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Abstract

We propose a new model for the joint evolution of the European inflation rate, the European Central Bank official

interest rate and the short-term interest rate, in a stochastic, continuous time setting.

We derive the valuation equation for a contingent claim and show that it has a unique solution. The contingent

claim payoff may depend on all three economic factors of the model and the discount factor is allowed to include

inflation.

Taking as a benchmark the model of Ho, H.W., Huang, H.H. and Yildirim, Y., Affine model of inflation-indexed

derivatives and inflation risk premium, European Journal of Operational Research, 2014, we show that our model

performs better on market data from 2008 to 2015.

Our model is not an affine model. Although in some special cases the solution of the valuation equation might admit

a closed form, in general it has to be solved numerically. This can be done efficiently by the algorithm that we provide.

Our model uses many fewer parameters than the benchmark model, which partly compensates the higher complexity of

the numerical procedure and also suggests that our model describes the behaviour of the economic factors more closely.
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1 Introduction

The issuance of sovereign bonds linked to euro area inflation began with the introduction of bonds indexed to the French
consumer price index (CPI) excluding tobacco (Obligations Assimilables du Trésor indexées or OATis) in 1998. In
2003, Greece, Italy and Germany decided to issue inflation-linked bonds too, and nowadays a variety of inflation-linked
derivatives are quoted in European financial markets. Typical examples are inflation indexed swaps, which allow to
exchange the inflation rate for a fixed interest rate, or inflation caps, which pay out if the inflation exceeds a certain
threshold over a given period (for a detailed introduction to inflation derivatives, see e.g. [DDM04]).

The pricing of inflation-linked derivatives is related to both interest rate and foreign exchange theory. In their seminal
work of 2003, Jarrow and Yildirim [JY03] proposed an approach based on foreign currency and interest rate derivatives
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valuation. On the other hand, there is some empirical and theoretical evidence that bond prices, inflation, interest rates,
monetary policy and output growth are related. In particular, both inflation and interest rates are clearly related to the
activity of central banks.

In the present work we propose a model for the joint evolution of the European inflation rate, the European Central
Bank (henceforth ECB) official interest rate and the short-term interest rate, and use it to price European type derivatives
whose payoff depends potentially on all three factors. To the best of our knowledge, ours is the first model that takes into
account the interaction among all these three factors. With the 2007-2008 financial crisis it has become clear that there is
another risk factor underlying bond prices, namely credit risk, but we leave the construction of a model that incorporates
this factor for future work.

Our model is a stochastic, continuous time one. More precisely, the ECB interest rate evolves as a pure jump process
with jump intensity and distribution that depend both on its current value and on the current value of inflation. As
inflation is measured at regular times, the inflation rate is modeled as a piecewise constant process that jumps at fixed
times ti. The new value at ti is given by a Gaussian random variable with expectation depending on the previous value
of the inflation rate and on the current value of the ECB interest rate. Finally, the short-term interest rate follows a CIR
type model with reversion towards an affine function of the ECB interest rate and diffusion coefficient depending on the
spread between itself and the ECB interest rate.

Many models proposed to price inflation indexed derivatives fall in the class of affine models (see e.g. D’Amico, Kim
and Wei [DKW18], Ho, Huang and Yildirim [HHY14] and Waldenberger [W17]). Singor et al. [SGVBO13] consider
a Heston-type inflation model in combination with a Hull-White model for interest rates, with non-zero correlations.
Hughston and Macrina [HM08] propose a discrete time model based on utility functions. Haubric et al. [HPR12] develop
a discrete time model of nominal and real bond yield curves based on several stochastic drivers.

Our model does not fall within the class of affine models, and does not reduce to other known models. Therefore a
certain amount of mathematical work is needed to study it, in particular to derive the valuation equation for the price
of a derivative and to show that it has a unique solution. In fact the proof relies on a general result by Costantini, Papi
and D’Ippoliti [CPD12] on valuation equations for jump-diffusion underlyings. The derivative payoff may depend on all
three economic factors of the model and the discount factor is allowed to include inflation (see Remark 3.1). Although in
some special cases the price might admit a closed form, or might be approximated by a closed form, in general it has to
be computed numerically. This can be done efficiently by the numerical algorithm described in Appendix C.

In order to show that the higher complexity of the numerical implementation of our valuation model is justified, we
compare our valuation model to the well known model of D’Amico, Kim and Wei [DKW18] and Ho, Huang and Yildirim
[HHY14]). The improvement in the error measures is significant (see Tables 1 and 2). Note that our model requires many
fewer parameters than the Ho, Huang ad Yildirim model, which compensates the higher complexity of the numerical
implementation, at least partly. Moreover, the fact that our model performs better than the Ho, Huang and Yildirim
model with many fewer parameters suggests that it describes more closely the behaviour of the economic factors.

The paper is organized as follows. In Section 2, we introduce the mathematical model. In Section 3 we derive the
valuation equation. Proofs are postponed to Appendix B. The general result by Costantini, Papi and D’Ippoliti [CPD12]
is recalled in Appendix A. In Section 4 we compare our model to the model of [HHY14]: We calibrate both models to the
market prices of Zero Coupon Inflation Indexed Swaps from January 2008 to October 2015 and measure the performances
of the two models in fitting the market data (Table 1). We also carry out the same analysis for the period 2008-2011,
when, due to the subprime crisis, interest rates dropped drastically and rapidly (Table 2). In both periods there is a
significant improvement in the error measures.
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2 The model

Figure 1: Evolution of the official European Central Bank interest rate and the Euribor interest rate from January 2008 to October

2015.

Figure 2: Evolution of the European inflation rate from January 2008 to October 2015.

Figure 1 plots the ECB interest rate together with the Euribor interest rate between 2008 and 2015, while figure 2
plots inflation in the same period. The primary goal of the ECB is to maintain price stability, i.e., to keep inflation
within a desired range (close to 2%). The inflation target is achieved through periodic adjustments of the ECB official
interest rate and, consequently, of the short-term interest rate. The goal of this paper, and specifically of this section,
is to formulate a dynamical model that describes the interactions among inflation, the ECB and the short-term interest
rates.
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From now on, we fix the probability space (Ω,F,P), where P is a martingale measure.

2.1 European Inflation

European inflation data are officially made known once a month, hence we model the inflation rate as a stochastic process
that jumps at fixed times, with jump sizes depending on its previous value and on the official ECB interest rate, and is
constant between two jumps.
Specifically, with the usual convention that one year is an interval of length one, let T := {ti}i≥0,...,M be the sequence
of times at which the values of the inflation rate process {Π(ti)}ti∈T are observed, where t0 = 0, t1 = 1

12 and, for i ≥ 2,
ti = it1.
The evolution is then given by 

Π(0) = Π0,

Π(t) = Π(ti), ti ≤ t < ti+1,

Π(ti+1) = γ
(
Π(ti), R(t−i+1)

)
+ εi+1, t = ti+1,

(2.1)

where γ is a linear function defined by

γ(π, r) = απ + kΠ(π∗ − π) + β r = (α− kΠ)π + kΠπ∗ + β r, (2.2)

with α, β ∈ R and kΠ, π∗ ∈ R+ constant parameters such that 0 < α− kΠ < 1.
The fluctuations {εi}i=1,...,M are i.i.d. random variables distributed according to the N(0, v2) law, and R(t), for t ∈ [0, T ],
is the interest rate process which will be described in Section 2.2.
We can see that

γ(π, r) = π +
(
kΠ − α+ 1

) [kΠπ∗ + β r

kΠ − α+ 1
− π)

]
(2.3)

and hence the condition 0 < α− kΠ < 1 yields that the process Π satisfies the mean-reversion property towards kΠπ∗+β r
kΠ−α+1 .

