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Abstract: Antibodies against the SARS-CoV-2 nucleocapsid protein are produced by the immune
system in response to SARS-CoV-2 infection, but most available vaccines developed to fight the
pandemic spread target the SARS-CoV-2 spike protein. The aim of this study was to improve the
detection of antibodies against the SARS-CoV-2 nucleocapsid by providing a simple and robust
method applicable to a large population. For this purpose, we developed a DELFIA immunoassay
on dried blood spots (DBSs) by converting a commercially available IVD ELISA assay. A total of
forty-seven paired plasma and dried blood spots were collected from vaccinated and/or previously
SARS-CoV-2-infected subjects. The DBS-DELFIA resulted in a wider dynamic range and higher
sensitivity for detecting antibodies against the SARS-CoV-2 nucleocapsid. Moreover, the DBS-DELFIA
showed a good total intra-assay coefficient of variability of 14.6%. Finally, a strong correlation was
found between SARS-CoV-2 nucleocapsid antibodies detected by the DBS-DELFIA and ELISA
immunoassays (r = 0.9). Therefore, the association of dried blood sampling with DELFIA technology
may provide an easier, minimally invasive, and accurate measurement of SARS-CoV-2 nucleocapsid
antibodies in previously SARS-CoV-2-infected subjects. In conclusion, these results justify further
research to develop a certified IVD DBS-DELFIA assay for detecting SARS-CoV-2 nucleocapsid
antibodies useful for diagnostics as well as for serosurveillance studies.
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1. Introduction

Today, almost three years after the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) was first identified in China, the COVID-19 pandemic continues spreading
across the world. Indeed, despite a massive vaccination campaign that has been activated
against the pandemic worldwide, new highly transmissible SARS-CoV-2 variants are con-
tinuously emerging, and it is becoming increasingly clear that they may evade neutralizing
antibodies generated by previous infection and/or vaccination and thus contribute to the
virus circulation [1–4].

SARS-CoV-2 is an enveloped, single-stranded, positive-sense RNA virus [5]. The
four main structural proteins encoded by the genome include the spike (S), membrane
(M), envelope (E), and nucleocapsid (N) proteins [6]. The S protein is a trimeric protein
comprising two subunits, namely S1 and S2. The S1 subunit mediates binding to host
cells via interactions between its receptor-binding domain (RBD) and the human receptor
angiotensin-converting enzyme 2 (ACE2), whereas the S2 subunit is responsible for mem-
brane fusion, which is required for virus entry [7]. The N protein, in which the viral genome
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is encapsulated, plays a fundamental function in viral RNA transcription, replication, and
virion assembly. Although the N protein is highly immunogenic and a major target for
antibody response [8,9], the S protein was employed to develop vaccines first. The M
and E viral structural proteins have not been investigated as vaccine targets due to their
inability to induce complete immune protection; indeed, only a significant cellular immune
response was elicited, whereas no robust humoral immunity was detected [10]. Currently,
the majority of vaccines available on the European market target the spike protein, which
is the leading immunogenic protein [11,12]. However, recently, the N protein has attracted
much attention for vaccine development because it is more conservative, more stable, and
has fewer mutations than the S protein [13–15].

In response to SARS-CoV-2 infection or vaccination, most individuals develop antibod-
ies to the N and S proteins within 1 or 2 weeks, and these antibodies can be measured as an
indicator of COVID-19 prevalence; moreover, they allow for the monitoring of seroconver-
sion in the population and are essential elements in developing strategies for SARS-CoV-2
infection prevention and control [16–18]. Plasma and sera isolated from venous blood
represent the conventional sample types used for the evaluation of SARS-CoV-2 antibody
responses. However, the collection of these samples is invasive and requires trained per-
sonnel and equipment for immediate processing. Once collected, plasma and sera must be
stored and shipped refrigerated. Therefore, dried blood spot (DBS) testing, already applied
in the fields of anti-doping, toxicology, newborn screening, and the diagnosis of infectious
diseases, has been validated for the measurement of SARS-CoV-2 IgG antibodies against
the N and S proteins [19–24].

