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A B S T R A C T

Coherent upper conditional probabilities defined by Hausdorff measures on metric spaces are proven to
represent merging opinions with increasing information when the metrics are bi-Lipschitz equivalent .
1. Introduction

Mutual absolute continuity is a property that two probability mea-
sures can have with respect to each other. Two probability measures, 𝑃
and 𝑄, defined on the same probability space are mutually absolutely
continuous if the probability of an event according to 𝑃 is zero, then
the probability of the same event according to 𝑄 is also zero, and vice
versa. Events with zero probability can be interpreted as unexpected
events and can be represented by fractal sets, i.e. sets with a non-integer
dimension which is less than the dimension of the probability space.
Fractal sets are mathematical constructs with self-similarity at different
scales, and they can be employed to model complex and irregular
patterns. Absolute continuity of conditional probability measures plays
a key role in reaching Bayesian consensus so in this paper, the role of
fractal sets is highlighted. These sets are used to represent unexpected
complex events in updating the partial knowledge of individuals and in
achieving Bayesian consensus. Bayesian consensus is a concept rooted
in Bayesian probability theory and decision theory. In the context of
consensus, it refers to a process of combining individual beliefs or
opinions to arrive at a group or collective decision in a rational and
probabilistic manner. Bayesian methods are particularly useful when
dealing with uncertainty and incomplete information. Each participant
starts with their own beliefs, expressed as a probability distribution
over possible outcomes or hypotheses. These initial beliefs are repre-
sented by a prior probability distribution. It reflects the individual’s
uncertainty about the true state of affairs before considering any new
information. As new evidence or information becomes available, in-
dividuals update their beliefs using Bayes’ theorem. Bayes’ theorem
allows the incorporation of new evidence into the existing beliefs
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to form a posterior probability distribution. The process of updating
beliefs and reaching a consensus can be iterative, especially if more evi-
dence becomes available over time. Participants continue to adjust their
beliefs based on the most recent information. The Bayesian approach to
consensus has several advantages. It allows for a formal and principled
way to update beliefs in the face of new evidence. Additionally, it pro-
vides a clear framework for incorporating uncertainty and quantifying
the degree of belief in different outcomes. The merging of opinions,
often referred to as opinion aggregation or consensus building, in-
volves combining the individual viewpoints or preferences of a group
of people to form a collective decision or judgment. Applications of
Bayesian consensus can be found in various fields, including statistics,
artificial intelligence, decision analysis, and even in social sciences
where opinions or judgments from different individuals need to be
combined in a systematic and principled way. In [1], it is established
that the distance between two conditional probabilities, denoted as
𝑃 (⋅|𝐺𝑛) and 𝑄(⋅|𝐺𝑛), defined on the same 𝜎-field, converges to zero,
except on a Q-probability zero set, under the condition that P and
Q are mutually absolutely continuous. This result, grounded in the
martingale convergence theorem, indicates a convergence or merging
of opinions as information increases. The concept of weak merging has
been explored in [2], while consensus among Bayesian decision-makers
has been investigated in [3,4]. Absolute continuity has been examined
in ergodic theory [5] and learning in a stationary process has been
studied in [6]. This paper delves into the analysis of whether a similar
result holds for a novel model of coherent upper conditional previsions
defined in metric spaces using Hausdorff outer measures, introduced
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to represent partial knowledge [7–11]. Here, the conditioning event
signifies the available information, and the complexity of information
is expressed through the Hausdorff dimension of the conditioning event
because the Hausdorff dimension of a set B is an aggregation operator
since it is the Sugeno integral of ℎ𝑥(𝐵) as function of 𝑥 with respect
to the Lebesgue measure as proven in [12]. So for any set 𝐵 such
that the Hausdorff dimension is known, the Sugeno integral of the
Hausdorff measure ℎ𝑥(𝐵) as function of 𝑥 with respect to the Lebesgue
measure can be compute. Examples are given in [13]. The central
question revolves around understanding the relationship between par-
tial knowledge generated in different metric spaces based on the same
information. Hausdorff dimensions were introduced in probability the-
ory [14] to calculate the dimensions of sets where the strong law of
large numbers is violated in a Markov chain. The measures of subsets
with respect to different metrics can vary significantly, and the same
subset may have different Hausdorff dimensions. If the metrics are bi-
Lipschitz equivalent, then a set possesses the same Hausdorff dimension
in the two metric spaces, and the Hausdorff measures are proven to be
mutually absolutely continuous.

This paper establishes that given a metric space (𝛺, 𝑑), where 𝛺 is a
set with a positive and finite Hausdorff outer measure in its Hausdorff
dimension, and given any metric 𝑑′ bi-Lipschitz equivalent to 𝑑, then
the coherent upper conditional probabilities defined by Hausdorff outer
measures on (𝛺, 𝑑) and on (𝛺, 𝑑′) are mutually absolutely continuous.
Given a set 𝐵 with a positive and finite Hausdorff outer measure in its
Hausdorff dimension in the metric space (𝛺, 𝑑), the class 𝐊𝐵 of coherent
upper conditional probabilities defined by Hausdorff outer measures
on (𝛺, 𝑑′) is considered, and they are shown to be mutually absolutely
continuous with respect to the upper conditional probability defined by
Hausdorff outer measures with respect to the metric 𝑑.

In summary, this paper establishes that the distance between two
coherent upper conditional previsions defined by Hausdorff outer mea-
sures, with respect to bi-Lipschitz equivalent metrics, converges to zero
as the information increases. Two conditional probabilities are consid-
ered mutually absolutely continuous if they share the same null sets,
i.e., 𝑃 (𝐴|𝐺𝑛) = 0 ⇔ 𝑄(𝐴|𝐺𝑛). It is crucial to note that the concept of null
sets, representing sets with zero probability, is integral to the support
of a probability measure, and the existence of the support depends
on the properties of the underlying topological space. Specifically, if
the topological space is not second countable, meaning there is no
countable collection  of open sets such that any open subset of the
topological space can be expressed as a union of elements of  , then
the support may not exist. However, in the case of a separable metric
space, which possesses a countable dense subset, it is second countable.