2.2 European Central Bank Interest Rate

Looking at figure 1, we can recognise some important facts about the ECB interest rate. The level of the rate is persistent,
hence the sample path is a step function; The changes are multiples of 25 basis points (bp); A change is often followed
by additional changes, frequently in the same direction. Therefore we model the ECB interest rate, R(t), as a continuous
time, pure jump process with finitely many possible upward and downward jump values. These jumps occur at random
times {ϑi}, and their size is equal to kδ with δ = 0.0025 and k ∈ {−m, ...,−1, 1, ...,m}. The jump intensity, λ, is a
function of the current values of inflation and the ECB interest rate (when the level of the official interest rate is low,
there is a tendency to avoid further downward jumps). The probability of occurence of a jump kδ also depends upon the
current values of inflation and the ECB interest rate, i.e. it is a function p(π, r, kδ).

Since, by definition, an interest rate is always larger than -1, we can assume,without loss of generality, R(t) > r, r ≥
−1 , for all t > 0. In addition, we suppose that there exists a maximum value 0 < r < +∞ such that R(t) < r, for all
t > 0. Consistently we assume that

p(π, r, kδ) = 0 for r + kδ /∈ (r, r), (2.4)

and that
λ := sup

(π,r)∈R×(r,r)

λ(π, r) < +∞, (2.5)
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Of course we suppose that ∑
k∈{−m,...,−1,1,...,m}

p(π, r, kδ) = 1 ∀π ∈ R, r ∈ [r, r]

Moreover in view of Section 3, we will make the following additional assumptions on p(·, ·, kδ) and λ = λ(·, ·): For
k = −m, ...,−1, 1, ...,m,

p(·, ·, kδ) and λ = λ(·, ·) are continuous on R× [r, r] (2.6)

and
p(π, ·, kδ) has a finite left derivative at r − kδ

p(π, ·,−kδ) has a finite right derivative at r + kδ
(2.7)

An equivalent way of describing this jump process is to think that the process jumps with constant intensity λ, but the
jump can be zero with probability

q(π, r, 0) := 1− λ(π, r)

λ
, (2.8)

or can be kδ with probability

q(π, r, kδ) :=
p(π, r, kδ)λ(π, r)

λ
, k = −m, ...,−1, 1, ...,m. (2.9)

Then we can consider the ECB interest rate as the solution of the following stochastic equation

R(t) = R0 +

∫ t

0

J
(
Π(s−), R(s−), UN(s−)+1

)
dN(s), (2.10)

where N = N(t) is a Poisson process with intensity λ, {Un}n≥0 are i.i.d. [0, 1]-uniform random variables, independent of
N , and

J(π, r, u) := −mδ1(0,1](q(π, r,−mδ))1[0,q(π,r,−mδ)](u)

+
∑m
k=−m+1 kδ 1(0,1](q(π, r, kδ))1(

∑k−1
h=−m q(π,r,hδ),

∑k
h=−m q(π,r,hδ)](u),

u ∈ [0, 1], (2.11)

the probabilities q being defined by (2.8), (2.9).

2.3 Short-term Interest Rate

As in many interest rate models in the literature, we suppose that the evolution of the short-term interest rate, Rsh, is a
mean-reverting Ito process with coefficients depending on the ECB interest rate, R, and hence indirectly on the inflation
Π as well. More precisely, we suppose that Rsh satisfies the following equation{

dRsh(t) = ksh
(
b(R(t))−Rsh(t)

)
dt+ σ

(
|R(t)−Rsh(t)|2

)√
|Rsh(t)|dW (t),

Rsh(0) = Rsh0 ,
(2.12)

where ksh ∈ R+ is a constant parameter and {Wt}t∈[0,T ] is a standard Wiener process. The function b(r) is defined by

b(r) = b0 + b1r, (2.13)

where b0, b1 ∈ R are constant parameters and inf(r,r) b(r) > 0. The volatility coefficient σ is allowed to depend on the
spread between Rsh and R, so as to model, for instance, the fact that higher values of the spread may lead to higher
volatility of Rsh. In view of Section 3, the square of σ, σ2, satisfies the following assumptions:

σ2 ∈ C2([0,∞)), (2.14)
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0 < σ2
0 ≤ σ2(q) ≤ σ1(1 +

√
q), q ∈ [0,+∞). (2.15)

For instance one can take
σ(q) = (1 + q)1/4.

We can ssume, without loss of generality, that σ(q) > 0 for all q.
Finally, in analogy to the CIR model, we assume that

ksh inf
(r,r)

b(r) >
1

2
σ2 (r − (r ∧ 0)) . (2.16)

2.4 Well-posedness of the model

We suppose that the sources of randomness in (2.1), (2.10) and (2.12), that is {εi}1≤i≤M , {N(t)}t≥0, {Un}n≥1 and
{W (t)}t≥0, are mutually independent. All information is given by the following filtration

Ft := σ
({

Π0, R0, R
sh
0 , εI(s), N(s),W (s), UN(s), s ≤ t

})
, (2.17)

where I(s) is the number of jumps of inflation up to time s, namely,

I(s) := max{i ≥ 0 : ti ≤ s}, s ≥ 0. (2.18)

The model introduced in Sections 2.1-2.3 is well posed, in the sense that there exists one and only one stochastic process(
Π, R,Rsh

)
verifying (2.1), (2.10) and (2.12), as stated precisely in the following theorem, which is proven in Appendix

A.

Theorem 2.1 For every triple of R×(r, r)×(0,+∞)-valued r.v.’s
(
Π0, R0, R

sh
0

)
, there exists one and only one stochastic

process (Π, R,Rsh) defined on (Ω,F,P), {Ft}-adapted, such that (2.1), (2.10) and (2.12) are P-a.s. verified. It holds
Rsh(t) > 0 for all t ≥ 0, almost surely.

Proof. See Appendix B. �

3 The Valuation Equation

In this section, we derive the valuation equation for a contingent claim with maturity T and payoff

Y (T )p Φ(Π(T ), R(T ), Rsh(T )), p ≥ 0, (3.1)

where Y is the inflation index, i.e.

Y (t) = exp

(∫ t

0

Π(s)ds

)
. (3.2)

It is well known that, under a risk neutral measure, the price P (t) of such a contingent claim can be expressed as the
expected discounted payoff, namely,

P (s) = E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T ) pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs],
where Fs is given by (2.17).
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Remark 3.1 Note that the form (3.1)-(3.2) allows to consider a real discount factor, i.e. a discount factor that takes
into account inflation. In fact

E
[

exp

(
−
∫ T

s

(
Rsh(u)−Π(u)

)
du

)
Φ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs]
=

1

Y (s)
E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )Φ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs].

Due to the Markov property of (Y,Π, R,Rsh),

P (s) = ϕ(s, Y (s),Π(s), R(s), Rsh(s)),

where

ϕ(s, y, π, r, z) =

E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )p Φ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣(Y (s),Π(s), R(s), Rsh(s)) = (y, π, r, z)

]
. (3.3)

We assume that Φ is continuous and satisfies

|Φ(π, r, z)| ≤ C0e
C1|π|(1 + z), π ∈ R, r ∈ (r, r), z > 0, (3.4)

for some constants C0, C1 ≥ 0. Supposing that tM ≤ T < tM+1, we are going to show (Proposition 3.4) that

ϕ(s, y, π, r, z) =

{
yp ep(T−s)π ϕM (s− tM , π, r, z), tM ≤ s ≤ T,
yp ep(ti+1−s)πϕi(s− ti, π, r, z), ti ≤ s < ti+1, i = 0, . . . ,M − 1.

where (Theorem 3.5) for each inflation value, π, ϕi(·, π, ·, ·) is the unique solution of a terminal value problem for an
equation that can be viewed as a simple parabolic Partial Integro-Differential Equation (with coefficients depending on
the parameter π). The equation is the same for all i’s, but the terminal value is different for each i: it is Φ for ϕM and
it is defined recursively from ϕi+1(0, ·, ·, ·), for ϕi, i = 0, ...,M − 1. As shown in Appendix C, this sequence of parametric
terminal value problems can be solved numerically in an efficient way.

To carry out our program, we introduce the parametrized process (Rπ, Rsh,π), obtained by ”freezing” the inflation
rate.