The most commonly used method for serological tests is the enzyme-linked im-
munosorbent assay (ELISA). During the SARS-CoV-2 pandemic, several ELISA methods
were developed to determine SARS-CoV-2 antigens and antibodies, qualitatively and quan-
titatively, with great sensitivity and specificity [25–27]. However, a colorimetric ELISA
is affected by a narrow linear range for the optical density (OD), which is common to
absorbance-based measurements. For this reason, an unknown sample concentration could
fall outside the standard curve, introducing the challenge of testing multiple dilutions from
the same, potentially limited, sample.

The aim of this study was to develop a time-resolved fluorometry-based dissociation-
enhanced lanthanide fluorescence immunoassay for detecting nucleocapsid antibodies
to SARS-CoV-2 by using dried blood spots (DBS-DELFIA). The newly developed assay
was compared to a commercially available, certified in vitro diagnostic (IVD) qualitative
ELISA. The DBS-DELFIA test resulted in higher sensitivity and a wider dynamic range
compared to the ELISA test. These results justify further research to develop a certified
IVD for SARS-CoV-2 IgG anti-N detection by DBS-DELFIA technology.

2. Materials and Methods
2.1. Study Subjects

Forty-seven subjects were enrolled in this study. Sex, age, vaccination doses, and
SARS-CoV-2 infection history are reported in Table S1. The study was conducted at the
Center for Studies and Advanced Technologies (CAST), “G. D’Annunzio” of Chieti-Pescara,
Italy, in accordance with the Declaration of Helsinki and the approval no. 16 of 1 July
2021 of the Ethics Committee of “G. D’Annunzio” University of Chieti-Pescara. Written
informed consent forms were obtained from all the enrolled subjects.

2.2. Plasma and Dried Blood Spots Collection

Whole blood was collected via venipuncture in Vacumed sodium citrate tubes (3.2%,
FL MEDICAL s.r.l., Padova, Italy) to prevent coagulation, and processed within 6 h of
collection. DBS samples were prepared from venous whole blood by transferring approxi-
mately 40 µL of blood to each circle of a filter paper card. Cards were then air-dried for
at least two hours, placed into bags with a desiccant dehumidifier, and stored at −20 ◦C.
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The remaining whole blood was centrifuged at 3000 rpm for 12 min. Plasma aliquots were
taken and transferred into sterile microtubes and stored at −80 ◦C until analysis.

2.3. SARS-CoV-2 Nucleocapsid IgG ELISA

SARS-CoV-2 NP IgG ELISA kit [CE-IVD] (ImmunoDiagnostics, Hong Kong, China)
was used following manufacturer’s recommendations. Briefly, 50 µL of negative control,
100 µL of the test sample (diluted plasma 1:100), and 100 µL of Assay Buffer (Immun-
oDiagnostics) as blank were added onto the antigen-coated plate in duplicate, as the test
recommended. Subsequently, the plate was incubated at room temperature (RT) for 1 h.
Then, each well was manually washed 3 times with Wash Buffer (ImmunoDiagnostics)
included in the kit. Next, 100 µL of Detection Solution (ImmunoDiagnostics) was added
to each well and incubated for 1 h at RT. Then, after the wash step, 100 µL of Substrate
Solution (ImmunoDiagnostics) was added to each well and incubated for 15 min at RT,
protected from light. Finally, we added 100 µL of Stop Solution (ImmunoDiagnostics) to
each well, and, after 10 min, absorbance was measured at 450 nm by Victor Nivo microplate
reader (PerkinElmer, Turku, Finland).