In general, across topological spaces or metric spaces, the support of
a measure may or may not exist. One advantageous aspect of defining
coherent upper conditional probability in a metric space using Haus-
dorff outer measures is that if the metric space is separable, the support
always exists. Conversely, if the metric space is not separable, then
the Hausdorff outer measure of any sets is infinite, and coherent upper
conditional probabilities are defined, according to the proposed model,
by a 0–1 valued finitely additive but not countably additive probability.
This ensures that events with zero probability are consistently defined
when representing opinions in a metric space using coherent upper
conditional probabilities.

The model considered in the paper and based on Hausdorff outer
measures is able to represent unexpected events which are represented
by sets with zero probability. The advantage to define coherent upper
conditional probability in a metric space by Hausdorff outer measures
is that if the metric space is separable the support always exists and
if the metric space is not separable then the Hausdorff outer measure
of any set is infinity. So in any case the events with zero probability
can be determined. We can also observe that the more general models
proposed by Walley [15], may be not able to represent events with zero
probability different from the empty set as it occurs for the vacuous
2

upper and lower probabilities, defined by 𝑃 (𝐴) = 𝑚𝑎𝑥(𝐼𝐴) and 𝑃 (𝐴) =
𝑖𝑛(𝐼𝐴).

It important to note the role of the Hausdorff outer measures to
rove the convergence of the opinions; all findings given in the paper
old because coherent conditional upper bounded defined with respect
o Hausdorff outer measures satisfy the disintegration property on every
orel partition. It occurs because Hausdorff outer measures are metric
uter measures and so all Borelian sets are measurable with respect to
ausdorff outer measures. Disintegration property does not hold for a
eneral model of upper conditional prevision.

. Coherent conditional upper bounds

Let 𝐁 be a partition of a non-empty set 𝛺 and let ℘(𝛺), the class
f all subsets of 𝛺. A random variable is a function 𝑋 ∶ 𝛺 → ℜ̂ =

ℜ∪{−∞,+∞} and the class of all random variables is denoted by (𝛺)
and it is not a linear space; in fact, if random variables take values
−∞,+∞ then the sum between two of them can be not defined (when
for the same 𝜔 one takes value +∞ and the others −∞).

Denote by 𝐿(𝛺) ⊂ (𝛺) be the linear space of all bounded random
ariables defined on 𝛺; for every 𝐵 ∈ 𝐁 denote by 𝑋|𝐵 the restriction

of 𝑋 to 𝐵 and by sup(𝑋|𝐵) the supremum of values that 𝑋 assumes
on 𝐵. Let 𝐿(𝐵) be the linear space of all bounded random variables
𝑋|𝐵. Denote by 𝐼𝐴 the indicator function of any event 𝐴 ∈ ℘(𝐵),
i.e. 𝐼𝐴(𝜔) = 1 if 𝜔 ∈ 𝐴 and 𝐼𝐴(𝜔) = 0 if 𝜔 ∈ 𝐴𝑐 . For every 𝐵 ∈ 𝐁 let (𝐵)
be a linear space of random variables 𝑋|𝐵 with 𝑋 ∈ (𝛺). Coherent
conditional upper bounds 𝐶𝐶𝑃 (⋅|𝐵) are real valued functionals defined
on a linear space (𝐵).

efinition 1. Coherent conditional upper bounds are functionals
𝐶𝐶𝑃 (⋅|𝐵) defined on a linear space (𝐵) with values in the real
umber, such that the following axioms of coherence hold for every

and 𝑌 in (𝐵) and every strictly positive constant 𝜆:

(1) 𝐶𝐶𝑃 (𝑋|𝐵) ≤ sup(𝑋|𝐵);
(2) 𝐶𝐶𝑃 (𝜆𝑋|𝐵) = 𝜆𝐶𝐶𝑃 (𝑋|𝐵) (positive homogeneity);
(3) 𝐶𝐶𝑃 (𝑋 + 𝑌 |𝐵) ≤ 𝐶𝐶𝑃 (𝑋|𝐵) + 𝐶𝐶𝑃 (𝑌 |𝐵) (subadditivity).

Definition 1 is the definition of coherent upper conditional prevision
given in Walley [15,16] if (𝐵) coincides with 𝐿(𝐵). The conjugate co-
herent conditional lower bound of a coherent conditional upper bound
𝐶𝐶𝑃 (𝑋|𝐵) on (𝐵) is defined by the conjugacy property 𝐶𝐶𝑃 (𝑋|𝐵) =
−𝐶𝐶𝑃 (−𝑋|𝐵). If 𝐶𝐶𝑃 (𝑋|𝐵) = 𝐶𝐶𝑃 (𝑋|𝐵) = 𝐶𝐶𝑃 (𝑋|𝐵) for every 𝑋
elonging to (𝐵) then 𝐶𝐶𝑃 (𝑋|𝐵) is called a coherent linear condi-
ional prevision and if (𝐵) = 𝐿(𝐵) then 𝐶𝐶𝑃 (𝑋|𝐵) is a linear, positive
nd positively homogeneous functional ([17–20] [15, Corollary 2.8.5]).

From axioms (1)–(3) and by the conjugacy property we have that

𝐶𝑃 (𝐼𝐵|𝐵) = 𝐶𝐶𝑃 (𝐼𝐵|𝐵) = 1

In Walley [15] the restrictions of the functionals 𝐶𝐶𝑃 (𝑋|𝐵) defined
for 𝐵 ∈ 𝐁 and 𝑋 ∈ 𝐿(𝐵) satisfying axioms (1)–(3) and such that
𝐶𝐶𝑃 (𝐼𝐵|𝐵) = 1 are called separately coherent.

The unconditional coherent upper bounded, denoted as 𝐶𝐶𝑃 =
𝐶𝐶𝑃 (⋅|𝛺) emerges as a specific instance when the conditioning event
is 𝛺. Coherent upper conditional probabilities are specifically derived
when considering only 0–1 valued random variables.