Proposition 3.2 Let (N, {Un},W ) be as in Theorem 2.1. For each π ∈ R, for each (r, r)×(0,∞)-valued random variable
(Rπ0 , R

sh,π
0 ), independent of (N, {Un},W ), there exists a unique strong solution of the system of equations

Rπ(t) = Rπ0 +
∫ t

0
J(π,Rπ(s−), UN(s−)+1)dN(s),

Rsh,π(t) = Rsh,π0 +
∫ t

0
ksh

(
b(Rπ(s))−Rsh,π(s)

)
ds

+
∫ t

0
σ
(
|Rπ(s)−Rsh,π(s)|2

)√
|Rsh,π(s)|dW (s).

(3.5)

In addition, it holds Rπ(t) ∈ (r, r), Rsh,π(t) > 0 for all t ≥ 0.

The solution corresponding to (Rπ0 , R
sh,π
0 ) = (r, z) will be denoted by (Rπr , R

sh,π
(r,z)).

Proof. The proof is analogous to the proof of Theorem 2.1. �

The following property of (Rπ, Rsh,π) will be used for the recursion.

7



Lemma 3.3 For any continuous function f : R× (r, r)× (0,∞)→ R satisfying (3.4),

for any T > 0, E
[
e
−

∫ T−t
0

Rsh,π
(r,z)

(u)du∣∣f(π,Rπr (T − t), Rsh,π(r,z)(T − t)
)∣∣] is finite for every (π, r, z) and 0 ≤ t ≤ T , and the

function
F (t, π, r, z) = E

[
e
−

∫ T−t
0

Rsh,π
(r,z)

(u)du
f
(
π,Rπr (T − t), Rsh,π(r,z)(T − t)

)]
is continuous on [0, T ]× R× (r, r)× (0,∞) and satisfies (3.4) uniformly for t ∈ [0, T ].

Proof. See Appendix B. �

For a continuous function f : R × (r, r) × (0,∞) → R such that |f(π, r, z)| ≤ C0e
C1|π|(1 + z), let ε be a Gaussian

variable with mean zero and variance v2 and set

Bf(π, r, z) = E[f (γ(π, r) + ε, r, z)] =
1√
2πv

∫
R
f (γ(π, r) + u, r, z) exp

(
− u2

2v2

)
du, (3.6)

where γ is defined in (2.2).
Note that

E[eC1|γ(π,r)+ε|] ≤ eC1|βr+kΠπ∗| eC1(α−kΠ)|π|E[eC1|ε|] <∞,

so that Bf is continuous, by dominated convergence, and verifies the growth condition (3.4), i.e.

|Bf(π, r, z)| ≤ C ′0eC
′
1|π|(1 + z). (3.7)

Proposition 3.4 Let ϕ be the function defined by (3.3), tM ≤ T < tM+1. Then

ϕ(s, y, π, r, z) =

{
y pep(T−s)π ϕM (s− tM , π, r, z), tM ≤ s ≤ T,
ypep(ti+1−s)π ϕi(s− ti, π, r, z), ti ≤ s < ti+1, i = 0, ...,M − 1,

(3.8)

where the functions ϕi are defined recursively in the following way:

ϕM (t, π, r, z) = E
[
e
−

∫ T−tM−t
0 Rsh,π

(r,z)
(u)du

Φ
(
π,Rπr (T − tM − t), Rsh,π(r,z)(T − tM − t)

)]
, 0 ≤ t ≤ T − tM , (3.9)

ϕM−1(t, π, r, z) = E
[
e
−

∫ t1−t
0 Rsh,π

(r,z)
(u)du

B
(
ep(T−tM )·ϕM (0, ·, ·, ·)

)(
π,Rπr (t1 − t), Rsh,π(r,z)(t1 − t)

)]
, 0 ≤ t ≤ t1, (3.10)

and
ϕi(t, π, r, z) = E

[
e
−

∫ t1−t
0 Rsh,π

(r,z)
(u)du

B
(
ept1·ϕi+1(0, ·, ·, ·)

) (
π,Rπr (t1 − t), Rsh,π(r,z)(t1 − t)

)]
, (3.11)

for 0 ≤ t ≤ t1 and for i = 0, ...,M − 2.

Proof. See Appendix B. �

For an R-valued diffusion processX with time independent coefficients b and σ, we know, by the Feynman-Kac formula,
under suitable assumptions, that the function

ψ(t, x) = E
[

exp

(
−
∫ T−t

0

Xx(s)ds

)
Ψ(Xx(T − t))

]
,

where Xx is the process starting at x, is of class C1,2 and satisfies

∂ψ

∂t
(t, x) + b(x)

∂ψ

∂x
(t, x) +

1

2
σ2(x)

∂2ψ

∂x2
− xψ(t, x) = 0, 0 ≤ t < T, x ∈ R,

ψ(T, x) = Ψ(x), x ∈ R.

8



By analogy, we consider, for each fixed π, for each function ϕi(·, π, ·, ·) defined in Proposition 3.4, the following equation,
which reflects the dynamics of (Rπ(r,z), R

sh,π
(r,z)):

∂ψ
∂t (t, r, z) + ksh (b(r)− z) ∂ψ∂z (t, r, z) + 1

2σ
2
(
|r − z|2

)
z ∂

2ψ
∂z2 (t, r, z)

+λ
∑m
k=−m [ψ (t, r + kδ, z)− ψ (t, r, z)] q(π, r, kδ)− zψ(t, r, z) = 0,

(3.12)

with terminal conditions

ψ(T − tM , ·, ·) = Φ, for ϕM ,

ψ(t1, ·, ·) = B
(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
, for ϕM−1, (3.13)

ψ(t1, ·, ·) = B
(
ept1·ϕi+1(0, ·, ·, ·)

)
, for ϕi, i = 0, ...,M − 2.

(3.12)-(3.13) is not a standard partial differential equation and it is not clear whether it admits a classical solution.
However it turns out that (3.12)-(3.13) admits a unique viscosity solution, which is enough to solve it numerically with
the algorithm of Appendix C. As mentioned in the Introduction, we will obtain existence and uniqueness of the viscosity
solution to (3.12)-(3.13) from a general result for valuation equations for contingent claims written on jump-diffusion
underlyings proved in [CPD12] and summarised in Appendix A. Since the state space of (3.12)-(3.13) is unbounded, as
usual in the literature, uniqueness will hold in the class of functions with a prescribed growth rate.

Theorem 3.5 Let ϕ be the function defined by (3.3), where the payoff is given by (3.1)-(3.4), and let ϕi be the functions
defined in Proposition 3.4. Then: For i = 0, ...,M , for each π ∈ R, the function ϕi(·, π, ·, ·) is the unique viscosity solution
of the equation (3.12)-(3.13) satisfying the growth condition (3.4), uniformly in time.

Proof. The proof can be found in Appendix B. �

4 Calibration to ZCIIS and comparison with a benchmark model

We consider the affine-based, stochastic factor model of [HHY14] as our term of comparison. Actually a setting such as
theirs can be considered as a benchmark in empirical studies, as suggested by [DPS00].

The comparison is focused on Inflation-Indexed Swaps which are swap contracts whose payoffs are linked to a specific
inflation index. These instruments are mainly used for an inflation-risk-exposed investor to hedge against (or exchange)
the inflation-risk undertaken. Among these derivatives, Zero-Coupon Inflation-Indexed Swaps are the most actively traded
instruments and their quotations have been proven to provide additional information on inflation expectation.

A Zero-Coupon Inflation-Indexed Swap (ZCIIS) contract is a bilateral agreement that enables an investor or a hedger
to secure an inflation-protected return with respect to an inflation index. The inflation receiver pays a predetermined
fixed rate, and receives from the inflation seller inflation-linked payments. In the ZCIIS, starting at time t0, with final
time T > t0, and nominal amount N, the fixed-leg payer pays N

[
(1 +KZCIIS(t0, T ))T−t0 − 1

]
when the contract matures,

KZCIIS(t0, T ) being the contract fixed rate corresponding to the quotation in the market. The floating-leg payer pays
N [Y (T )/Y (t0)− 1], where Y (t) is the value of the inflation index at time t.

