the budding of 
nervous processes, apoptosis, regulation of the sleep–wake 

cycle, and its function as a neuroprotective agent against det-
rimental stimuli [13]. Importantly, these effects are mediate 
by adenosine receptors (ARs) on the cell surface. Extracel-
lular levels of adenosine are regulated by ectoenzymes that 
metabolise nucleotides and nucleosides, and by concentra-
tive and equilibrative nucleoside transporters (CNTs and 
ENT, respectively), as part of the adenosinergic transmission 
system [13, 14].

The neuroprotective properties of adenosine are related to 
its ability to modulate the glutamatergic system [15]. Con-
sequently, impaired adenosinergic transmission has been 
associated with several pathological conditions such as pain, 
migraine, epilepsy, stroke, drug addiction, neurodegenera-
tion, and brain cancer [16, 17]. ARs belong to the G pro-
tein-coupled receptor (GPCR) superfamily and are divided 
into four subtypes: A1R, A2AR, A2BR, and A3R [18]. A1Rs, 
which are ubiquitously expressed within the CNS, are cou-
pled with inhibitory G proteins (Gi/o), leading to a decrease 
in adenylate cyclase (AC) activity and a reduction in intracel-
lular levels of cyclic AMP (cAMP). Furthermore, A1R can 
be coupled with the Gq protein, triggering phospholipase C 
(PLC) activation, and producing inositol-triphosphate (IP3), 
thus promoting intracellular calcium release from the rough 
endoplasmic reticulum. A2ARs, predominantly expressed pri-
marily in the striatum, nucleus accumbens, hippocampus, and 
cerebral cortex, are coupled with the Gs protein, leading to 
increased levels of cAMP. A2BRs, which are poorly expressed 
in the brain, are also coupled to the Gs protein. Finally, A3Rs, 
mainly distributed within the periphery and with moderate 
expression in the cerebellum and hippocampus, are coupled 
with the Gi/o and Gq proteins [19–21].

The central effects of adenosine are predominantly medi-
ated by A1Rs and A2ARs. [22]. The activation of presynaptic 
A1Rs leads to a reduction in synaptic transmission, achieved 
by decreasing the probability of neurotransmitter release. 
Consequently, A1R activity has been shown to be instrumen-
tal in providing neuroprotection against excitotoxic condi-
tions, such as ischemia and epilepsy [23]. In this context, 
A1Rs play a crucial role in the preconditioning mechanism, 
actively promoting the defence of the brain against damage 
[24, 25]. On the contrary, A2AR is known as a synaptic trans-
mission facilitatory receptor. Consequently, blocking A2AR 
has shown efficacy in promoting neuroprotection in various 
models of epilepsy, depression, AD, and PD [26]. Overall, 
the balance between A1R and A2AR activation is responsible 
for promoting the neuroprotective effect of adenosine in the 
CNS.

The existence of direct molecular interactions among 
adenosine receptors, which lead to the formation of mac-
romolecular complexes known as oligomers, constitutes a 
mechanism that serves as a superior molecular device that 
allows fine-tuning control of adenosinergic transmission and 
its associated signalling processes. Precisely, the formation 
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of functional A1R-A2AR heteromers in the brain supports 
adenosine-mediated control of glutamate release at the stri-
atal glutamatergic terminals [27, 28]. Therefore, activation 
of A2AR within the A1R-A2AR heteromer reduces A1R affin-
ity for adenosine-based ligands, while interaction of A1R 
with A2AR decreases the constitutive activity of the latest. 
This mutually negative allosteric modulation of adenosine 
receptors defines the function of A1R-A2AR heteromers. 
Consequently, low levels of adenosine in the striatum pre-
vent glutamate release through the activation of A1Rs, while 
high levels promote glutamate release by A2AR signalling 
[29]. Furthermore, additional studies demonstrated the exist-
ence of homomers and heteromers of A1R and A2AR modu-
lating other neurotransmitter systems, including dopamine 
and endocannabinoid signalling [30].

In essence, the existence of GPCR-effector macromo-
lecular membrane assemblies containing GPCR effector 
(GEMMA) that house GPCR oligomers, G proteins, plasma 
membrane effector molecules and other associated trans-
membrane proteins will ground the functional interaction 
between different neurotransmitter systems [31]. Conse-
quently, these GEMMAs would provide new opportunities to 
pharmacologically modulate different neurotransmitter sys-
tems in a multimodal manner. This contention is reinforced 
by the idea that the formation of GPCR oligomers within the 
GEMMA enables both canonical (i.e., G protein-based) and 
noncanonical (i.e., Allosteric) crosstalk between these recep-
tors. Accordingly, purinergic GPCRs oligomerization has 
become a valuable source for identifying novel molecular 
targets and developing more selective ligands for modulating 
purinergic signalling in health and disease.