2.4. Conversion from SARS-CoV-2 Nucleocapsid IgG ELISA to SARS-CoV-2 Nucleocapsid IgG
DBS-DELFIA

The antigen-coated plate from SARS-CoV-2 NP IgG ELISA kit (ImmunoDiagnostics)
was used. DBS disks were punched out into 3.2 mm disks by using the PerkinElmer DBS
Puncher, while plasma samples were diluted 1:100 with DELFIA Assay Buffer (PerkinElmer).
Next, DBS disks were extracted with 100 µL DELFIA Assay Buffer directly onto the antigen-
coated plate, whereas 100 µL of diluted plasma was transferred to the plate, and both DBS
disks and plasma samples were incubated for 2 h at RT on a plate shaker set at 300 rpm.
Then, after removing DBS disks and plasma samples, each well was manually washed 4
times with DELFIA Wash Solution (PerkinElmer). Next, 100 µL (200 ng/mL) of DELFIA
Eu-labeled Anti-human IgG antibody (PerkinElmer) was added to each well and incubated
for 1 h at RT on a plate shaker set at 300 rpm. Subsequently, each well was washed 6
times with DELFIA Wash Solution. Finally, 200 µL of DELFIA Enhancement Solution
(PerkinElmer) was added, and the plate was read after 10 min of incubation time by Victor
Nivo microplate reader using fluorescence (TRF) settings.

2.5. Linearity, Precision Study, and Statistical Analysis

To test the linearity of both ELISA and DBS-DELFIA immunoassays, a SARS-CoV-2
anti-N IgG positive sample was diluted sequentially 12 times with a seronegative plasma
and tested in duplicate. Dilution percentages are listed in Table S2. Data for linearity and
intra-assay precision were collected by the same operator. All statistical analyses were
carried out using GraphPad Prism 9.0.2 software (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Conversion from ELISA to DBS-DELFIA Immunoassay for SARS-CoV-2 Nucleocapsid
Antibody Detection

The study population included fifteen subjects who had never tested positive for
SARS-CoV-2 infection, thirty-two subjects who reported a positive nasopharyngeal swab
(NPS) test, and forty-three individuals who had completed the vaccination schedule. The
age of the subjects ranged from 25 to 60 (mean = 35.6), and 70% were female (Table S1).
Firstly, we conducted an experiment to set up the method for converting ELISA into
DBS-DELFIA by using paired plasma samples and dried blood spots from two subjects,
one negative and one positive for SARS-CoV-2 infection. The cut-off value used by the
qualitative SARS-CoV-2 nucleocapsid antibody ELISA kit was 0.2 OD. We analyzed, in
parallel and in duplicate, the plasma diluted 100 times both by ELISA and by DELFIA,
and the paired DBSs by DELFIA following the manufactures’ instructions (Supplementary
Table S3). The positive subject, with 2.47 ± 0.06 OD, had almost comparable values for
plasma DELFIA and DBS-DELFIA (510,238 ± 11,641.8 TRF and 496,748 ± 96,228.75 TRF,
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respectively). On the other hand, the negative subject showed different values between
plasma DELFIA and DBS-DELFIA (24,067.5 ± 678.11 TRF and 93,547.5 ± 12,087.99 TRF).
For this reason, we attempted to improve the DBS-DELFIA protocol using the commercially
available ELISA-to-DELFIA conversion kit protocol distributed by PerkinElmer, which is
fully described in the Section 2.

3.2. DBS-DELFIA Method Linearity and Performance Assessment

To prove the linearity of the method for quantifying IgG anti-N, we performed sequen-
tial dilutions using two blood samples, one that tested negative (dilution percentage 0, 0.07
OD) and one that tested positive (dilution percentage 100, 3.33 OD) for anti-SARS-CoV-2
nucleocapsid antibodies by the ELISA method. We analyzed 12 paired dilutions by both
ELISA and the new DBS-DELFIA method, using different sample matrices (plasma or DBS)
(Table S2). The DELFIA method had a wider dynamic range than conventional ELISA
(Figure 1). While the linear range of DELFIA covered dilution percentages up to 100 with an
R2 equal to 0.97, the ELISA method only showed linearity below the 40-dilution percentage
(R2 = 0.97).
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Figure 1. DBS-DELFIA vs. ELISA dilutions linearity range. (A) DBS-DELFIA dilutions results are
expressed as TRF, whereas ELISA results are expressed as OD values. (B) Magnification of rectangular
black dashed section highlighting ELISA linearity range. Red dashed line expressed ELISA cut-off
value (0.2 OD).