Following [HHY14] and also [M05], by normalizing the nominal amount of the contract to be 1, under the usual no
arbitrage condition, the fair swap rate for the ZCIIS starting at time t0, with maturity T , is given by:

KZCIIS(t0, T ) =

[
PR(t0, T )

PN (t0, T )

]1/(T−t0)

− 1, (4.1)
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where PN (t0, T ) denotes the price of the nominal zero-coupon, i.e. the zero-coupon, starting at t0, that pays 1 at the
maturity T , and PR(t0, T ) denotes the price of the real zero-coupon, i.e. the zero-coupon, starting at t0, that pays
Y (T )/Y (t0) at the maturity T .

4.1 Valuation of a ZCIIS in the benchmark model

In [HHY14], the authors assume an affine-based model with an n-dimensional latent state vector X(t) specified by a
vector Vasicek process (see [DPS00]):

dX(t) = K (µ−X(t))dt+ Σ dW (t) (4.2)

where K, Σ are n× n constant matrices, µ is a n× 1 vector and W is a n-dimensional Wiener process. This implies that
the state variable vector is mean-reverting with constant volatility. Following the specifications of [DKW18], the price of
the real zero-coupon bond from t to T and its nominal counterpart can be expressed as:

PJ(t, T ) = exp
(
AJ(T − t) + 〈BJ(T − t), X(t)〉

)
, J = R,N, (4.3)

where AJ(τ), BJ(τ) solve a system of Riccati-type differential equations, whose coefficients involve the parameters K, µ
and Σ in (4.2) and other ones. We refer readers to Section 2.2, page 161 in [HHY14] for a detailed description of their
model. By (4.3), (4.1) takes the form

KZCIIS(t0, T ) = exp

(
AR(T − t0)−AN (T − t0)

T − t0
+ 〈B

R(T − t0)−BN (T − t0)

T − t0
, X(t0)〉

)
− 1. (4.4)

Thus, for each set of values of the parameters of the model, the ZCIIS rate can be computed by solving numerically the
systems of Riccati-type differential equations.

4.2 Valuation of a ZCIIS in our model

In order to implement the comparison, we deduce the ZCIIS rate under our modeling technique. We shall use the
notation (·)model to refer to our model and we assume that the nominal value of the contract is 1. In our model, the
nominal zero-coupon bond price is given by

Pmodel
N (t0, T ) = E

[
e
−

∫ T
t0
Rsh(s)ds

∣∣∣Ft0] . (4.5)

and the real zero-coupon bond price is given by

Pmodel
R (t0, T ) =

1

Y (t0)
E

[
e
−

∫ T
t0
Rsh(s)ds

Y (T )

∣∣∣∣∣Ft0
]
. (4.6)

With the notation of Section 3, Pmodel
N (t0, T ) is the price of a derivative with payoff of the form (3.1)-(3.2) with p = 0

and Φ(π, r, z) = 1, while Pmodel
R (t0, T ) is 1

Y (t0) times the price of a derivative with payoff of the form (3.1)-(3.2) with p = 1

and Φ(π, r, z) = 1. Therefore, for each set of values of the parameters of the model, both Pmodel
N (t0, T ) and Pmodel

R (t0, T )

can be computed by solving numerically the system of partial differential equations (3.12)-(3.13). Kmodel
ZCIIS (t0, T ) can then

be evaluated by (4.1).
An efficient numerical scheme to solve the system of partial differential equations (3.12)-(3.13) is described in Appendix

C.
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4.3 Numerical tests

We use financial market data for ZCIIS swap rates, which exist for the biggest European Monetary Union countries, and
provide a valuable source of information. The dataset is provided by the Bloomberg platform and covers the period of
time Jan 2008 to Oct 2015 with a wide range of maturities (from 1 to 30 years). Specifically, we consider a ZCIIS for the
aggregate euro area which uses the Harmonized Index of Consumer Prices (HICP) as an indicator of inflation (excluding
tobacco). The HICP index is available monthly and is obtained by Eurostat. For each month in the sample period, we
consider the day where the HICP index is observed and we perform a cross-sectional estimation against the market swap
rates for all maturities available in the dataset.

We use two discrepancy measures documented in several works in the literature: the root mean-square error (RMSE)
and the average relative prediction error (ARPE). They are defined as follows:

ARPE(tj) =
1

I

I∑
i=1

|K(tj , tj + Ti)−Kmarket
ij |

Kmarket
ij

, (4.7)

RMSE(tj) =

√√√√ I∑
i=1

|K(tj , tj + Ti)−Kmarket
ij |2

I
, (4.8)

where K(tj , Ti) is the model implied swap rate at day tj , for the maturity tj + Ti, for i = 1, . . . I, for j = 1, . . . J .
For each model and for every tj , we find an estimate for the model parameters by minimizing RMSEm(tj).
In order to compare the performances of the two models, for each of them we compute the above error measures using

the estimated parameters and we take the average value over {tj}:

ARPE =
1

J

J∑
j=1

ARPE(tj), (4.9)

RMSE =
1

J

J∑
j=1

RMSE(tj). (4.10)

g Concerning the parameters, for the [HHY14] model, following [DKW18] we use the following specification of the coeffi-
cients for the latent factor process X(t):

µ =


0

0

0

 , Σ =


0.01 0 0

σ21 0.01 0

σ31 σ32 0.01

 , K =


κ11 0 0

0 κ22 0

0 0 κ33

 .
Hence σ21, σ31, σ32, κ11, κ22, κ33 are the parameters to be estimated. In addition, in the Riccati-type equations to be
solved numerically, there are 11 more parameters. As usual in a cross-sectional estimation, the value of the state variable
X(tj) is considered as a parameter in the model and is estimated jointly with all other parameters. Thus altogether there
are 20 parameters to be calibrated.

In our model, for the inflation index, in equation (2.2), we set

α = 1, π? = ln(1.02), v = σΠ,

where σΠ is the historical standard deviation of the monthly increments of the inflation rate determined by the HICP
index, and we estimate the parameters

β, kΠ.
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For the ECB rate (Section 2.2), we choose

r = 0.05%, r = 4.5%, m = 1, δ = 0.25%,

and the probabilities q as

q(π, r, δ) =

[(
1

0.3σΠ

(
π − (π∗ + 0.2σΠ)

))
+

∧ 1

][(
1

3δ

(
(r − δ)− r

))
+

∧ 1

]
,

q(π, r,−δ) =

[(
1

0.3σΠ

(
(π∗ − 0.2σΠ)− π

))
+

∧ 1

][(
1

3δ

(
r − (r + δ)

))
+

∧ 1

]
,

q(π, r, 0) = 1− q(π, r, δ)− q(π, r,−δ),

and we estimate
λ.

Finally, for the short-term interest rate, we take the function σ constant, σ = σ0, and we estimate all the parameters of
equation (2.12):

ksh, σ0, b0, b1,

with the constraints

ksh > 0, σ0 > 0, ksh
(
b0 + b1r

)
>

1

2
σ2

0 , ksh
(
b0 + b1r

)
>

1

2
σ2

0 .

In addition, the value of Rsh(tj) is considered as a parameter in the model and is estimated jointly with all other
parameters. Thus altogether there are 8 parameters to be calibrated.

We compare the performances of our model and of the model of [HHY14] in two periods: the whole period ranging
from January 2008 to October 2015, and the period from January 2008 to November 2011, when, due to the subprime
crisis, interest rates dropped from over 5% to less than 0.5% (see Figure 1). The results are summarized in Table 1 and
Table 2, respectively.

RMSE ARPE

Our model 0.1679 0.01098
[HHY14] model 0.3146 0.02101

Table 1: Error measures ARPE and RMSE for the period Jan. 2008 - Oct. 2015 evaluated for our model and the
[HHY14] model. The inflation swap rates in the sample are expressed in percentage.

RMSE ARPE

Our model 0.19741 0.004972
[HHY14] model 0.4271 0.01076

Table 2: Error measures ARPE and RMSE for the period Jan. 2008 - Nov. 2011 evaluated for our model and the
[HHY14] model. The inflation swap rates in the sample are expressed in percentage.
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5 Conclusions

We have proposed a new model for the joint evolution of the inflation rate, the ECB interest rate and the short-term
interest rate. We have derived a valuation equation that allows us to price inflation-linked derivatives by a numerical
algorithm. We have compared our model to one of the best known models in the literature ([DKW18] and [HHY14]):
Calibrating both models to the same market data (ZCIIS from 2008 to 2015), the performance of our model in fitting the
data appears to be significatively better than the [HHY14] model, although our model employs many fewer parameters.

