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Abstract: Event-related optical signals (EROS) measure fast modulations in the brain’s optical
properties related to neuronal activity. EROS offer a high spatial and temporal resolution and can
be used for brain–computer interface (BCI) applications. However, the ability to classify single-
trial EROS remains unexplored. This study evaluates the performance of neural network methods
for single-trial classification of motor response-related EROS. EROS activity was obtained from a
high-density recording montage covering the motor cortex during a two-choice reaction time task
involving responses with the left or right hand. This study utilized a convolutional neural network
(CNN) approach to extract spatiotemporal features from EROS data and perform classification of
left and right motor responses. Subject-specific classifiers trained on EROS phase data outperformed
those trained on intensity data, reaching an average single-trial classification accuracy of around
63%. Removing low-frequency noise from intensity data is critical for achieving discriminative
classification results with this measure. Our results indicate that deep learning with high-spatial-
resolution signals, such as EROS, can be successfully applied to single-trial classifications.

Keywords: fast optical signals (FOS); event-related optical signals (EROS); brain–computer interface
(BCI); machine learning (ML); deep learning

1. Introduction

Brain–computer interface (BCI) refers to methods that enable direct communication
between the brain and a computer system without reliance on other effectors (e.g., muscles).
These systems typically employ sensors that measure brain activity, which is then processed
through a classification system enabling one to infer the intention of the human involved
with some degree of confidence. Ideally, BCIs should transmit information rapidly, com-
monly measured in bits per minute (b/m). Human speech, in comparison, is transmitted at
approximately 2400 b/m across various languages [1].

Besides high information transmission rates, practical sensor systems for BCI applica-
tions should also be non-invasive, inexpensive, and portable. It is not surprising, therefore,
that most of the current BCI research and developments exploit measurements of the scalp
electroencephalographic (EEG) activity. However, EEG-based BCIs have limited speed,
largely arising from the challenge of distinguishing among more than a handful of brain
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states at any moment due to the low spatial resolution of electrical signals measured at
the scalp.

Gratton et al. [2] pursued an alternative approach called Event-Related Optical Signal
(EROS) to study brain activity. EROS measures changes in near-infrared light scattering
associated with neuronal depolarization and hyperpolarization. These changes, if occurring
in superficial areas of the cortex, can be measured from the surface of the head using devices
similar to those used for functional near-infrared spectroscopy (fNIRS). This measurement
takes the form of changes in the amount of light reaching a detector (“intensity”) or
changes in the photons’ time-of-flight (“phase delay” when measured by frequency-domain
optical systems). EROS signals possess high spatial resolution (of the order of 1 cm or
less) and temporal resolution (of the order of 100 ms or less) [3]. Such a combination of
spatial and temporal resolutions offers the potential for the non-invasive measurement
of dozens of signals from the human brain in parallel every 100 ms, yielding theoretical
information transmission rates of thousands of b/m. However, a significant problem is that
EROS has a low signal-to-noise ratio (SNR) [4]. Therefore, practically all reports of brain
activity measured with EROS until now have been based on averages across multiple trials
(≥15) [5–7]. Relying on averaging across trials to improve reliability would correspondingly
slow down the communication transmission rate of a hypothetical EROS-based BCI. It
should be noted, though, that averaging is a naive procedure for increasing SNR; other
more sophisticated methods might be more efficient.

This study aims to classify individual trials based on EROS measures of brain activity.
A data set from a previously published study in which participants responded to stimuli
using either their left or right hand was used [8]. EROS data were recorded from four
different, but overlapping, montages covering large portions of the scalp, including regions
over the left and right motor areas. The current study focused on brain activity immediately
preceding and following each motor response to determine whether the EROS measures
collected during this interval could accurately predict whether the participant would
produce a right or left-hand response on a given trial.