Guanine‑based purinergic system

Initially known for their metabolic functions as essential 
components of the nucleic acid structure and key contribu-
tors to energy homeostasis, GBPs have also gained recogni-
tion for their signalling properties. Neuronal and glial cells 
release guanine nucleotides (GTP, GDP, and GMP) along 
with the nucleoside guanosine under physiological and 
pathological conditions [32]. Interestingly, GTP is co-stored 
with neurotransmitters in synaptic vesicles [33] through an 
electrochemical gradient-dependent transport system similar 
to other neurotransmitters [34]. The kinetics of the uptake of 
GTP into synaptic vesicles is comparable to that observed 
for ATP [35]. Thus, a role for GTP as a co-transmitter has 
been suggested [36], which also involves the neuromodu-
latory effect of guanosine generated after its hydrolysis by 
extracellular purinergic enzymes. GBP signalling involves 
modulation of monomeric and heterotrimeric G-protein 
activity (GTP binding proteins) [37, 38]. Interestingly, within 
the CNS, GBPs exhibit extracellular signalling properties, 

exerting an antagonistic-like effect over iGluRs, kainate 
(KAR), NMDAR, and AMPAR [39–43]. In addition, guanine 
derivatives have demonstrated the ability to reduce mGluR 
signalling by modulating its cAMP accumulation [44–46]. 
Indeed, several studies have shown that GBPs reduce gluta-
mate-induced toxicity and metabolic alterations in vitro [47, 
48] as well as in in vivo neurodegeneration models [49–51]. 
Overall, these findings reinforce the GBP-mediated extracel-
lular effects as paracrine signalling molecules, complement-
ing the effects of adenine-based counterparts [43].

Intracellular and extracellular levels of guanine deriva-
tives, such as their adenine derivatives, are regulated by 
the activity of soluble cytosolic and membrane-bound 
(ecto) enzymes. These enzymes play a pivotal role in con-
verting nucleotides and nucleosides into their respective 
nucleobases. Ecto-nucleotidases triphosphatases (i.e., ecto-
NTPases) encompass various enzymes, including ecto-
ATPase, responsible for the hydrolysis of ATP and GTP to 
ADP and GDP, respectively. Furthermore, apyrase or ecto-
ATP-diphosphohydrolase (i.e., ecto-NTPDase) hydrolyses 
either ATP/GTP or ADP/GDP in AMP/GMP [52]. Finally, 
ecto-5'-nucleotidase (i.e., ecto-5’-NT) hydrolyses AMP/
GMP to adenosine/guanosine nucleosides [53–55]. Interest-
ingly, in cultured astrocytes, inhibition of ecto-5'-NT activity 
significantly reduced extracellular guanosine accumulation, 
suggesting that extracellular guanosine, like adenosine, was 
derived primarily from extracellular hydrolysis of guanine 
nucleotides, as expected [43]. In particular, these puriner-
gic enzymes have the potential to be released into the cer-
ebrospinal fluid by the choroid plexus, endothelial cells, and 
even microglial cells, thus exerting an important function 
in pathophysiological conditions [56–58]. Certainly, the 
enzyme that participates in the nucleotide salvage pathway, 
purine nucleoside phosphorylase (PNP), could be released 
by astrocytes into extracellular medium [59]. Thus, the 
hydrolysis of guanosine to guanine and adenosine to adenine 
also in the extracellular medium opens the possibility of pro-
ducing more purinergic mediators in the CNS. Overall, after 
brain injury, the released nucleotides will undergo hydroly-
sis, leading to the formation of their respective nucleosides 
and nucleobases, which in turn will play protective or even 
restorative roles. It is important to mention that in pathologi-
cal conditions such as hypoxia/ischemia, there is an eleva-
tion in the extracellular concentration of guanine purines 
compared to adenine derivatives [60, 61]. According to 
this contention, guanine has been shown to have beneficial 
effects on learning and memory in animal models [62, 63].

Astrocytes play a crucial role in various processes associ-
ated with brain damage, including isolating the affected area 
and participating in lesion repair [64]. In cultured cortical 
astrocytes, guanosine and guanine are actively reuptaken, 
likely through facilitated transport mechanisms [65, 66]. 
Equilibrative nucleoside transporters (ENTs) operate 
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bidirectionally according to the concentration gradient, 
while the concentrative nucleoside transporters (CNTs) allow 
nucleoside influx coupled to the Na+ transmembrane gradient 
[67]. These nucleoside transporters are crucial components 
of the purine salvage pathway, particularly significant in the 
CNS, which has limited capacity for de novo purine synthesis 
[68].

Neuroprotective and neurotrophic effects 
of guanosine

Guanosine triggers intercellular signalling on neural cells 
promoting neuroprotection, neuromodulation and trophic 
effects [43, 69, 70]. The neuroprotective role of guanosine 
has been demonstrated in neurotoxicity models and in neu-
rological and neurodegenerative diseases models.

In vitro models of brain diseases are applied to unravel 
the mechanism of action of guanosine. In in vitro models of 
brain ischemia guanosine presents neuroprotective effects 
by preventing glutamate excitotoxicity, oxidative stress, and 
disruption of mitochondrial polarity, and ATP production 
[71–82]. An important activity that has been attributed to 
guanosine is its ability to re-establish changes in glutamate 
transport associated with glutamatergic excitotoxicity. In 
hippocampal slices, and in astrocytes in culture, guano-
sine recovered the decrease in glutamate uptake induced 
by in vitro ischemia and prevented the increase of gluta-
mate release [78, 80, 83, 84]. Since glutamate uptake by 
astrocytes is the most important mechanism for clearance 
of this neurotransmitter at synapses, the modulation caused 
by guanosine can be considered a relevant process for the 
regulation of glutamatergic transmission, contributing to 
the protection of neuronal cells against glutamate-induced 
excitotoxicity [36].