Appendices

A Viscosity solutions of integro-differential valuation equations

For the convenience of the reader we summarise here a general result of [CPD12], on which the proof of Theorem 3.5
relies. [CPD12] considers a general equation of the form{

∂tψ(t, x) + Lψ(t, x)− c(x)ψ(t, x) = g(t, x), (t, x) ∈ (0, T )×D,
ψ(T, x) = Ψ(x), x ∈ D,

(A.1)

with
Lf(x) = ∇f(x)b(x) +

1

2
tr
(
∇2f(x)a(x)

)
+

∫
D

[f(x′)− f(x)]m(x, dx′), (A.2)

where D is a (possibly unbounded) starshaped open subset of Rd. The coefficients and data are assumed to satisfy the
following conditions.

(H1) a : D → Rd×d is of the form a = σσT , with a = (ai,j)i,j=1,...,d, where ai,j ∈ C2(D), and b : D → Rd is Lipschitz
continuous on compact subsets of D.

(H2) Denoting by M(D) the space of finite Borel measures on D, endowed with the weak convergence topology, m : D →
M(D) is continuous and

sup
x∈D

∣∣∣∣∫
D

f(x′)m(x, dx′)

∣∣∣∣ <∞, ∀ f ∈ Cc(D). (A.3)

(H3) There exists a nonnegative function V ∈ C2(D), such that∫
D

V (x′)m(x, dx′) < +∞, ∀ x ∈ D, LV (x) ≤ C (1 + V (x)) , ∀ x ∈ D, (A.4)

lim
x∈D, x→x0

V (x) = +∞, ∀ x0 ∈ ∂D, lim
x∈D, |x|→+∞

V (x) = +∞, (A.5)

(H4) g ∈ C([0, T ]×D), c, ψ ∈ C(D), and c is bounded from below. There exists a strictly increasing function l : [0,+∞)→
[0,+∞), such that

s 7→ sl(s) is convex, lim
s→+∞

l(s) = +∞, (A.6)

(s1 + s2)l(s1 + s2) ≤ C (s1l(s1) + s2l(s2)) , ∀ s1, s2 ≥ 0, (A.7)

13



and the following holds:

|g(t, x)|l(|g(t, x)|) ≤ CT (1 + V (x)) , (A.8)

|Ψ(x)|l(|Ψ(x)|) ≤ C (1 + V (x)) , (A.9)

for all (t, x) ∈ [0, T ]×D.

We recall the definition of viscosity solution, in the present set up.

Definition A.1 A viscosity solution of -(A.1)-(A.2) is a continuous function ψ defined on [0, T ]×D such that

ψ(T, x) = Ψ(x), x ∈ D,

and, for each x ∈ D, t ∈ [0, T ):

for every f ∈ C1,2
(
[0, T ]×D

)
such that

sup
(t̃,x̃)∈[0,T ]×D

(
ψ(t̃, x̃)− f(t̃, x̃)

)
= (ψ(t, x)− f(t, x)) = 0,

it holds
∂f
∂t (t, x) + Lf(t, x)− c(x)ψ(t, x) ≥ g(t, x);

for every f ∈ C1,2
(
[0, T ]×D

)
such that

inf
(t̃,x̃)∈[0,T ]×D

(
ψ(t̃, x̃)− f(t̃, x̃)

)
= (ψ(t, x)− f(t, x)) = 0,

it holds
∂f
∂t (t, x) + Lf(t, x)− c(x)ψ(t, x) ≤ g(t, x).

The result proved in [CPD12] is the following.

Theorem A.2 ([CPD12]) Assume (H1), (H2), (H3) and (H4). Then for every x ∈ D, there exists one and only one
stochastic process, Xx, that solves the martingale problem for L, D(L) = C2

c(D), with initial condition x. The function

ψ(t, x) = E

[
Ψ(Xx(T − t))e−

∫ T−t
0

c(Xx(r))dr −
∫ T−t

0

g(t+ s,Xx(s))e−
∫ s
0
c(Xx(r))drds

]
, (A.10)

(t, x) ∈ [0, T ]×D,

is the only viscosity solution of (A.1)-(A.2) satisfying

|ψ(t, x)|l(|ψ(t, x)|) ≤ CT (1 + V (x)) , ∀ (t, x) ∈ [0, T ]×D. (A.11)
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B Proofs

Proof of Theorem 2.1

Setting t0 := 0 and (Π(0), R(0), Rsh(0)) :=
(
Π0, R0, R

sh
0

)
, we claim that, given a triple of R × [r, r] × R-valued,

{Fti}-measurable r.v.’s
(
Π(ti), R(ti), R

sh(ti)
)
, (Π, R,Rsh) is pathwise uniquely defined on the interval [ti, ti+1] and(

Π(ti+1), R(ti+1), Rsh(ti+1)
)
is {Fti+1

}-measurable. To see this, observe, first of all, that the probability that N jumps at
any of t1, ..., tM is zero. Therefore, denoting by {ϑn} the jump times of N , R can be defined simply in the following way:
If N(ti+1) > N(ti),

R(ϑN(ti)+n) := R(ϑN(ti)+n−1 ∨ ti) + J
(
Π(ti), R(ϑN(ti)+n−1 ∨ ti), UN(ti)+n

)
,

for 1 ≤ n ≤ N(ti+1)−N(ti),

R(t) := R(ϑN(ti)+n−1 ∨ ti) for ϑN(ti)+n−1 ∨ ti ≤ t < ϑN(ti)+n, 1 ≤ n ≤ N(ti+1)−N(ti),

R(t) := R(ϑN(ti+1)) for ϑN(ti+1) ≤ t ≤ ti+1.

If N(ti+1) = N(ti),
R(t) := R(ti), for ti ≤ t ≤ ti+1.

Note that R(ϑN(ti)+n∧ ti+1) is {FϑN(ti)+n
∧ti+1

}-measurable for all n ≥ 1, and that R(ti+1) is {Fti+1
}-measurable. Denote

ϑi0 := ti, ϑin := ϑN(ti)+n ∧ ti+1, n ≥ 1. In each subinterval [ϑin−1, ϑ
i
n], we can write equation (2.12) as

Rsh(ϑin−1 + t) = Rsh(ϑin−1) +

∫ t

0

ksh
(
b(R(ϑin−1))−Rsh(ϑin−1 + s)

)
ds

+

∫ t

0

σ
(
|R(ϑin−1)−Rsh(ϑin−1 + s)|2

)√
|Rsh(ϑin−1 + s)|dWϑin−1(s) (B.1)

0 ≤ t ≤ ϑin − ϑin−1,

where Wϑin−1(s) := W (ϑin−1 + s) −W (ϑin−1). Since W is independent of N , Wϑin−1 is a standard Brownian motion,
independent of ϑin − ϑin−1. Moreover, if Rsh(ϑin−1) is {Fϑin−1

}-measurable (hence
(
R(ϑin−1), Rsh(ϑin−1)

)
is {Fϑin−1

}-
measurable)Wϑin−1 is independent of

(
R(ϑin−1), Rsh(ϑin−1)

)
. The diffusion coefficient in (B.1) is locally Holder continuous

by (2.14), and has sublinear growth by (2.15). Therefore, by the Corollary to Theorem 3.2, Chapter 4, of [IW81], there
exists one and only one strong solution to (B.1) (the Corollary to Theorem 3.2 of [IW81] assumes global Holder continuity,
but, as pointed out in the comment immediately preceding Theorem 3.2, its statement can be localized and it yields
existence and uniqueness of the strong solution up to the explosion time; (2.14) and Theorem 2.4, Chapter 4, of [IW81]
ensure that the explosion time is infinite). Then Rsh(ϑin−1 + t) is pathwise uniquely defined for 0 ≤ t ≤ ϑin − ϑin−1 and
Rsh(ϑin) is {Fϑin}-measurable. Since Rsh(ϑi0) = Rsh(ti) is {Fti}-measurable, i.e. {Fϑi0}-measurable, we see, by induction,
that Rsh is pathwise uniquely defined on [ti, ti+1] and Rsh(ti+1) is {Fti+1

}-measurable. By setting

Π(ti+1) = γ
(
Π(ti), R(ti+1), Rsh(ti+1)

)
+ εi+1,

our claim is proved. Finally, let us show that Rsh(t) > 0 for all t ≥ 0, almost surely. Let αn := inf{t ≥ 0 : Rsh(t) ≤ 1
n}.