Next, we examined the cut-off value referred to in the ELISA kit and noted that
for 1:100 (0.191 ± 0.03 OD) and 2:100 (0.241 ± 0.03 OD) dilutions, the test resulted in
negative and positive results, respectively. However, the paired samples analyzed by
DBS-DELFIA measured 30,351 ± 4912 TRF and 53,652 ± 17,674 TRF, showing a higher
sensitivity potential. In order to evaluate intra-assay precision, we evaluated the coefficient
of variability in percentage (CV%) of both obtained curves. We obtained 7% and 15.2 CV%
for ELISA and DBS-DELFIA, respectively. Finally, we calculated the Limit of Detection
(LOD) and Limit of Quantification (LOQ) for both methods by using blank sample replicates
(n = 8), obtaining 0.09 and 0.18 values, respectively, for the ELISA immunoassay, and 2797
and 3787 values for the DBS-DELFIA one.

3.3. Evaluation of SARS-CoV-2 IgG Anti-N Detection by ELISA vs. DBS-DELFIA Immunoassay

All paired plasma samples and dried blood spots were collected and analyzed by both
ELISA and DBS-DELFIA immunoassays for the detection of SARS-CoV-2 nucleocapsid
antibodies (Table S4). A significant positive correlation (r = 0.9, p < 0.0001) between IgG
anti-N measured on DBS and plasma with DELFIA and ELISA immunoassays, respectively,
was observed (Figure 2).
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Figure 2. Correlation between DBS-DELFIA and plasma ELISA for SARS-CoV-2 nucleocapsid IgG
antibody detection.

Fifteen subjects had never tested positive for SARS-CoV-2 infection using NPS. At
the same time, thirty-two subjects tested positive at different times after being tested for
SARS-CoV-2 nucleocapsid antibodies. All subjects without SARS-CoV-2 infection tested
negative on the ELISA test (OD < 0.2). Overall, these subjects presented a mean TRF
below 2.0 × 104. Despite significant differences in IgG anti-N levels evaluated by both
ELISA and DBS-DELFIA between subjects who were negative or positive for SARS-CoV-2
infection (Figure 3A,C), the receiver operator characteristic (ROC) curve analysis revealed
higher sensitivity (87.5%, AUC: 0.91, p < 0.0001) for the DBS-DELFIA assay compared
to ELISA (71.88%, AUC: 0.92, p < 0.0001) while the specificity was 100% for both assays
(Figure 3B,D). Moreover, the ROC analysis showed that 87.5% sensitivity was achieved
above 20,120 TRF; therefore, we set the cut-off value for the DBS-DELFIA assay at 2.0 × 104

(Figure 3C). Five samples (PZ 24, 25, 32, 44, and 47) tested negative when analyzed with
ELISA but appeared above the assessed cut-off value when analyzed with the DBS-DELFIA
method. By calculating the percentage difference between the cut-off value and LOQ for
both evaluated methods, we observed that the ELISA test’s positivity limit was 2% higher
than the LOQ, while the DBS-DELFIA positivity limit was more than 80% higher than its
relative LOQ.
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Figure 3. ELISA vs. DBS-DELFIA performance analysis. (A,C) Scatter plots and (B,D) receiver
operating characteristic (ROC) curves for SARS-CoV-2 nucleocapsid antibody detection by ELISA
and DBS-DELFIA, respectively. IgG anti-N concentration in each subject. The plots show mean ±
standard deviation. ROC curves indicate the area under the curve (AUC). **** p < 0.0001.
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4. Discussion