In SH-SY5Y cells submitted to oxidative stress, guano-
sine promoted a protective effect through the induction of 
heme-oxygenase-1, an important enzyme in antioxidant 
cell defence [85]. Heme-oxygenase-1 is also involved in 
guanosine-induced protection against oxidative stress and 
increased pro-inflammatory cytokines due to mitochon-
drial respiratory chain inhibition in C6 astroglial cells 
[86]. In addition, guanosine reduces inflammation and 
oxidative damage induced by incubation with bacterial 
lipopolysaccharides (LPS) in hippocampal astrocyte 
culture, decreasing the levels of tumour necrosis factor 
α (TNF-α) and nuclear factor κB (NF-κB) by induction 
of heme-oxygenase-1 [87], as already demonstrated in 
in vitro ischemia [78]. The modulation of these antioxi-
dant and anti-inflammatory mechanisms by guanosine 
involves the participation of the phospho-inositol-3-ki-
nase (PI3K) signalling pathway, a cellular survival path-
way [85, 88, 89]. In addition, the effect of guanosine in 

restoring excess glutamate uptake is also dependent on 
the intracellular signalling pathway modulated by PI3K/
Akt (protein kinase B) [83], and by mitogen-activated 
protein kinase (MAPK) ERK1/2 (kinase regulated by 
extracellular signal 1/2), and protein kinase C (PKC) [80], 
suggesting an intricate activation profile of cell survival 
pathways (Fig. 1).

Moreover, we recently demonstrated that guanosine 
promotes the covalent conjugation of SUMO (Small 
Ubiquitin-like MOdifier) protein to lysin residues of target 
proteins [90], a post-translational modification related to 
neuroprotection. Guanosine increases global SUMOyla-
tion (SUMO2/3 conjugation) in astrocytes and neurons 
maintained in physiological conditions in culture [91]. 
Additionally, these effect of guanosine of increasing 
SUMOylation was also observed in vivo in the hippocam-
pus of adult and aged mice subject to guanosine treatment 
[92].

Regarding trophic effects, guanosine promotes an 
increase in the number of granular cerebellar neurons in 
co-culture with astrocytes [88], by improving the neuronal 
adhesion in cultures treated with guanosine [93]. Concerning 
guanosine effects on cultured stem cells in vitro, it promotes 
the proliferation of hippocampal dentate gyrus stem cells 
obtained from adult mice, and the differentiation to a neu-
ronal phenotype [94].

In vivo assessment of neurological and neurodegenerative 
diseases models also confirmed the neuroprotective effects 
of guanosine. The first studies showed guanosine presents 
an anticonvulsant effect in mice, preventing seizures and 
neurotoxicity induced by substances that overstimulate the 
glutamatergic system [49, 51, 95, 96]. The neuroprotective 
effect was also evidenced in animal models of brain hypoxia 
or ischemia [97–100], and in animal models of traumatic 
brain injury [101, 102]. Still, the protective effect has been 
observed in animal models of Parkinson's disease, where 
guanosine reverses parkinsonian motor impairments and 
reduces dyskinesia induced by treatment for Parkinon´s 
[103–107]. In Alzheimer's disease rodent models, guano-
sine prevents behavioural and neurochemical alterations, as 
anhedonic-like behaviour and spatial memory impairment, 
and glutamate transport unbalance, oxidative stress and 
hippocampal damage caused by amyloid-beta peptide [108, 
109]. Furthermore, in vivo guanosine treatment induces neu-
rogenesis in the hippocampal dentate gyrus of adult animals 
[94].

Behavioural effects of guanosine in healthy animals have 
also been reported: guanosine has antinociceptive effect 
[110–112], anxiolytic [113, 114] and antidepressant-like 
effects in mice [89, 115, 116]. Additionally, the antidepres-
sant effect is accompanied by neuroprotection against gluta-
mate neurotoxicity in the hippocampus and cerebral cortex 
of murine [117].
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Despite all this evidence of neuroprotection and trophic 
effects, and modulation of intracellular signalling pathways, 
the molecular targets of these effects are not fully elucidated, 
and guanosine is still considered an orphan ligand with no 
specific receptor [70, 118].

Guanosine effects in tumour proliferation

Purinergic signalling is often altered in human cancer [119, 
120] and the key mediators of the purinergic enzymatic cas-
cade have been extensively investigated to identify poten-
tial "conductive biomarkers" for diagnostic, prognostic, and 
therapeutic monitoring of tumour progression.