Then it will be enough to show, for every z0 > 0, for Rsh0 = z0, that

P(αn ≤ t)→n→∞ 0, ∀t > 0.

To see this, consider, for z > 0, the function
V1(z) := z2 − ln(z).
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We have
ksh (b(r)− z)V1(z)′ + 1

2σ
2
(
|r − z|2

)
V1(z)′′

= ksh (b(r)− z)
(
2z − 1

z

)
+ 1

2σ
2
(
|r − z|2

) (
2z + 1

z

)
= 1{z≤r}

1
z

(
1
2σ

2
(
|r − z|2

)
− kshb(r)

)
+ 1{z>r}

1
z

(
1
2σ

2
(
|r − z|2

)
− kshb(r)

)
+kshb(r) + 2z

(
1
2σ

2
(
|r − z|2

)
+ kshb(r)− kshz

)
≤ 1

2rσ
2
(
|r − z|2

)
+ kshb(r) + 2z

(
1
2σ

2
(
|r − z|2

)
+ kshb(r)

)
≤ C(1 + z2),

where the last but one inequality follows from (2.16) and z > 0, and the last one follows from (2.15). Let βk := inf{t ≥
0 : Rsh(t) ≥ k}. By applying Ito’s formula and taking expectations, we obtain

E[V1(Rsh(t ∧ αn ∧ βk)]

≤ V1(z0) + CE
[ ∫ t∧αn∧βk

0

(
1 +Rsh(s)2

)
ds

≤ V1(z0) + C

∫ t

0

(
1 + E

[
V1(Rsh(s ∧ αn ∧ βk)

])
ds,

which implies, by Gronwall’s Lemma and by taking limits as k →∞,

E[V1(Rsh(t ∧ αn)] ≤
(
V1(z0) + Ct

)
eCt,

and hence,
ln(n)P(αn ≤ t) ≤

(
V1(z0) + Ct

)
eCt.

�

Proof of Lemma 3.3

Let us show preliminarly that, for any T > 0,

E[Rsh,π(r,z)(t)] ≤ CT (1 + z), 0 ≤ t ≤ T, π ∈ R, r ∈ (r, r), z > 0, (B.2)

and, for every q ≥ 2,
E[Rsh,π(r,z)(t)

q] ≤ CT (1 + zq), 0 ≤ t ≤ T, π ∈ R, r ∈ (r, r), z > 0. (B.3)

In order to prove (B.3), consider a sequence of bounded, nonnegative C2 functions {fn} such that fn(z) = zq for 0 < z ≤ n
and fn(z) ≤ zq for all z > 0, and let αn := inf{t ≥ 0 : Rsh,π(r,z)(t) ≥ n}. By applying Ito’s Lemma to the semimartingale
Rsh,π(r,z), and to the function fn, and taking expectations, we obtain

E[Rsh,π(r,z)(t ∧ αn)q]

= E[fn(Rsh,π(r,z)(t ∧ αn))]

= fn(z) + kshE
[ ∫ t∧αn

0

(
[(Rπr (s))−Rsh,π(r,z)(s)]R

sh,π
(r,z)(s)

q−1)

+
q(q − 1)

2
σ2(|Rπ(s)−Rsh,π(s)|2)Rsh,π(s)q−1

)
ds

]
≤ zq + CE

[ ∫ t∧αn

0

(
1 +Rsh,π(r,z)(s))

q

)
ds

]
≤ zq + C

∫ t

0

(
1 + E

[
Rsh,π(r,z)(s ∧ αn))q

])
ds,
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where the last but one inequality follows from (2.15).
Therefore, by Gronwall’s Lemma and Fatou’s Lemma,

E[Rsh,π(r,z)(t)
q] ≤

(
zq + CT

)
eCT , 0 ≤ t ≤ T.

(B.2) can be proved in an analogous manner. (B.2) yields both

E
[
e
−

∫ T−t
0

Rsh,π
(r,z)

(s)ds∣∣f(π,Rπr (T − t), Rsh,π(r,z)(T − t)
)∣∣] <∞ and |F (t, π, r, z)| ≤ C ′0eC1π(1 + z),

for (t, π, r, z) ∈ [0, T ] × R × (r, r) × (0,∞). We are left with proving continuity of F . Let (tn, πn, rn, zn) → (t, π, r, z).
Then {Rπrn} converges to Rπr uniformly over compact time intervals, almost surely. In addition {Rsh,π(rn,zn)} is relatively
compact by Theorems 3.8.6 and 3.8.7 of [EK86], the Burkholder-Davies-Gundy inequality and (B.3) with q = 4, and every
limit point is continuous by Theorem 3.10.2 of [EK86]. Therefore {(Rπrn , R

sh,π
(rn,zn))} is relatively compact. By Theorem

2.7 of [KP91], every limit point of {(Rπrn , R
sh,π
(rn,zn))} satisfies (3.5) with (Rπ0 , R

sh,π
0 ) = (r, z). Since the solution to (3.5)

is (strongly and hence weakly) unique, we can conclude that {(Rπrn , R
sh,π
(rn,zn))} converges weakly to (Rπr , R

sh,π
(r,z)). The

assertion then follows by observing that (B.3) implies that the random variables{
e
−

∫ T−tn
0

Rsh,π
(rn,zn)

(s)ds
f
(
πn, R

π
rn(T − tn), Rsh,π(rn,zn)(T − tn)

)}
are uniformly integrable. �

Proof of Proposition 3.4

Recall that tM ≤ T < tM + 1. For tM ≤ s ≤ T ,

E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs]
= E

[
exp

(
−
∫ T

s

Rsh(u)du

)
Y (s)pep(T−s)Π(s) Φ(Π(s), R(T ), Rsh(T ))

∣∣∣∣(Y (s),Π(s), R(s), Rsh(s))

]
Therefore,

ϕ(s, y, π, r, z)

= E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (s)pep(T−s)Π(s) Φ(Π(s), R(T ), Rsh(T ))

∣∣∣∣(Y,Π, R,Rsh)(s) = (y, π, r, z)

]
= ypep(T−s)πE

[
exp

(
−
∫ T

s

Rsh,π(u)du

)
Φ(π,Rπ(T ), Rsh,π(T ))

∣∣∣∣(Rπ, Rsh,π)(s) = (r, z)

]
= ypep(T−s)πE

[
exp

(
−
∫ T−s

0

Rsh,π(u)du

)
Φ(π,Rπ(T − s), Rsh,π(T − s))

∣∣∣∣(Rπ, Rsh,π)(0) = (r, z)

]
= ypep(T−s)πϕM (s− tM , π, r, z),

where the last but one equality follows from the fact that (Rπ, Rsh,π) is time homogeneous.
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For tM−1 ≤ s < tM ,

= E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣Fs]
= E

[
E
[

exp

(
−
∫ T

s

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣FtM]∣∣∣∣Fs]
= E

[
exp

(
−
∫ tM

s

Rsh(u)du

)
E
[

exp

(
−
∫ T

tM

Rsh(u)du

)
Y (T )pΦ(Π(T ), R(T ), Rsh(T ))

∣∣∣∣FtM]∣∣∣∣Fs]
= E

[
exp

(
−
∫ tM

s

Rsh(u)du

)
ϕ(tM , Y (tM ),Π(tM ), R(tM ), Rsh(tM ))

∣∣∣∣Fs]
= E

[
exp

(
−
∫ tM

s

Rsh(u)du

)
Y (tM )pep(T−tM )Π(tM )ϕM (0,Π(tM ), R(tM ), Rsh(tM ))