Definition 2. Given a partition B and a random variable 𝑋 ∈ 𝐿(𝛺), a
oherent conditional upper bound 𝐶𝐶𝑃 (𝑋|𝐁) is introduced as a random
ariable on 𝛺 taking the value equal to 𝐶𝐶𝑃 (𝑋|𝐵) if 𝜔 belongs to the
lement 𝐵 of the partition.

efinition 3. A bounded random variable 𝑋 ∈ 𝐿(𝛺) is designates B-
easurable (or, measurable with respect to a partition B of 𝛺) if it is

onstant on the atoms of the partition.

The following necessary condition for coherence holds [15, p. 292]:
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Proposition 1. If 𝐶𝐶𝑃 (𝑋|𝐵) is a coherent linear prevision for every 𝐵
hat belongs to a partition B of 𝛺 then 𝐶𝐶𝑃 (𝑋|𝐁) = 𝑋 for all random

variables 𝑋 ∈ 𝐿(𝛺) that are B-measurable.

2.1. Coherent conditional upper bounds defined with respect to hausdorff
outer measures

In the axiomatic approach, as outlined in Section 34 of [21], the
concept of conditional expectation is established in relation to a 𝜎-field
epresenting conditioning events, denoted as G, through the Radon–
ikodym derivative. In [22] it is demonstrated that when the 𝜎-field
is properly encompassed within the 𝜎-field of the probability space

nd includes all individual points in the interval [0, 1], the condi-
ional expectation determined by the Radon–Nikodym derivative lacks
oherence.

This lack of coherence arises due to a conflict with one of the
undamental properties of the Radon–Nikodym derivative, which ne-
essitates measurability concerning the 𝜎-field of conditioning events.
his requirement contradicts the essential condition for the coherence
f a linear conditional prevision, as reiterated in Proposition 1.

A new model of coherent upper conditional probability based on
ausdorff outer measures on a metric space has been introduced for
ounded and unbounded random variables [11].

Hausdorff outer measures [23] [24] are examples of outer measures
efined on a metric space.

In the context of a metric space (𝛺, 𝑑) with the induced topology
generated by the metric 𝑑, open sets in the topology are defined to

e the empty set and countable or finite unions of sets 𝐷𝑟(𝑥) =
{

𝜔 ∈

∶ 𝑑(𝜔, 𝑥) < 𝑟
}

, where 𝑟 ≥ 0 and 𝑥 ∈ 𝛺. This topology is the basis for
efining the Borel 𝜎-field , which is the smallest 𝜎-field containing all
pen sets of 𝛺.

The diameter of a non-empty set 𝑈 in 𝛺 is denoted by |𝑈 | =
up

{

𝑑(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝑈
}

. A subset 𝐴 of 𝛺 is considered to have a 𝛿-cover

𝑈𝑖

}

if 𝐴 ⊆
⋃

𝑖 𝑈𝑖 and 0 ≤ |

|

𝑈𝑖
|

|

< 𝛿 for each 𝑖.
For 𝑠 ≥ 0 and 𝛿 > 0, the expression ℎ𝑠,𝛿(𝐴) = inf

∑∞
𝑖=1 |𝑈𝑖|

𝑠 is defined,
where the infimum is taken over all 𝛿-covers

{

𝑈𝑖

}

; the Hausdorff
𝑠-dimensional outer measure of 𝐴, denoted by ℎ𝑠(𝐴). is obtained by :

ℎ𝑠(𝐴) = lim
𝛿→0

ℎ𝑠,𝛿(𝐴)..

This limit exists but may be infinite since ℎ𝑠,𝛿(𝐴) increases as 𝛿
ecreases.

A subset 𝐹 of 𝛺 is considered measurable with respect to the
uter measure ℎ𝑠 defined on ℘(𝛺) if it decomposes every subset of 𝛺
dditively, meaning:
𝑠(𝐸) = ℎ𝑠(𝐹 ∩ 𝐸) + ℎ𝑠(𝐹 𝑐 ∩ 𝐸)

or all sets 𝐸 ⊆ 𝛺.
The property of being a metric outer measure ensures that if sets 𝐸

nd 𝐹 are positively separated (i.e., 𝑑(𝐸, 𝐹 ) = inf
{

𝑑(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐸, 𝑦 ∈

𝐹
}

> 0), then:

ℎ𝑠(𝐸 ∪ 𝐹 ) = ℎ𝑠(𝐹 ) + ℎ𝑠(𝐹 )

According to Falconer’s Theorem 1.5 [24], as Hausdorff outer mea-
ures are metric outer measures, all Borel subsets of 𝛺 are measurable.

For any set 𝐸, the Hausdorff outer measure ℎ𝑠(𝐸) is non-increasing
as 𝑠 increases from 0 to +∞. The Hausdorff dimension of a set 𝐴,
denoted 𝑑𝑖𝑚𝐻 (𝐴), is defined as the unique value such that:

ℎ𝑠(𝐴) = ∞ if 0 ≤ 𝑠 < 𝑑𝑖𝑚𝐻 (𝐴),

ℎ𝑠(𝐴) = 0 if 𝑑𝑖𝑚𝐻 (𝐴) < 𝑠 < ∞.

Two distinct notions of equivalence can be applied to metrics:
Bi-Lipschitz equivalence [25] and topological equivalence.
3

b

Definition 4. Given a metric space (𝛺, 𝑑), a metric 𝑑′ on 𝛺 is bi-
ipschitz equivalent to the metric 𝑑 if there exist two positive real
onstants 𝛼, 𝛽 such that

𝛼𝑑′(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) ≤ 𝛽𝑑′(𝑥, 𝑦)

Definition 5. Given a metric space (𝛺, 𝑑) and a metric 𝑑′ on 𝛺 then
𝑑 and 𝑑′ are topological equivalent if they induce the same topology.

Proposition 2. Let (𝛺, 𝑑) be a metric space and 𝑑′ be a metric on 𝛺
bi-Lipschitz equivalent to 𝑑. Then 𝑑 and 𝑑′ are topological equivalent.