Guanosine binding to GPCRs or uptake via nucleoside 
transporters followed by interaction with signalling pathways 
involved in cell proliferation, differentiation, or apoptosis, 
was also reported in cancer settings (Fig. 2a). Recent find-
ings highlighted the importance of GBPs and its converting 
enzymes in tumour proliferation and in radio- and chemo-
therapy resistance. The formation of GTP through reactions 

catalysed by enzymes of the salvage pathway, namely PNP 
and hypoxanthine phosphoribosyltransferase (HGPRT), cor-
relates with the arrest of cancer growth, while de novo GTP 
biosynthesis dependent on phosphoribosyl pyrophosphate 
(PRPP) is responsible for increased cancer cell viability 
(Fig. 2b). It is noteworthy that tumour cells compared with 
non-proliferating cells exhibit a metabolic reprogramming 
with greater de novo nucleotide biosynthesis ensuring rapid 
DNA and RNA synthesis to fuel their growth [121].

In cancer, nucleotide biosynthesis is controlled by several 
upstream master transcriptional regulators, such as myelocy-
tomatosis (Myc) signalling, which activates GTP synthesis 
through inosine monophosphate dehydrogenase (IMPDH) 
[122–124], or PI3K-E2F1 that promotes E2F1-dependent 
retinoblastoma protein phosphorylation, up-regulation of 
MAPK/RAS signalling and cAMP/cGMP production [125]. 
IMPDH is the rate-limiting enzyme that catalyses the con-
version of inosine monophosphate (IMP) to xanthosine 
monophosphate (XMP) and is responsible for de novo purine 
biosynthesis and the maintenance of the guanine nucleo-
tide pool [54]. IMPDH increases in several malignancies 

Fig. 1   Summary of the mechanisms related to the neuroprotec-
tive effects of guanosine uncovered through in  vitro models of 
brain diseases. Guanosine (GUO) presents neuroprotective effects 
through a mechanism involving adenosine A1R and A2AR recep-
tors, with a possible interaction with the A1R/A2AR heteromer. The 
functional interaction of GUO with the K+-channel (BK) has also 
been demonstrated. GUO neuroprotective effect increases glutamate 
(Glu) uptake, preventing oxidative stress and ROS production, and 
increasing mitochondrial ETS activity, and ATP levels, contribut-
ing to neuronal protection against glutamate-induced excitotoxicity. 
GUO induces an important enzyme in antioxidant cell defence, HO-1, 
the activity of  which prevents inflammatory and NF-κB signalling. 
The antioxidant and anti-inflammatory actions of GUO depend on 

PI-3  K signalling pathway, and GUO effect on glutamate uptake is 
dependent on PI3K/Akt, MAPK/ERK1/2 and PKC pathways. GUO 
also promotes the covalent conjugation of SUMO protein to target 
proteins, a post-translational modification related to neuroprotection. 
A1R/A2AR: adenosine receptors heteromer; BK: high-conductance 
Ca+2-dependent K+-channel; EAAT: excitatory aminoacid transport-
ers; ETS: mitochondrial electron transport system; GUO: guanosine; 
Glu: glutamate; HO-1: Heme-oxygenase-1; MAPK/ERK1/2: mito-
gen-activated protein kinase/kinase regulated by extracellular signal 
1/2; NF-κB: Nuclear factor κB; PI3K/Akt: phospho-inositol-3-ki-
nase/protein kinase B; PKC: protein kinase C; ROS: reactive oxygen 
species; SUMO: Small Ubiquitin-like Modifier. This figure was cre-
ated using BioRender.com



	 Purinergic Signalling

Fig. 2   a. Schematic represen-
tation of the proliferative and 
anti-proliferative effects of 
guanosine in cancer: Guano-
sine can enter cells via NTs or 
bind to GPCRs (A1R, A2AR). 
The proliferative effect is attrib-
uted to radiotherapy resistance 
following DSBs repair in DNA 
(left panel), while the cytotoxic 
effect is associated with cell 
cycle arrest in S-phase, induc-
tion of cancer cell apoptosis and 
differentiation of cancer stem 
cells leading to cell senescence 
and tumour arrest (right panel). 
b. The de novo and salvage 
pathways for nucleotide bio-
synthesis are shown. Cancer 
cells rely on IMPDH-dependent 
GTP formation to meet higher 
energy demand and boost their 
growth (de novo pathway) 
whereas non-proliferating cells 
prefer to generate GTP by recy-
cling GUA and HYPO (salvage 
pathways). DSBs: double-strand 
breaks; GPCRs: G protein-cou-
pled receptors; GUA: guanine; 
GUO: guanosine; HYPO: 
hypoxanthine; IMPDH: inosine 
monophosphate dehydrogenase; 
INO: inosine; NTs: nucleo-
side transporters; PNP: purine 
nucleoside phosphorylase; 
PRPP: phosphoribosyl pyroph-
osphate; RT: radiotherapy. 
This figure was created using 
BioRender.com
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including glioblastoma [126], renal carcinoma [127] and 
small cell lung cancer (SCLC) [128]. Inhibitors of IMPDH 
have already been investigated in numerous clinical trials 
in tumours [129, 130]. Combination therapy encompassing 
IMPDH inhibitor mycophenolate mofetil (MMF, 120 mg/
kg twice a day) and PI3K inhibitor (PI-103, 10 mg/kg daily) 
strongly reduced purine biosynthesis and tumour growth in 
patients with hepatocellular carcinoma (HCC) character-
ized by elevated expression of IMPDH and high guanosine 
levels. Knockdown of IMPDH in HCC and treatment with 
MMF reduced cancer cell proliferation in vitro and mitigated 
tumour burden in vivo [125]. In a subset of SCLC cell lines, 
Myc-stimulated IMPDH promoted de novo GTP biosynthe-
sis. Cell treatment with IMPDH inhibitor, mycophenolic 
acid (MPA), for 24 h depleted GTP levels and suppressed 
ribosome biogenesis, a fundamental pathway for cancer cell 
progression. Guanosine supplementation for 48 h overcame 
inhibition of de novo biosynthesis, restored the GTP pool 
through the purine salvage pathway, and  recovered ribo-
some synthesis [131]. According to these findings, MPA 
inhibited in a concentration and time- dependent manner 
the proliferation of normal MCF-12A and tumour MCF-7 
breast cell lines, with an IC50 of 0.38 ± 0.01  µM and 
1.43 ± 0.13 µM, respectively [132]. The authors observed a 
time- and dose-dependent cytotoxic effect of guanosine in 
MCF-7 breast cancer cells but not in normal MCF12-A cells, 
thus exploiting the different metabolic signature of MCF7 
over normal MCF12A cells. However, the molecular mecha-
nisms underlying the antiproliferative effect of guanosine 
have yet to be elucidated, although the authors hypothesized 
an excessive generation of guanosine-derived GTP affecting 
cell proliferation [132].