With thousands of new cases daily, the ongoing scenario indicates that the SARS-CoV-2
pandemic will continue to evolve [28]. Indeed, as SARS-CoV-2 continues to spread in hu-
man populations with fewer susceptible hosts, the risk of selecting more infectious variants
or antibody-evasive mutations is expected to increase. Even to avoid undiagnosed cases of
SARS-CoV-2 infection in emergencies [29], viral tests are used for the assessment of current
infection with SARS-CoV-2 by testing respiratory tract specimens (throat swabs, sputum,
nasopharyngeal swabs, nasal swabs, and bronchoalveolar lavage fluid). There are two main
types of viral tests: nucleic acid amplification tests (NAATs, such as reverse transcription
polymerase chain reaction) and antigen tests [30]. However, the collection of samples from
the respiratory tract is relatively complicated and causes significant discomfort to subjects.
Moreover, the costs of NAATs continue to remain high. Therefore, growing interest has
been placed in developing serological tests for the detection of anti-SARS-CoV-2 antibodies
to help identify people who have been infected with SARS-CoV-2, have recovered from
COVID-19, or have been vaccinated [31,32]. Notably, DBS specimens have been seen to be
reliably used as an alternative to serum samples for SARS-CoV-2 antibody measurement, fa-
cilitating serosurveillance efforts [33,34]. We have already validated the GSP®®/DELFIA®®

Anti-SARS-CoV-2 IgG Kit for measuring anti-S1 antibodies by using DBS, demonstrating
the feasibility of such serological tests for high-throughput serosurveillance [35]. However,
to ascertain whether a recent SARS-CoV-2 infection occurred among subjects who have
previously been vaccinated for the prevention of COVID-19, high-sensitivity immunoas-
says for SARS-CoV-2 anti-nucleocapsid antibodies are required. Notably, there is evidence
of longer durability of anti-spike antibodies after vaccination with the mRNA vaccine in
subjects with previous infection, and the risk of new SARS-CoV-2 infection appears to be
higher in previously uninfected individuals [36,37]. This is why knowing the SARS-CoV-2
nucleocapsid antibody profile is extremely important.

For this purpose, we established a dissociation-enhanced lanthanide fluorescence
(DELFIA) immunoassay for the evaluation of SARS-CoV-2 anti-nucleocapsid IgG antibody
status by analyzing dried blood spots (DBS-DELFIA). We converted a commercially avail-
able CE-IVD SARS-CoV-2 nucleocapsid protein IgG ELISA kit validated with serum or
plasma samples into the DBS-DELFIA. Our results confirm a wider dynamic range and
higher sensitivity of the DBS-DELFIA compared to the ELISA immunoassay in recogniz-
ing IgG anti-N against SARS-CoV-2, revealing lower amounts of antibodies even when
several days have passed since the previous infection. Moreover, the total intra-assay
coefficient of variability of the DBS-DELFIA was 14.6%, indicating good assay precision.
Finally, a strong correlation between SARS-CoV-2 nucleocapsid antibodies detected by the
DBS-DELFIA and ELISA immunoassays was found (r = 0.9). Therefore, the association
of dried blood sampling with DELFIA technology, in addition to a simple, non-invasive
approach and little time-consuming sample preparation, may provide a more sensitive
and accurate measurement of SARS-CoV-2 nucleocapsid antibodies than tests currently
available, particularly for low detectable or higher quantizable antibody levels among
SARS-CoV-2-infected subjects, with the further potential of being fully automated [35].

5. Conclusions

In summary, we developed a new serological immunoassay specifically for the detec-
tion of SARS-CoV-2 nucleocapsid antibodies employing DELFIA technology. The assay
showed increased sensitivity and appears to be particularly suitable for high-throughput
serosurveillance studies, thus justifying further research aimed at developing a certified
IVD DBS-DELFIA assay for detecting SARS-CoV-2 nucleocapsid antibodies.
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