To enhance discrimination between response types, this study applied machine learn-
ing techniques. Machine learning algorithms have revolutionized data analysis across
various scientific disciplines, enabling pattern recognition from historical data for classi-
fication, regression, and clustering tasks. However, classical machine learning methods,
such as support vector machines (SVMs), random forests (RFs), decision trees (DTs), and k-
nearest neighbors (k-NN), typically require manual feature extraction and selection. These
methods rely heavily on domain expertise and/or a priori knowledge about the data of
interest to pre-process data and extract relevant features. These features are then used as
input to train the machine learning model.

In contrast, deep learning, a subset of machine learning, has gained prominence for its
ability to learn features from raw data without any a priori feature selection. For example, it
has demonstrated success in the domains of medical image analysis [9,10], physiological
time series [11], electronic health records (EHR) [12,13], and wearable sensors [14–16].
Recent advances in deep learning for BCI applications have reduced reliance on manual
feature extraction. While many BCI systems still use handcrafted features [17–19], deep
learning offers significant advantages. Manual identification of relevant features across
populations may not generalize to individual subjects, potentially excluding relevant
subject-specific features. Additionally, extracting handcrafted features tailored to each
subject is not a scalable process.

Deep learning with convolutional neural networks (CNNs) has shown exceptional
performance in image and signal processing tasks due to their ability to optimize and
apply filters, or convolutional kernels, through automated learning. Combined with their
hierarchical structure, this automatic feature learning capability enables CNNs to efficiently
capture spatial and temporal dependencies in natural signals, often outperforming classical
machine learning methods in complex data scenarios. However, these models require
a large amount of training data to learn such correlations, involve a large number of
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tunable hyperparameters (e.g., filter kernel size, optimization step size), and are challenging
to interpret.

Despite these challenges, CNNs demonstrate high adaptability across various applica-
tions. While CNNs have been widely investigated for natural image processing tasks [20,21],
their usage in BCI applications is relatively nascent. Therefore, the potential usage of CNNs
for processing spatiotemporal signals such as EEG and EROS warrants domain-specific
consideration and a rigorous understanding of designing and training such models. Much
of recent work has focused on EEG-based BCI, yielding studies exploring the application
of CNNs to various BCI applications, including motor imagery classification [22–27], detec-
tion of visual-evoked responses [28–31], and epilepsy prediction and monitoring [32–36].
Notably, a paradigm-agnostic CNN utilizing depthwise separable convolutional layers
has shown robust performance across diverse EEG-based BCI tasks [37]. This approach is
grounded in well-known EEG feature extraction concepts, such as optimal spatial filtering
and filter-bank construction. In addition, depthwise and separable convolutions enhance
parameter efficiency compared to standard convolutions, enabling the model to perform
well under limited data settings [38–40]. Additionally, this CNN architecture generates
a spatiotemporal summary of the input signal, facilitating the post hoc identification of
discriminative signal portions that contribute to the model’s classification.

Traditionally, EEG has been the primary modality for BCI systems, with research
applying classical and deep learning techniques to classify EEG data. Although EROS offers
high spatial and temporal resolutions, most prior works relied on averages across multiple
trials to address EROS’ low SNR. Furthermore, the literature remains divided on whether
intensity or phase delay measurements are more effective for EROS classification [7,41].
Additionally, the investigation of machine learning approaches to EROS has been limited
to classical machine learning classifiers coupled with domain-specific features [7,41]. For
instance, Proulx et al. [7] utilized SVM and Linear Discriminant Analysis (LDA) with EROS
(intensity and phase delay), achieving a 63.6% classification accuracy using multi-trial (≥15)
averaging in a visual oddball task. Another study employed SVM for single-trial analysis
of EROS, reporting a 63.0% accuracy for retinotopy classification [41].

To date, the potential of deep learning for enhancing single-trial EROS classification
remains unexplored. This study addresses this gap by leveraging CNNs to automatically
extract complex spatial and temporal relationships from single-trial EROS data in a limited
subject-specific data regime.