However, GTP may also have an antiproliferative effect 
after exogenous administration and rapid conversion to the 
metabolite guanosine. As an example, GTP has been pro-
posed as an antiproliferative and differentiation promot-
ing agent in acute myeloid leukemia, given its ability to 
induce terminal differentiation of cancer stem cells caus-
ing senescence and tumour arrest [133, 134]. Differentiat-
ing agents such as retinoic acid, bryostatin and all-trans-
retinoic acid, have been investigated in myeloid leukemia 
or myelodysplastic syndromes as a therapeutic strategy to 
generate populations of non-tumorigenic cancer cell prog-
eny (135, 136). In the human chronic myelogenous leuke-
mia cell line (K562), GTP treatment (50–200 µM) up to 
6 days suppressed tumour growth and DNA synthesis by 
inducing S-phase cell cycle arrest and erythroid differen-
tiation, revealed by increased expression of glycophorine 
A, an erythroid marker. It is noteworthy that GTP did not 
affect the proliferation rate of human normal peripheral 
lymphocytes. The concentration- and time-dependent 
inhibitory effect of GTP involved guanosine formation and 
uptake, as the use of heat-inactivated medium inhibiting 

purine-converting enzymes or the addition of adenosine 
competing for guanosine uptake would reduce the GTP 
effect. Similar results were obtained after cell exposure to 
GDP, GMP, or guanosine 100 µM [137]. Accordingly, in a 
model of acute myeloid leukemia (AML), the growth sup-
pression induced by supplementation with GTP occurred 
following its conversion to the corresponding nucleoside 
guanosine. Specifically, guanosine treatment caused a 
time- and dose-dependent inhibition of cell growth (IC50 
30–50 µM) and increased the expression of myeloid differ-
entiation markers such as CD11b and CD14. In the U937 
orthotopic xenograft model, guanosine delayed leukemia 
progression through the formation of GTP dependent on 
PNP and HPRT. Finally, direct delivery of GTP by using 
a fluorescently labelled GTP analogue, MANT-GTP, also 
induced differentiation. Interestingly, the effect of exog-
enous guanosine was weaker compared to that of GTP-
derived guanosine [138]. Nevertheless, increased levels of 
purine guanylates are also one of the metabolic features 
of glioblastoma (GBM) cells resistant to radiotherapy, as 
they correlated with the ability of repairing DNA double-
stranded breaks (DSBs). Supplementation with exogenous 
guanosine and other nucleosides (80–240 µM) was able 
to confer radioprotection to GBM cells by decreasing 
RT-induced DSBs. Treatment with MPA 10 μM and the 
prodrug MMF impaired DNA repair and radiosensitized 
RT-resistant GBM cells and primary patient-derived GBM 
neurospheres. In the same study, using an orthotopic GBM 
PDX model, combination therapy with RT and MMF pro-
longed mouse survival and revealed high intracranial drug 
permeability and efficacy [139].

However, the notion of exogenous guanine derivatives 
as cytotoxic agents is reported in CNS tumours as well. 
In gliomas, it was shown that the nucleoside guanosine 
increased apoptosis and reduced tumour cell migration, 
the cytotoxic effect being independent of glutamate trans-
port while relying on interaction with the adenosine A1R 
and A2AR receptors [140]. GBMs are characterised by a 
decrease in glutamate uptake from the extracellular space 
and an increase in glutamate release in the peritumoral 
spaces, causing glutamatergic excitotoxicity and promot-
ing a path of invasion and tumour growth [141–143]. Fur-
thermore, in the U87 glioblastoma cell line, the nucle-
obase guanine revealed the highest potency compared to 
guanosine and GMP, and the cytotoxic effect depended 
on the up-regulation of HGPRT expression which would 
provoke an imbalance of nucleotide pool thus causing an 
S-phase cell cycle arrest [144]. In a more recent study, the 
authors observed that guanine elicited a growth inhibi-
tion in U87 cells, this effect being mediated by activation 
of the GPR23 receptor or lysophosphatidic acid (LPA) 4 
receptor. In line with the previous study, HGPRT-negative 
melanoma cell lines expressed low levels of GPR23 and 
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were less sensitive to the antiproliferative effect of guanine 
[145].