The following example shows that the converse is not true.

xample 1. Let (ℜ𝑛, 𝑑) be the Euclidean metric space and let 𝑑′ be a
etric defined ∀𝑥, 𝑦 ∈ ℜ𝑛 as follows

𝑑′(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
..

Then 𝑑′ is topological equivalent to the Euclidean metric 𝑑, but it
is not bi-Lipschitz equivalent to 𝑑 since there are not two positive real
constants 𝛼, 𝛽 such that 𝛼𝑑′(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) ≤ 𝛽𝑑′(𝑥, 𝑦)

In [7] the following result has been proved.

Theorem 1. Let (𝛺, 𝑑) be a metric space and let B be a partition of 𝛺. For
𝐵 ∈ 𝐁 denote by s the Hausdorff dimension of the conditioning event B and
by ℎ𝑠 the Hausdorff s-dimensional outer measure. Let 𝑚𝐵 be a 0–1 valued
finitely additive, but not countably additive, probability on ℘(𝐵). Thus, for
each 𝐵 ∈ 𝐁, the function defined on ℘(𝐵) by

𝜇(𝐴|𝐵) =
{ ℎ𝑠(𝐴∩𝐵)

ℎ𝑠(𝐵) 𝑖𝑓 0 < ℎ𝑠(𝐵) < +∞
𝑚𝐵(𝐴 ∩ 𝐵) 𝑖𝑓 ℎ𝑠(𝐵) ∈ {0,+∞}

is a coherent upper conditional probability.

If 𝐵 ∈ 𝐁 is a set with a positive and finite Hausdorff outer measure,
the coherent upper conditional probability exhibits submodularity and
continuity from below. Additionally, its limitation to the category of all
measurable sets conforms to being a Borel regular, countably additive
probability.

If 𝐵 ∈ 𝐁 is such that ℎ𝑠(𝐵) ∈ {0,+∞} then the coherent upper
onditional probability is defined by a 0–1 valued finitely additive, but
ot countably additive, probability 𝑚𝐵 on ℘(𝐵). The existence of 𝑚𝐵 is
consequence of the prime ideal theorem and any 𝑚𝐵 is coherent. 0–1
alued finitely additive probabilities are in correspondence one-to-one
ith ultrafilters.

If the conditioning set 𝐵 is characterized by a Hausdorff outer
easure equal to zero or infinity, the coherent upper conditional
robability is established as a finite, 0–1 valued measure that is finitely,
ather than countably, additive. This ensures that, under this condition,
he confinement of the conditional probability to the Borel 𝜎-field
onstitutes a complete conditional probability according to Dubins’
efinition [26]. Specifically, it adheres to the comprehensive compound
ule for all Borelian sets 𝐴,𝐵, 𝐶.

𝑃 (𝐴 ∩ 𝐵|𝐶) = 𝑃 (𝐴|𝐵 ∩ 𝐶)𝑃 (𝐵|𝐶)..

The class of all absolutely Choquet integrable random variables [27,
8] on 𝐵, i.e. the random variables X such that

∞ < 1
ℎ𝑠(𝛺) ∫𝐵

|𝑋|𝑑ℎ𝑠 < +∞ if 0 < ℎ𝑠(𝐵) < +∞

is a linear space [29] denoted by 𝐿∗(𝐵) In [11] the following
theorem has been proven:

Theorem 2. Let (𝛺, 𝑑) be a metric space and let B be a partition of 𝛺. For
∈ 𝐁 denote by s the Hausdorff dimension of the conditioning event B and

y ℎ𝑠 the Hausdorff s-dimensional outer measure. Let 𝑚 be a 0–1 valued
𝐵
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finitely additive, but not countably additive, probability on ℘(𝐵). Then for
each 𝐵 ∈ 𝐁 the functional 𝐶𝐶𝑃 (𝑋|𝐵) defined on the linear space 𝐿∗(𝐵) by

𝐶𝐶𝑃 (𝑋|𝐵) =
{ 1

ℎ𝑠(𝐵) ∫𝐵 𝑋𝑑ℎ𝑠 𝑖𝑓 0 < ℎ𝑠(𝐵) < +∞
∫𝐵 𝑋𝑑𝑚𝐵 𝑖𝑓 ℎ𝑠(𝐵) ∈ {0,+∞}

is a coherent conditional upper bound if 𝐵 has positive and finite Hausdorff
measure in its Hausdorff dimension. Moreover it is a linear prevision whose
restriction to events assumes only the values 0 − 1 if 𝐵 has Hausdorff outer
measure in its Hausdorff dimension equal to zero or infinity.

In Theorem 7 of [11] it is proven that coherent conditional upper
bounds defined by Hausdorff outer measures as in Theorem 2 satisfy
the disintegration property

𝐶𝐶𝑃 (𝐶𝐶𝑃 (𝑋|𝐁)) = 𝐶𝐶𝑃 (𝑋)

for every random variable 𝑋 ∈ 𝐿∗(𝛺) and for every partition, whose
atoms are ℎ𝑠-measurable where 𝑠 is the Hausdorff dimension of 𝛺.

3. Absolute continuity of coherent upper conditional probability
measures defined by hausdorff outer measures

In this section, we introduce the concept of absolute continuity for
coherent upper conditional probabilities. We demonstrate that coher-
ent upper conditional probabilities, defined on a metric space (𝛺, 𝑑)
through Hausdorff outer measures as presented in Theorem 1, are
absolutely continuous concerning any coherent upper conditional prob-
ability defined by Theorem 1 in a metric space (𝛺, 𝑑′), where 𝑑′ is a
bounded metric that is bi-Lipschitz equivalent to the metric 𝑑. This
phenomenon arises due to the fact that events with zero Hausdorff
measure in a metric space also possess Hausdorff measure equal to zero
in a metric space with a bi-Lipschitz equivalent metric.