∣∣∣∣Fs]
= E

[
E
[

exp

(
−
∫ tM

s

Rsh(u)du

)
Y (tM )pep(T−tM )Π(tM )ϕM (0,Π(tM ), R(tM ), Rsh(tM ))

∣∣∣∣Ft−M
]∣∣∣∣Fs]

= E
[

exp

(
−
∫ tM

s

Rsh(u)du

)
Y (tM )pB

(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
(Π(s), R(tM ), Rsh(tM ))

∣∣∣∣Fs]
= E

[
exp

(
−
∫ tM

s

Rsh(u)du

)
Y (s)pep(tM−s)Π(s)B

(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
(Π(s), R(tM ), Rsh(tM ))

∣∣∣∣(Y,Π, R,Rsh)(s)

]
Therefore,

ϕ(s, y, π, r, z)

= E
[

exp

(
−
∫ tM

s

Rsh(u)du

)
Y (s)pep(tM−s)Π(s)B

(
ep(T−tM )·ϕM (0, ·, ·, ·)

) ∣∣∣∣(Y,Π, R,Rsh)(s) = (y, π, r, z)

]
= ypep(tM−s)πE

[
exp

(
−
∫ tM

s

Rsh,π(u)du

)
B
(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
(π,Rπ(tM ), Rsh,π(tM ))

∣∣∣∣(Rπ, Rsh,π)(t) = (r, z)

]
= ypep(tM−s)πE

[
exp

(
−
∫ tM−s

0

Rsh(r,z)(u)du

)
B
(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
(π,Rπr (tM − s), Rsh,π(r,z)(tM − s))

]
= ypep(tM−s)πϕM−1(s− tM−1, π, r, z).

For ti−1 ≤ s < ti, i ≤ M − 1, assuming inductively that ϕ(ti, y, π, r, z) = ypept1πϕi(0, π, r, z), the same computations
as for i = M (with tM replaced by ti and T replaced by ti+1) yield

ϕ(s, y, π, r, z) = ypep(ti−s)πϕi−1(s− ti−1, π, r, z).

�

Proof of Theorem 3.5

In order to adjust to the general formulation of [CPD12], we note first of all that (3.12) can be viewed as a simple
Partial Integro-Differential Equation, namely

∂ψ
∂t (t, r, z) + ksh (b(r)− z) ∂ψ∂z (t, r, z) + 1

2σ
2
(
|r − z|2

)
z ∂

2ψ
∂z2 (t, r, z)

+
∫

(r,r)
[ψ (t, r′, z)− ψ (t, r, z)]µ(π, r, dr′)− zψ(t, r, z) = 0

(B.4)

where

µ(π, r,A) := λ

m∑
k=−m

1A(r + kδ)q(π, r, kδ), A ∈ B
(
(r, r)

)
. (B.5)
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Therefore, for each fixed π, (B.4) is of the form (A.1)-(A.2) with

Lπψ(t, r, z) = ksh (b(r)− z) ∂ψ∂z (t, r, z) + 1
2σ

2
(
|r − z|2

)
z ∂

2ψ
∂z2 (t, r, z)

+
∫

(r,r)
[ψ (t, r′, z)− ψ (t, r, z)]µ(π, r, dr′),

g(r, z) = 0, c(r, z) = z.

The proof thus consists in verifying the assumptions of [CPD12].
Assumptions (H1), (H2) of theorem A.2 are satisfied by (2.6) and (2.14).
As far as (H3) is concerned, it is sufficient to find, for each fixed π, V π0 ∈ C2(r, r), V π1 ∈ C2((0,∞)) nonnegative and

such that
lim
r→r+

V π0 (r) =∞, lim
r→r−

V π0 (r) =∞, LπV π0 (r, z) ≤ Cπ (1 + V π0 (r)), (B.6)

lim
z→0+

V π1 (z) =∞, lim
z→∞

V π1 (z) =∞, LπV π1 (r, z) ≤ Cπ(1 + V π1 (z)). (B.7)

Then Assumption (H3) will be verified by
V π(r, z) = V π0 (r) + V π1 (z). (B.8)

By the same computations as in the proof of Theorem 2.1, and by (2.15), (2.16), we can see that

V π1 (z) = z2 − ln(z). (B.9)

satisfies (B.7). For each fixed π, V π0 can be constructed in the following way. By (2.7), there exist βπ = β ∈ C1([r, r]),
β
π

= β ∈ C1([r, r]) such that
β(r) = 0, β(r) > 0 for r > r, β is nondecreasing,

β(r) ≥ max
h=1,..,m

p(π, r + hδ,−hδ),

and
β(r) = 0, β(r) > 0 for r < r, β is nonincreasing,

β(r) ≥ max
h=1,..,m

p(π, r − hδ, hδ).

Setting

V π0 (r) :=

∫ r

r

1

β(s)
ds +

∫ r

r

1

β(s)
ds, (B.10)

we have, for k = 1, ...,m, r − kδ ∈ (r, r),

λ [V π0 (r − kδ)− V π0 (r)] q(π, r,−kδ)

= λ(π, r)

[∫ r

r−kδ

1

β(s)
ds −

∫ r

r−kδ

1

β(s)
ds

]
p(π, r,−kδ)

≤ λ
mδ

β(r − kδ)
p(π, r,−kδ)

≤ λmδ.

Analogously, for k = 1, ...,m, r + kδ ∈ (r, r),

λ [V π0 (r + kδ)− V π0 (r)] q(π, r, kδ)

= λ(π, r)

[
−
∫ r+kδ

r

1

β(s)
ds +

∫ r+kδ

r

1

β(s)
ds

]
p(π, r, kδ)

≤ λ
mδ

β(r + kδ)
p(π, r, kδ)

≤ λmδ.
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Thus (B.6) is satisfied.
We now turn to assumption (H4). The conditions on c(z) := z and g(z) ≡ 0 are clearly satisfied (note that the lower

bound of c needs not be positive). The terminal values are

ΨM = Φ,

ΨM−1 = B
(
ep(T−tM )·ϕM (0, ·, ·, ·)

)
, (B.11)

Ψi = B
(
ept1·ϕi+1(0, ·, ·, ·)

)
, for i = 0, ...,M − 2.

Taking the function l as l(s) =
√
s, the condition on the terminal value Ψi becomes

|Ψi(π, r, z)|3/2 ≤ Ci,π (1 + V π(r, z)) . (B.12)

Suppose first that tM < T . ΨM = Φ verifies the growth condition (3.4). Since

(1 + z)3/2 ≤ 4
(
1 + z2 − ln(z)

)
≤ 4 (1 + V π(r, z)) , (B.13)

ΨM satisfies (B.12) as well. Assuming inductively that Ψi+1 satisfies (B.12), by Theorem A.2, ϕi+1(·, π, ·, ·), defined in
Proposition 3.4, is the unique viscosity solution of (3.12)-(3.13) satisfying (B.12) uniformly in time. On the other hand,
by Lemma 3.3, ϕi+1(·, π, ·, ·) verifies also (3.4) uniformly in time, and hence, by (B.13), is the unique viscosity solution
of (3.12)-(3.13) verifying (3.4) uniformly in time. Moreover, by (3.13) and (3.7), Ψi satisfies (3.4) and hence, by (B.13),
(B.12) as well.
If tM = T , ΨM−1 = BΦ satisfies (B.12) by (3.7) and (B.13), and the induction starts form M − 1. �

C Numerical scheme

In this section we present a finite difference scheme to solve numerically the pricing problem of an interest rate financial
derivative under our model of Section 2. Let us remind that in recent years a great deal has been done for the numerical
approximation of viscosity solutions for second order problems. In particular, we refer the reader to the fundamental
paper by Barles and Souganidis [BS91] who first showed convergence results for a large class of numerical schemes to the
solution of fully nonlinear second order elliptic or parabolic partial differential equations. In addition we refer to [BLN04]
for the extension of their arguments to the class of numerical schemes for integro-differential equations.