Aligning with previous work, cell exposure to guanine, 
guanosine, deoxyguanosine, and GMP reduced the viability 
of embryonic kidney cells (HEK293) (IC50 = 40 − 90 μM) 
and acute T lymphoblastic leukemia cells (Jurkat E6-1) 
(IC50 = 25 μM). The molecular mechanisms underpinning 
this effect were the alteration of nucleotide metabolism, the 
induction of DNA damage response, and the downregula-
tion of RNA transport-related proteins, all resulting in cell 
apoptosis and death, caused by cell cycle arrest in the S 
phase. Supplementation with adenosine and cytidine par-
tially re-established a balance of nucleotides/nucleosides 
and recovered cell viability, thus depicting adenine and gua-
nine nucleosides competing for the same enzymes [146]. In 
another study, Jurkat cells exposed to guanosine showed a 
reduction in ATP levels and a dramatic accumulation of GTP 
derived from salvage pathway activation. The de novo syn-
thesis of ATP was reduced by guanosine-derived GMP with 
a feedback regulation mechanism. Cell death by necrosis or 
apoptosis was provoked by ATP depletion and accumulation 
of GTP responsible for inhibition of deoxyribonucleotide 
synthesis. Once again, healthy peripheral blood mononu-
clear cells (PBMC) viability was not affected by guanosine 
treatment thus conveying selectivity towards tumour cells 
[147].

An additional molecular mechanism attributed to GBPs to 
stop cancer growth is the activation of NO-cGMP pathway, 
which is involved in chemotaxis, cell-survival/apoptosis, as 
well as oxidative stress and angiogenesis [148–150].

In summary, the antiproliferative effect of guanosine was 
mediated by the nucleoside uptake and intracellular metabo-
lism achieved by a series of enzymes of the purine salvage 
pathway. The principal molecular mechanisms include: 
(1) unbalance of the nucleotide/nucleoside pool through 
competition with other nucleosides for the same enzymes 
that determine adenine nucleotides and deoxynucleotides 
depletion, which would arrest DNA synthesis. This hypoth-
esis was corroborated by the addition of adenosine or other 
nucleosides thwarting guanosine effects; (2) differentiation 
of cancer stem cells leading to tumour arrest and (3) cross-
talk with NO-cGMP-mediated anti-proliferative and pro-
apoptotic signalling pathways. The dichotomous nature of 
guanine derivatives that have pro- and anti-tumour effects 
may depend on factors such as the experimental setting 
(i.e. compound concentration, time of exposure, cancer 
genotype) and the different tissue expression of purinergic 
enzymes rapidly converting one metabolite to another. Addi-
tionally, the lack of a specific receptor for GBPs poses limits 
regarding the pharmacological potential of these compounds 
and their clinical application. Nonetheless, it is intriguing to 
speculate that guanosine effects in cancer may involve the 

activation of adenosine receptors whose role in cancer is 
widely documented [17, 151].

Guanosine’s mechanism of action: 
Therapeutic opportunities

GBPs show efficacy in counteracting glutamate excitotoxic-
ity, underscoring a significant interplay between GBPs and 
glutamatergic transmission. GUO nucleotides (i.e., GTP, 
GDP, and GMP) have shown the ability to reduce NMDA-
induced neurotoxicity in cultured hippocampal and cortical 
neurons [152], and GMP exhibits neuroprotective effects 
against NMDA-induced apoptosis in hippocampal slices 
[48, 153, 154]. Neuroprotection of GBPs has been sug-
gested to be associated with increased astrocytic glutamate 
uptake, thus avoiding excitotoxic glutamate accumulation 
[155]. Although the effect of GUO on glutamate transport 
has been described [78, 156], no evidence of direct interac-
tion with glutamate transporters was demonstrated. Instead, 
GUO has been shown to increase glutamate transporter-1 
(GLT-1) cell surface targeting in astrocytes, after ischemic 
damage, through a mechanism involving adenosine A1R and 
A2AR [80]. In general, since this neuroprotective mechanism 
is largely accepted, the development of GBP derivatives for 
the treatment of disorders linked to glutamate excitotoxicity 
has been postulated [157], despite the lack of a well-defined 
mechanism of action. Interestingly, a functional connection 
has been established between GBP-mediated neuroprotec-
tion and potassium (K+) channel activity, adding an interest-
ing layer to the understanding of the neuroprotective effects 
of GBPs and suggesting a potential link to K+ channel mod-
ulation in the therapeutic action of GBPs.