Theorem 3. Let (𝛺, 𝑑) be a metric space, let 𝑑 and 𝑑′ be two metrics on
𝛺 bi-Lipschitz equivalent and let ℎ𝑠 and ℎ𝑠1 be the 𝑠-dimensional Hausdorff
measures defined respectively in the metric space (𝛺, 𝑑) and (𝛺, 𝑑′). Then
there exist two positive real constants 𝛼, 𝛽 such that

𝛼ℎ𝑠1(𝐸) ≤ ℎ𝑠(𝐸) ≤ 𝛽ℎ𝑠1(𝐸)

Proof. The result follows by the definition of Hausdorff outer measures
and by the fact that the metrics are bi-Lipschitz equivalent (see Lemma
1.8 of [24]).

Theorem 4. Let (𝛺, 𝑑) be a metric space and let 𝑑′ be a metric on
𝛺 bi-Lipschitz equivalent to 𝑑. Then the Hausdorff dimension of any set
𝐴 ∈ ℘(𝛺) is invariant in the two metric spaces (𝛺, 𝑑) and (𝛺, 𝑑′).

The Hausdorff dimension of any set 𝐴 ∈ ℘(𝛺) is not invariant with
respect to two topological equivalent metrics which are not bi-Lipschitz
equivalent.

Example 2. Let 𝛺 = [0, 1] and let 𝑑 be the Euclidean metric

𝑑(𝜔1, 𝜔2) = |𝜔1 − 𝜔2|

and let 𝑑′ the discrete distance,i.e.

𝑑′(𝜔1, 𝜔2) =
{

0 𝑖𝑓 𝜔1 = 𝜔2
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Clearly 𝑑 and 𝑑′ are not topologically equivalent; in fact all subsets
of 𝛺 are open sets in the topology induced by 𝑑′ since 𝐷𝑟(𝑥) =
{𝜔 ∈ 𝛺 ∶ 𝑑(𝜔, 𝑥) < 𝑟} = {𝑥} if 𝑟 < 1 and 𝐷𝑟(𝑥) = {𝜔 ∈ 𝛺 ∶ 𝑑(𝜔, 𝑥) < 𝑟} =
𝛺 if 𝑟 ≥ 1, while singletons are not open sets in the topology induced
by the Euclidean metric.

Example 3. Let (ℜ2, 𝑑) be the Euclidean metric space and let 𝑑′′ be
the metric defined by

𝑑′′(𝑥, 𝑦) = 𝑚𝑎𝑥
{

|𝑥1 − 𝑦1|; |𝑥2 − 𝑦2|
}

.
′′
4

Then 𝑑 and 𝑑 are topologically equivalent.
The notion of boundedness of a set depends on the metric.

Definition 6. A metric on 𝛺 is bounded if 𝑑𝑖𝑎𝑚(𝛺) is bounded. A
metric space (𝛺, 𝑑) is bounded if 𝑑 is bounded.

Proposition 3. Let (𝛺, 𝑑) be a metric space and suppose 𝛺 is a set with
Hausdorff outer measure, in its Hausdorff dimension, positive and finite.
Then (𝛺, 𝑑) be a bounded metric space.

Definition 7. Let 𝜇 and 𝜈 be two coherent upper probabilities measures
on the same 𝜎-field  . Then 𝜈 is absolutely continuous with respect to
𝜇, (𝜇 ≪ 𝜈, for short) if 𝜇(𝐴) = 0 ⇒ 𝜈(𝐴) = 0 for every 𝐴 ∈  .

The vacuous coherent upper prevision 𝐶𝐶𝑃 (𝑋) = 𝑠𝑢𝑝
{

𝐼𝐴(𝜔) ∶ 𝜔 ∈ 𝛺
is not absolutely continuous with respect to any coherent upper condi-
tional prevision.

Theorem 5. Let (𝛺, 𝑑) be a bounded metric space where 𝛺 is a set with
positive and finite Hausdorff outer measure in its Hausdorff dimension.
Consider 𝐁, a partition of 𝛺, and let 𝑑′ be a bounded metric on 𝛺 that is bi-
Lipschitz equivalent to 𝑑. For every 𝐵 ∈ 𝐁 with positive and finite Hausdorff
outer measures in its dimensions in both metric spaces, the coherent upper
conditional probabilities 𝜇𝐵 and 𝜈𝐵 , defined respectively in (𝛺, 𝑑) and
(𝛺, 𝑑′) as in Theorem 1, are mutually absolutely continuous.

Proof. The given statement implies that since 𝑑′ is a bounded metric,
according to Theorem 3, 𝛺 has a positive and finite Hausdorff measure
in its Hausdorff dimension, also in the metric space (𝛺, 𝑑′). Let 𝑠 be the
Hausdorff dimension of 𝐵, let ℎ𝑠 and ℎ𝑠1 be the 𝑠-dimensional Hausdorff
measure in the two metric spaces and let 𝜇𝐵 and 𝜈𝐵 be the two upper
conditional probabilities on ℘(𝐵) defined by

𝜇𝐵(𝐴) =
ℎ𝑠(𝐴 ∩ 𝐵)
ℎ𝑠(𝐵)

and 𝜈𝐵(𝐴) =
ℎ𝑠1(𝐴 ∩ 𝐵)
ℎ𝑠1(𝐵)

.

Since 𝑑′ is bi-Lipschitz equivalent to 𝑑 by Theorem 3 we have that
there exist two positive real constants 𝛼 and 𝛽 such that

𝛼𝜈(𝐴) = 𝛼
ℎ𝑠1(𝐴)
ℎ𝑠(𝛺)

≤ 𝜇(𝐴) =
ℎ𝑠(𝐴)
ℎ𝑠(𝛺)

≤ 𝛽
ℎ𝑠1(𝐴)
ℎ𝑠1(𝛺)

= 𝛽𝜈(𝐴)

o that 𝜈(𝐴) = 0 implies 𝜇(𝐴) = 0 and 𝜇(𝐴) = 0 implies 𝜈(𝐴) = 0.