Our numerical scheme is applied to the sequence of partial differential equations and their final conditions (3.12)-(3.13)
and is a modification of the scheme proposed in Zhu and Li [ZL03]. An important point is that we do not impose any
artificial condition at the boundary z = 0: This is appropriate because of assumption (2.16) and makes the scheme more
accurate.

For each interval [ti, ti+1] and for every fixed value for the inflation rate π, we compute the solution of problem (3.12)-
(3.13) by the following method. We convert the problem into an initial-value problem letting τ = t1 − t, and we compute
the approximate value of the solution at t1 − τn, τn = n∆τ , n = 0, . . . , N , rh = r + hδ, h = 1, . . . ,H − 1, zj = j∆z,
j = 0, . . . , J , where ∆τ = t1/N , ∆z = zmax/J , N , H, J , being positive integers, such that H ≥ (r − r)/δ > H − 1, and
zmax >> 0. Therefore, the numerical domain of the problem is [0, t1]× [0, zmax]. Let ψnh,j denote the approximate value
of the solution at the point (t1 − τn, rh, zj).

With r discretized as above, the non-local term in equation (3.12) reduces to a linear operator in RH−1.
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As far as the partial differential equation in (3.12) is concerned, at a point point (τn, rh, zj) with zj > 0, it can be
discretized by the following second order approximation:

ψn+1
h,j − ψnh,j

∆τ
=
ksh(b(rh)− zj)

4∆z

(
ψn+1
h,j+1 − ψ

n+1
h,j−1 + ψnh,j+1 − ψnh,j−1

)
+

1

4∆z2
zjσ

2(|rh − zj |2)
(
ψn+1
h,j+1 − 2ψn+1

h,j + ψn+1
h,j−1 + ψnh,j+1 − 2ψnh,j + ψnh,j−1

)
(C.1)

+λ

min(m,H−h−1)∑
k=−min(m,h−1)

[
ψnh+k,j − ψnh,j

]
q(π, rh, kδ)−

zj
2

(
ψn+1
h,j + ψnh,j

)
,

for any h = 1, . . . ,H − 1, j = 1, . . . J − 1, n = 0, . . . , N − 1. At the boundary z = 0, the partial differential equation in
(3.12) becomes a hyperbolic equation with respect to z, with a nonlocal term:

∂ψ

∂t
(t, r, z) = kshb(r)

∂ψ

∂z
(t, r, z) + λ

m∑
k=−m

[ψ(t, r + kδ, z)− ψ(t, r, z)] q(π, r, kδ) (C.2)

Since b(r) > 0, the value of ψ on the boundary z = 0 should be determined by the value of ψ inside the domain. Hence,
we approximate (C.2) by the following scheme:

ψn+1
h,0 − ψnh,0

∆τ
=
kshb(rh)

4∆z

(
−ψn+1

h,2 + 4ψn+1
h,1 − 3ψn+1

h,0 − ψ
n
h,2 + 4ψnh,1 − 3ψnh,0

)
+λ

min(m,H−h−1)∑
k=−min(m,h−1)

[
ψnh+k,0 − ψnh,0

]
q(π, rh, kδ), (C.3)

for any h = 1, . . . ,H − 1, n = 0, . . . , N − 1. Here ∂ψ/∂z is discretized by a one-side second order scheme so that all the
node points involved are in the computational domain. Moreover we assign the initial datum at ψ0

h,j = ψ(t1, rh, zj) =

Ψi(π, rh, zj), for any j = 0, . . . , J . At the boundary z = zmax we adopt the Neumann boundary condition ψnh,J = ψnh,J−1,
for any n = 0, . . . , N . When ψnh,j , h = 1, . . . ,H−1, j = 0, . . . , J are known from (C.1) and (C.3), we can determine ψn+1

h,j ,
for any h and j. Therefore, we can perform this procedure for n = 0, . . . , N − 1 successively and finally find ψNh,j , for any
h and j. Since truncation errors are second order everywhere, at least for a smooth enough solution it may be expected
that the global error is O(∆τ,∆z), see [MCC01] and [ZL03]. We can rewrite equations (C.1) and (C.3) throughout using
the following quantities:

νh,j =
ksh

4
(b(rh)− zj)

∆τ

∆z
, h = 1, . . . ,H − 1, j = 0, . . . J − 1, (C.4)

ξh,j =
zj
4
σ2(|rh − zj |2)

∆τ

(∆z)2
, h = 1, . . . ,H − 1, j = 1, . . . J − 1, (C.5)

ξh,0 =
3

4
kshb(rh)

∆τ

∆z
. (C.6)

ηh,j = ξh,j + νh,j , θh,j = νh,j − ξh,j , wh,j = 2ξh,j +
∆τ

2
zj + 1. (C.7)
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In addition, for every n = 0, . . . , N − 1, h = 1, . . . ,H − 1, j = 1, . . . , J − 1, we define

Qnh,j = ψnh,j + νh,j
(
ψnh,j+1 − ψnh,j−1

)
+ ξh,j

(
ψnh,j+1 − 2ψnh,j + ψnh,j−1

)
+∆τλ(π, rh)

min(m,H−h)∑
k=−min(m,h)

[
ψnh+k,j − ψnh,j

]
p(π, rh, kδ)−

zj∆τ

2
ψnh,j , (C.8)

Qnh,0 = ψnh,0 + νh,0
(
−ψnh,2 + 4ψnh,1 − 3ψnh,0

)
+

+∆τλ(π, rh)

min(m,H−h)∑
k=−min(m,h)

[
ψnh+k,0 − ψnh,0

]
p(π, rh, kδ). (C.9)

Ah=



1 + ξh,0 −4νh,0 νh,0 0 · · · 0

θh,1 wh,1 −ηh,1 0 · · · 0

0 θh,2 wh,2 −ηh,2 · · · 0
...

...
...

...
...

...
0 0 0 0 θh,J−1 (wh,J−1 − ηh,J−1)


Kn
h =


Qnh,0

Qnh,1
...

Qnh,J−1

 , (C.10)

Ah is a J × J matrix independent of ψn+1
h,. and ψnh,., whereas K

n
h ∈ RJ depends on the values of the numerical solution at

the time step n. Therefore, keeping the terms which involve ψn+1
h,j , for j = 0, . . . , J − 1, on the left-hand side of equation

(C.1), (C.3) and bringing all the other terms on the right-hand side, we easily obtain the following linear system:

Ahψ
n+1
h = Kn

h (C.11)

for the computation of the numerical solution at the time step n+ 1, given by

ψn+1
h =


ψn+1
h,0

ψn+1
h,1
...

ψn+1
h,J−1

 , (C.12)

for any h = 1, . . . ,H − 1. We observe that the coefficients in (C.7) satisfy

wh,j > |θh,j |+ |ηh,j |, for all j = 1, . . . J − 1, (C.13)

and the same holds for the coefficients in the first row of Ah. Therefore Ah is strictly diagonally dominant, implying that
Ah is invertible; moreover, since wh,j > 1, for any j = 1, . . . , J − 1, the real parts of its eigenvalues are positive (these
results follow from the well known Gershgorin’s circle theorem). Therefore system (C.11) admits a unique solution.
For each discretized value π of the observed inflation rate at time ti, the numerical procedure allows to obtain ψNh,j =

ψNh,j(π), i.e. the approximate value of ϕi(0, π, rh, zj), for each h = 1, . . . ,H − 1, j = 0, . . . , J , from the initial datum
Ψi evaluated at (π, rh′ , zj′), h′ = 1, . . . ,H − 1, j′ = 0, . . . , J . For i = M − 1, for each discretized value of π and for
each h′ = 1, . . . ,H − 1, j′ = 0, . . . , J , ΨM−1(π, rh′ , zj′) is obtained from the payoff Φ by applying a standard quadrature
method for the evaluation of the integral operator B defined in (3.6). For i < M−1, Ψi(π, rh′ , zj′) is obtained analogously
from the approximate values of ept1π

′
ϕi+1(0, π′, rh′ , zj′), where π′ ranges over all discretized values of the inflation rate

(the grid for the variable u in the integral operator B can be chosen so that γ(π, rh′ , zj′) + u corresponds to a discretized
value of the inflation rate).
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