Astrocytes treated with GUO showed increased activ-
ity and expression of voltage-rectifying K+ channels [158]. 
Using different selective pharmacological blockers of K+ 
channels, a functional interaction of GUO with the high-
conductance Ca+2-dependent K+-channel (maxiK or BK) 
has been demonstrated. Therefore, blocking BK channels 
with charybdotoxin precluded the beneficial effects of GUO 
on cell viability in an in vitro ischemia model [73, 83]. 
Importantly, this functional interaction of GUO is selective 
for BK channel, since inhibition of the small conductance 
Ca2+-activated K+ channels with apamine and the ATP-
sensitive K + channels with glibenclamide does not inter-
fere with the neuroprotective effect of GUO [83]. BK chan-
nels are activated by increased intracellular calcium levels 
and belong to a large family of channels that have various 
physiological functions, such as neurotransmitter release, 
cell excitability, vascular reactivity, and smooth muscle tone 
[159]. In the CNS, BK channels are considered an "emer-
gency brake," limiting the frequency of neuronal firing and 
contributing to the repolarization of the action potential 
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[160]. BK channels expressed presynaptically where they 
regulate the termination of neurotransmitter release upon 
the activation by the influx of calcium into the synaptic ter-
minal [147]. Therefore, presynaptic BK channel activators 
play a promising neuroprotective role in situations of cer-
ebral ischemia [161]. Blocking BK channels in SH-SY5Y 
neuroblastoma cells prevented the neuroprotective effects of 
GUO (i.e., reduction of oxidative stress and cell viability), 
an effect also observed upon blockade of adenosine A1R or 
A2AR [85]. Interestingly, we recently reported that GUO and 
ADO evoked K+-outward currents in SH-SY5Y cells. Both 
nucleosides were observed to influence repolarization time 
by reducing its duration, indicating a neuroprotective profile 
[162]. However, this effect was specific to repolarization 
and did not affect depolarization time. In particular, when 
GUO and ADO were administered simultaneously, there was 
a synergistic potentiation of their effects on delayed recti-
fying K+-outward currents, supporting the hypothesis of a 
functional interaction between these nucleosides [162]. In 
the absence of a direct interaction with the BK channel, it 
is suggested that GUO probably modulates channel func-
tion through an interaction with a GPCR. Thus, the exist-
ence of putative, yet-to-be discovered, GUO GPCR has been 
suggested. Alternatively, GUO can operate through the on-
demand recruitment of ARs, either directly or by modulating 
the availability of these receptors to endogenous ADO.

Initial investigations that provided evidence of a poten-
tial interaction site for GUO in the cell membrane were 
conducted using isolated membranes from rat brain. These 
studies suggested the presence of a selective binding site 
for GUO in the rat brain [163, 164]. Thus, a single binding 
site for [3H]-GUO was demonstrated (KD = 95.4 ± 11.9 nM; 
Bmax = 0.57 0.03 pmol/mg of 0.57 ± 0.03 pmol/mg pro-
tein). This binding site was selective for guanosine as other 
purines (GMP, GDP, adenosine, ATP, hypoxanthine, and 
xanthine) and naturally occurring purines (i.e., caffeine, 
theophylline) were unable to significantly displace 50 nM 
[3H]-GUO. However, a partial, but not significant, displace-
ment was observed for xhantosine (50%), GTP (30%), ATP 
(20%) and nitrobenzylthioinosine (NBTI; 30%), a blocker of 
the equilibrative nucleoside transport (ENT) system [163, 
164]. In general, this GUO binding site is different from the 
well-characterised receptors for adenosine and other purines. 
Importantly, when the brain membranes were incubated with 
pertussis toxin (PTX), shown to ADP-ribosylate Gi or Go 
proteins (inhibitory Gi/o protein family), the specific binding 
of guanosine was reduced by 45% [163]. However, in slices 
from the rat brain cortex, GUO induced a dose-dependent 
increase in intracellular cAMP accumulation, suggesting the 
activation of a stimulatory Gs-protein [163]. Nevertheless, 
using a DELFIA Eu-GTP binding assay for G-protein bind-
ing, the guanosine-mediated activation of putative GPCRs 
in rat brain membranes was observed only under specific 

experimental assay conditions (i.e., 1 mM MgCl2, 10 mM 
GDP, and 20 mM NaCl in 50 mm HEPES). However, under 
these experimental conditions adenosine receptor agonists 
(i.e., CPA, CGS21680, NECA, Cl-IBMECA) had no effect 
on guanosine binding, suggesting the identification of a 
GUO GPCR [165]. Hence, the specific G-protein activation 
profile of GUO remains an intriguing aspect. Interestingly, 
the GPR23 or LPA4 receptor, for lysophosphatidic acid, has 
been suggested as a potential GUO receptor. The silencing 
of the GPR23 gene in U87 glioma cultures reduced GUO-
mediated inhibition of cell proliferation, while its overex-
pression promoted the GUO-induced antiproliferative effect 
[166]. Remarkably, the highest binding of [3H]-GUO within 
the brain has been shown to be found in the cerebral cortex, 
precisely where GPR23 also has its highest expression [167]. 
However, the direct interaction of guanosine with GPR23 
has not yet been demonstrated, thus not ruling out the pos-
sibility that GUO may interact with other GPCRs. Overall, 
despite some evidence of the existence of putative GUO 
receptors in the brain, this nucleoside is currently considered 
an orphan neuromodulator, with no assigned receptors.