. Credal sets of coherent countably additive conditional proba-
ilities defined by hausdorff measures with respect to bounded
i-lipschitz equivalent metrics

In this section, we establish a proof demonstrating that the distance
etween coherent conditional probabilities, defined by Hausdorff mea-
ures with respect to metrics that are bi-Lipschitz equivalent, converges
o zero as the amount of information increases. Consequently, the
redal set, as defined in [30], encompassing all these coherent condi-
ional probabilities, symbolizes opinions that converge or merge with
he accumulation of information, aligning with the concept introduced
n [1].

efinition 8. Let (𝛺, 𝑑) and (𝛺, 𝑑𝑖) be two metric spaces and let B be
a partition of 𝛺. Let 𝐵 ∈ 𝐁 be a set with positive and finite Hausdorff
outer measures in its dimensions in both metric spaces and denote by
𝜇𝐵 and 𝜈𝑖𝐵 the coherent conditional probabilities defined on the Borel
𝜎-field  by Theorem 1 in the two metric spaces. The distance between
𝜇𝐵 and 𝜈𝑖𝐵 is defined by

up |𝜇𝐵(𝐷) − 𝜈𝑖𝐵(𝐷)|

here the supremum is taken over 𝐷 ∈ 

In the paper of Blackwell and Dubins [1] it is shown that, given
monotone increasing or monotone decreasing sequence of 𝜎-fields

{

𝐆
}

, the distance between two conditional probabilities defined in
𝑛
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the axiomatic way on the same 𝜎-field, 𝑃 (⋅|𝐆𝑛) and 𝑄(⋅|𝐆𝑛), goes to
ero as 𝑛 goes to +∞ except on a 𝑄-probability zero set, if 𝑄 is

absolutely continuous with respect to 𝑃 . This result is an application of
he Radon–Nikodym derivative and the generalized martingale conver-
ence theorem. In the next section martingales with respect to coherent
onditional (upper) bounds defined by Hausdorff outer measures are
ntroduced.

.1. Martingales with respect to coherent conditional upper bounds defined
y hausdorff outer measures

Martingales are defined in the context where coherent conditional
ounds are established using Hausdorff measures rather than the Radon–
ikodym derivative. Several generalized martingale convergence theo-

ems are proven within this framework.
Consider the 𝜎-field 𝐅 generated by a finite or countable partition

of 𝛺. This 𝜎-field contains sets that are finite or countable unions of
the atoms of the partition. It is the smallest 𝜎-field that encompasses
the partition 𝐁. In this setting, the coherent conditional upper bound
𝐶𝐶𝑃 (𝑋|𝐁) is a random variable defined on 𝛺 that associates with each
∈ 𝛺 the value 𝐶𝐶𝑃 (𝑋|𝐁) = 𝐶𝐶𝑃 (𝑋|𝐵) if 𝜔 belongs to 𝐵.

efinition 9. Let (𝛺, 𝑑) be a metric space, where 𝛺 is a set with
ositive and finite Hausdorff outer measure in its Hausdorff dimension
. Let

{

𝐁𝑛
}

be a sequence of Borel finite or countable partitions of
and let 𝐅𝑛 be the 𝜎-field generated by 𝐁1,𝐁2,… ,𝐁𝑛. We have that

𝑛 ⊆ 𝐅𝑛+1 for all 𝑛 ∈ 𝑁 and if  =
⋃

𝑛 𝐅𝑛 is the 𝜎-field generated by all
𝑛 then  = . Let 𝑋1, 𝑋2,… be a sequence random variables in 𝐿∗(𝛺).
he sequence

{

(𝑋𝑛,𝐅𝑛) ∶ 𝑛 = 1, 2,…
}

is a martingale if

𝐶𝐶𝑃 (𝑋𝑛+1|𝐅𝑛) = 𝑋𝑛..

Example 4. Let 𝑍 ∈ 𝐿∗(𝛺) and 𝐅𝑛 non-decreasing Borel 𝜎-fields. Then

(𝑋𝑛,𝐅𝑛) ∶ 𝑛 = 1, 2,…
}

=
{

𝐶𝐶𝑃 (𝑍|𝐅𝑛), 𝑛 = 1, 2,…
}

is a martingale relative to
{

𝐅𝑛.𝑛 = 1, 2,…
}

. In fact, since 𝐅𝑛 ⊂ 𝐅𝑛+1 and
𝐶𝐶𝑃 satisfies the disintegration property on every Borel partition, we
have

𝐶𝐶𝑃 (𝑋𝑛+1|𝐅𝑛) = 𝐶𝐶𝑃 (𝐶𝐶𝑃 (𝑍|𝐅𝑛+1)|𝐅𝑛) = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) = 𝑋𝑛.

Remark 1. The difference with the axiomatic definition of martingales
(see for example [21, Section 35]) is that in Definition 9 the random
variables 𝑋𝑛 are not required to be measurable with respect to the 𝜎-
field of the conditioning events 𝐅𝑛. It occurs because coherent upper
conditional probabilities are defined on ℘(𝛺) so no measurability
condition is required for a random variable.

4.2. Merging for coherent upper conditional probabilities defined by haus-
dorff outer measures

In this section we investigate if coherent upper conditional proba-
bilities assigned by Hausdorff outer measures in different metric spaces,
whose metrics are bi-Lipschitz, merge with each other. The following
results hold since Hausdorff outer measures are metric outer measures
and so all Borelian sets are measurable with respect to Hausdorff outer
measures.

Denote by 𝐻𝑛(𝜔) the atom of the 𝜎-field 𝐅𝑛 containing 𝜔.

Definition 10. Let (𝛺, 𝑑) and (𝛺, 𝑑𝑖) be two metric spaces where 𝛺 is
a set with positive and finite Hausdorff outer measure in its Hausdorff
dimension 𝑠. Let

{

𝐁𝑛
}

be a sequence of Borel finite or countable
partitions of 𝛺 and let 𝐅𝑛 be the 𝜎-field generated by 𝐁1,𝐁2,… ,𝐁𝑛. Let

𝑛 ∈ 𝐅𝑛 be a set with positive and finite 𝑠-Hausdorff outer measures in
both metric spaces and denote by 𝜇𝐻𝑛

and 𝜈𝑖𝐻𝑛
the coherent conditional

robabilities defined on  by Theorem 2 in the two metric spaces. Then
5

𝜇𝐻𝑛
merges to 𝜇𝑖

𝐻𝑛
along

{

𝐅𝑛
}∞
𝑛=1 if for all 𝜖 > 0 there exists 𝑁 = 𝑁(𝜖, 𝜔)

such that for all 𝑛 > 𝑁 such that 𝐻𝑛 ∈ 𝐅𝑛 is a set with positive and finite
𝑠-Hausdorff outer measures in both metric spaces and all 𝜔 ∈ 𝛺

𝜇(𝐴|𝐻𝑛(𝜔)) − 𝜇𝑖(𝐴|𝐻𝑛(𝜔))|| < 𝜖 for all 𝐴 ∈ .