GUO effects are eventually abolished by selective ligands 
of adenosine receptors. For instance, the trophic effect of 
GUO that promotes cell adhesion and survival of cultured 
cerebellar neurones was blocked by the adenosine A2AR 
antagonist ZM241385 [93]. Likewise, A1R blockade and 
A2AR activation precluded GUO-mediated recovery of 
glutamate uptake homeostasis in cultured astrocytes after 
ischemia [80]. Also, and as previously mentioned, the pro-
tective effect of GUO on SH-SY5Y cells was abolished 
by A1R and A2AR antagonists and by BK channel block-
ers [77]. In ex vivo experiments, A1R blockade prevented 
GUO-mediated reduction in ROS production and preserved 
mitochondrial membrane potential in hippocampal slices 
subjected to ischemia [78], while it had no effect on GUO-
induced recovery of glutamate uptake. Finally, numerous 
in vivo findings have consistently demonstrated the depend-
ence on A1R and A2AR receptors for the protective effects 
of GUO in models of cerebral ischemia [77, 78] and in Par-
kinson's disease rodent models [104, 105, 107, 168]. Many 
of GUO's protective effects appear to depend on adenosine 
receptor signalling, often being hindered by selective A1R 
and A2AR antagonists. Given the minimal or negligible affin-
ity of A1R and A2AR for GUO, alternative adenosine-based 
mechanisms of action for GUO have been considered. We 
have identified that GUO can modulate A2AR ligand bind-
ing and intracellular signalling only when co-expressed 
with A1R in HEK293 cells [169]. Our research has revealed 
that GUO can modulate A2AR ligand binding and intracel-
lular signalling only in the presence of co-expressed A1R 
in HEK293 cells. On the contrary, GUO had no effect on 
A1R signalling, regardless of the presence or absence of 
A2AR [169]. Interestingly, the protective effect of GUO 
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is absent in hippocampal slices but remains unaffected in 
striatal slices obtained from A2AR−/− mice [106]. These 
findings suggest a region-specific role for A2AR, which is 
instrumental in GUO-mediated neuroprotection in the hip-
pocampus, while its involvement in the striatum is limited, 
where only A1R appears to be necessary. In general, we have 
provided evidence that some GUO fine-tuning effects may 
be based on the presence of an oligomeric organisation of 
adenosine receptors, specifically the A1R-A2AR heteromer 
[169] (Fig. 1).

The GUO-ADO interaction mechanism is based on the 
fact that extracellular GUO can regulate extracellular ADO 
levels in vivo [170], which in turn will modulate indirectly 
the adenosinergic signalling. Therefore, GUO signalling will 
rely on an ADO-dependent mechanism of action by which 
extracellular GUO, by stimulating ADO release, facilitates 
the indirect activation of adenosine receptors, particularly 
those with the highest affinity for ADO (A1R > A2AR). 
Indeed, previous findings supported the GUO-ADO inter-
action mechanism [171, 172]. In fact, at least in terms of the 
mitogenic effect of GUO, GUO-mediated release of ADO 
is partially responsible for this feat, since the addition of 
adenosine deaminase (ADA, the enzyme that metabolises 
adenosine to inosine) in the medium partially precludes the 
effect of GUO [140, 173]. However, some trophic effects of 
GUO have also been observed in the presence of dipyrida-
mole, a nucleoside transport inhibitor, and in this situation 
ADO release is unlikely to occur [88, 140], although in vivo 
ADO release has not been monitored. However, adenosine 
receptor antagonists blocked the trophic effect of GUO, sug-
gesting an interaction of GUO with these receptors. Over-
all, the GUO-ADO interaction signalling mechanism will be 
independent and compatible with the existence of putative 
cell surface GUO GPCRs, thus providing a genuine mul-
timodal mechanism of action of GUO and allowing us to 
consider whether manipulating this GUO-ADO interaction 
could be of interest for therapeutic purposes.

Perspectives

GBPs are crucial players in neurogenesis and cancer cell 
metabolism, but their precise functions under physiologi-
cal and pathological conditions are not fully understood. 
Therefore, further research will be necessary to gain deeper 
insights into the role of GBPs in modulating purinergic sig-
nalling, which could lead to novel treatments for neurode-
generative diseases and cancer. It is noteworthy that both 
guanine- and adenine-based purinergic systems play essen-
tial roles in healthy cells. Therefore, any therapeutic strate-
gies that aim to modulate these systems in disease must care-
fully consider the potential risks of severe adverse effects. 
Guanosine stands out as a differentiating agent with potential 

clinical relevance in leukaemia and other diseases where 
differentiating stem cells could be therapeutically beneficial 
in impeding cancer progression. However, the development 
of guanosine as a potential therapeutic agent is challenging 
due to the lack of a specific target receptor, which precludes 
structure–activity relationship studies needed for the imple-
mentation of drug development programs. However, the 
emergence of the GUO-ADO interaction signalling mecha-
nism, coupled with the longer half-life of GUO compared to 
ADO, offers new opportunities to indirectly manipulate the 
adenosinergic system to achieve long lasting and tuneable 
ADO-mediated therapeutic effects. Overall, further explora-
tion in these directions is promising for uncovering innova-
tive GBP-based approaches to disease treatment.
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