Next theorem shows that the Doob’s martingale convergence the-
rem holds for martingales defined by coherent conditional upper
ounds as in Theorem 2

Suppose that 𝐅𝑛 are 𝜎-fields satisfying 𝐅1 ⊂ 𝐅2 ⊂ ... ⊂ 𝐅𝑛. If the
nion ⋃∞

𝑛=1 𝐅𝑛 generates the 𝜎-field 𝐅∞, this is expressed by 𝐅𝑛 ↑ 𝐅∞.
In the sequel we prove that

• 𝑋𝑛 = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) are uniformly integrable (Theorem 6)
• 𝑋𝑛 = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) converges to 𝑋 (Theorem 7)
• if 𝑋𝑛 converges to 𝑋 then by the uniform integrability we prove

that ∫𝐻 𝑋𝑑𝜇𝛺 = ∫𝐻 𝑍𝑑𝜇𝛺 = ∫𝐻 𝐶𝐶𝑃 (𝑍|𝐅∞)𝑑𝜇𝛺 for all atoms 𝐻
of 𝐅∞ (Theorem 8).

efinition 11. A sequence
{

𝑋𝑛
}

is uniformly integrable if

lim
→∞

sup
𝑛 ∫

|𝑋𝑛|≥𝛼
|𝑋𝑛|𝑑𝜇𝛺 = 0..

heorem 6. If 𝑍 is a random variable in 𝐿∗(𝛺), (i.e. 𝑍 is a Choquet
ntegrable random variable) and 𝐅𝑛 are non-decreasing Borel-𝜎-fields then
he random variables 𝐶𝐶𝑃 (𝑍|𝐅𝑛) are uniformly integrable.

roof. Since |𝐶𝐶𝑃 (𝑍|𝐅𝑛)| ≤ 𝐶𝐶𝑃 (|𝑍||𝐅𝑛), 𝑍 may be assumed non-
egative. Let 𝐴𝛼,𝑛 =

{

𝐶𝐶𝑃 |𝑍||𝐅𝑛 ≥ 𝛼
}

then, since the disintegra-
tion property holds for coherent conditional upper bounds defined by
Hausdorff outer measures on Borel partitions, we have

∫𝐴𝛼,𝑛

𝐶𝐶𝐶(𝑍|𝐅𝑛)𝑑𝜇𝛺 = ∫𝐴𝛼,𝑛

𝑍𝑑𝜇𝛺 .

Then by Lemma 2 p. 491 of [21] the random variables 𝐶𝐶𝑃 (𝑍|𝐅𝑛)
are uniformly integrable.

Theorem 7. Let 𝛺 be a set with positive and finite Hausdorff outer measure
in its Hausdorff dimension and let 𝑋𝑛 = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) then 𝑋𝑛 → 𝑋 with
robability 1, where 𝑋 is a random variable such that 𝐶𝐶𝑃 (|𝑋|) < ∞.

Proof. Since 𝑋𝑛 = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) is a martingale and 𝑍 is Choquet
ntegrable then 𝑋𝑛 is a bounded non-decreasing sequence then 𝑋𝑛 → 𝑋
ith probability 1, where 𝑋 is a random variable such that 𝐶𝐶𝑃 (|𝑋|) <

∞.

Theorem 8. Let 𝛺 be a set with positive and finite Hausdorff outer measure
in its Hausdorff dimension and let 𝑍 be a random variable belonging to
𝐿∗(𝛺). Let 𝐅𝑛 be non-decreasing Borel-𝜎-fields such that 𝐅𝑛 ↑ 𝐅∞, then
𝐶𝐶𝑃 (𝑍|𝐅𝑛) → 𝐶𝐶𝑃 (𝑍|𝐅∞) with probability 1 with respect to 𝜇𝛺.

Proof. Since 𝑍 is a random variable in 𝐿∗(𝛺), by Example 4 the
random variables 𝑋𝑛 = 𝐶𝐶𝑃 (𝑍|𝐅𝑛) form a martingale, according to

efinition 9. Since 𝐶𝐶𝑃 (|𝑋𝑛|) ≤ 𝐶𝐶𝑃 (|𝑍|) < ∞ then the 𝑋𝑛 converge
o an integrable 𝑋. We have to identify 𝑋 with 𝐶𝐶𝑃 (𝑍|𝐅∞). Let 𝐻 be

an atom of the 𝜎-field 𝐹∞ with positive and finite Hausdorff measure
in its Hausdorff dimension 𝑠 equal to the Hausdorff dimension of 𝛺.
By the uniform integrability (Theorem 6) it is possible to integrate to
the limit so that ∫𝐻 𝑋𝑑𝜇𝛺 = lim𝑛→+∞ ∫𝜔 𝑋𝑛𝑑𝜇𝛺; since the atoms 𝐻 of
the 𝜎-fields 𝐹𝑛 are Borel-measurable the coherent conditional bounds
satisfy the disintegration property and we obtain

lim
𝑛→+∞∫𝐻

𝑋𝑛𝑑𝜇𝛺 = ∫𝐻
𝑃 (𝑍|𝐅𝑛)𝑑𝜇𝛺 = ∫𝐻

𝑍𝑑𝜇𝛺

Therefore ∫𝐻 𝑋𝑑𝜇𝛺 = ∫𝐻 𝑍𝑑𝜇𝛺 for all atoms 𝐻 of 𝐅∞ with positive
Hausdorff measure 𝜇 . By the disintegration property
𝛺
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∫𝐻
𝑋𝑑𝜇𝛺 = ∫𝐻

𝑍𝑑𝜇𝛺 = ∫𝐻
𝐶𝐶𝑃 (𝑍|𝐅∞)𝑑𝜇𝛺

so that

𝑋 = 𝐶𝐶𝑃 (𝑍|𝐅∞)..

Remark 2. The previous theorem holds for every Choquet integrable
random variable with respect to 𝜇𝛺 when the increasing information is
represented by a sequence of Borel 𝜎-fields; all results hold because co-
herent conditional upper bounds defined with respect Hausdorff outer
measures satisfy the disintegration property on every Borel partition.
It occurs because Hausdorff outer measures are metric outer measures
and so all Borelian sets are measurable with respect to Hausdorff
outer measures. In the proof of Theorem 2 of the paper of Blackwell
and Dubins [1] a similar result is proven for 𝐅∞-measurable random
variables to assure that conditional probabilities, defined by probability
measures which are absolutely continuous, merge for 𝐅𝑛, not only
ontaining Borel sets.

heorem 9. Let (𝛺, 𝑑) be a metric space where 𝛺 is a set with positive
nd finite Hausdorff outer measure in its Hausdorff dimension 𝑠 and let 𝑑𝑖
e a metric bi-Lipschitz equivalent to 𝑑. Let  the Borel 𝜎-field of the metric
paces (𝛺, 𝑑) and (𝛺, 𝑑𝑖). Let 𝐻 ∈ 𝐅∞ with Hausdorff dimension equal to
. Denote by ℎ𝑠 and by ℎ𝑠𝑖 respectively the 𝑠-dimensional Hausdorff measure
ith respect to the metric 𝑑 and 𝑑𝑖. Let 𝐻 be an atom of positive and finite
-dimensional Hausdorff outer measure in the two metric spaces and 𝜇𝐻 (𝐴)
nd 𝜇𝑖

𝐻 (𝐴) the coherent upper conditional probabilities defined by

𝐻 (𝐴) =
ℎ𝑠(𝐴)
ℎ𝑠(𝐻)

and 𝜇𝑖
𝐻 (𝐴) =

ℎ𝑠𝑖 (𝐴)
ℎ𝑠𝑖 (𝐻)

.

then 𝜇𝑖
𝐻 merges to 𝜇𝐻 for all 𝐴 ∈ ℘(𝛺).

Proof. Since 𝐻 has positive and finite Hausdorff outer measure in its
Hausdorff dimension 𝑠 equal to the Hausdorff dimension of 𝛺, the
coherent upper conditional probabilities 𝜇𝑖

𝐻 and 𝜇𝐻 are defined by

𝜇𝐻 (𝐴) =
𝐶𝐶𝑃 (𝐼𝐴∩𝐻 )

ℎ𝑠(𝐻)
and 𝜇𝑖

𝐻 (𝐴) =
𝐶𝐶𝑃 (𝐼𝐴∩𝐻 )

ℎ𝑠𝑖 (𝐻)

so that by Theorem 8

𝐻 (𝐴) =
𝐶𝐶𝑃 (𝐼𝐴∩𝐻 )

ℎ𝑠(𝐻)
= 𝐶𝐶𝑃 ((𝐼𝐴∩𝐻 )|𝐅∞) =

𝐶𝐶𝑃 (𝐼𝐴∩𝐻 )
ℎ𝑠𝑖 (𝐻)

= 𝜇𝑖
𝐻 (𝐴)

or all 𝜔 ∈ 𝐻 , that is 𝜇𝑖
𝐻 merges to 𝜇𝐻 .

emark 3. It can be noted that when the Hausdorff measure of set 𝐻
quals zero or infinity, such as in the case of a countable set, Theorem 2
efines a coherent conditional probability through a 0–1 valued finitely
dditive probability that lacks countable additivity. In such scenarios,
heorem 8 is not applicable. In fact, there are instances where 0–
valued conditional probabilities exist, displaying mutual absolute

ontinuity but failing to converge. An illustrative example can be found
n Section 6 of [1].

For each 𝐻 atom of 𝐅∞ with positive and finite Hausdorff outer
easure in its Hausdorff dimension 𝑠 let 𝜇𝐻 be the coherent upper

onditional probability defined by Theorem 2 in (𝛺, 𝑑) and let 𝐊𝐻 =
[𝜇1

𝐻 , 𝜇2
𝐻 ,…] be the credal set of all coherent upper conditional proba-

bilities 𝜇𝑖, which are defined by a distance which is bi-Lipschitz with
respect to 𝑑. So each 𝜇𝑖

𝐵 is absolutely continuous with respect to 𝜇𝐵 .
Then the credal set 𝐊𝐻 represents the class of the opinions of the
ndividuals, which agree when the information increases.

. Conclusions

Conditional probability can be naturally understood as represent-
6

ng an individual’s belief or opinion regarding an event, considering
information provided by a 𝜎-field or a partition. The findings in [4]
suggest that if two individuals’ opinions, expressed through conditional
probabilities, align on events with positive probabilities under the first
probability measure, then these events will also have positive proba-
bilities under the second probability measure, leading to convergence
when the number of observations increases.

When coherent upper conditional probabilities are defined within
a metric space, as proposed in this paper, different individuals may
establish coherent upper conditional probabilities in distinct metric
spaces. The presented results demonstrate that when diverse opinions
are captured by coherent upper conditional probabilities defined by
Hausdorff outer measures in various metric spaces, with metrics that
are bi-Lipschitz equivalent, the distance between these upper condi-
tional probabilities approaches zero as the cardinality of the 𝜎-field
of conditioning events increases. This phenomenon exemplifies the
"merging of opinions with increasing information’’.

However, it is important to note that the above result does not hold
if the conditioning event has a probability of zero or infinity. In such
cases, the conditional probability is defined by a 0–1 valued finitely
additive but not countably additive probability and there are instances
in literature of 0–1 valued probabilities that are mutually absolutely
continuous but do not converge.
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