In summary, this study investigated the feasibility of using a convolutional neural
network (CNN) architecture to distinguish single-trial event-related optical signal (EROS)
activity associated with different behavioral outputs. Additionally, it aimed to determine
whether EROS measures obtained via intensity or phase delay offer better discrimination.
This distinction is crucial for future instrument design, as phase delay measures necessitate
a more complex frequency-domain (FD) recording system, while intensity measures can
be achieved with a simpler continuous-wave (CW) recording system. Finally, this study
explores different CNN training paradigms to examine the effectiveness of using subject-
specific data from multiple recording montages.

Contributions:

• Conducting a subject-specific evaluation of CNNs for single-trial classification of
EROS data.

• Comparing the discriminative potential of phase versus intensity data.
• Exploring various subject-specific model training paradigms using data from multiple

recording montages.
• Analyzing the impact of data quality on classification performance.
• Performing a post hoc investigation of relevant time intervals and spatial locations

contributing to the model’s predictions.

The paper is organized as follows: Section 2 introduces the related literature on
machine learning for BCI systems. Section 3 discusses the details of data collection,
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signal pre-processing, and machine learning methodology. Section 4 presents the re-
sults, compares them with existing work, and interprets learned neural network features.
Section 5 discusses the results in the context of brain–computer interface (BCI) systems, and
Section 6 summarizes the conclusions of the work.

2. Related Work

Table 1 presents a summary of related works employing classical machine learning
and deep learning algorithms for EEG- and EROS-based BCI applications.

Table 1. Summary of related works using machine learning algorithms for electroencephalography
(EEG)- and event-related optical signal (EROS)-based brain–computer interface (BCI) applications.
Abbreviations are summarized at the end of the main text.

Author BCI Application ML Algorithm(s) Data Limitation

[17] Motor imagery LDA, RFD, SVM EEG Spectral density features limit applicability in
online settings

[18] Motor imagery,
finger movement

LDA, QDA, KFD,
SVM, MLP, LVQ,
k-NN, DT

EEG Reliance on task-specific feature extraction

[19] Motor imagery LDA, NDA, SVM EEG Reliance on task-specific feature extraction and
selection

[22] Motor imagery CNN, SAE EEG Domain expertise required for frequency- band
pre-processing, large trainable parameter count

[23] Motor imagery CNN EEG
Feature extraction independently considered
from classification algorithm, separate spatial
filter for each pairwise combination of classes

[24] Motor imagery CNN EEG
Discretized frequency subbands limit method’s
capacity to identify trends across larger
frequency ranges

[25] Motor imagery CNN EEG Large trainable parameter count

[26]
Motor imagery,
hand and foot
movement

CNN EEG Minimal performance gains over baselines in
limited data regime

[37]
Various ERP-
and oscillatory-
based tasks

CNN EEG Subject-specific hyperparameter and
architecture selection has yet to be explored

[5] Object
recognition ICA EROS Event-related averaging across a large number

of trials

[6] Go-NoGo ICA EROS,
EEG

Event-related averaging across a large number
of trials

[7] Visual oddball
classification LDA, SVM EROS

Event-related averaging across a large number
of trials, domain expertise required for feature
extraction

[41] Retinotopy
classification SVM EROS Domain expertise required for frequency-based

feature extraction
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2.1. Machine Learning Classification Algorithms for EEG

Machine learning techniques have been applied to the classification of EEG signals,
often relying on fixed feature extraction methods to compare the performance of different
classifiers. For motor imagery (MI) classification, band power features derived from spectral
signal representations are commonly used.

In their study, Herman et al. [17] performed a comparative analysis of various methods
for quantifying the frequency content of EEG recordings within an MI framework. They
evaluated four feature extraction approaches: spectral estimation, atomic decompositions,
quadratic time–frequency distributions, and wavelet-based techniques. Their findings
indicated that discriminative frequency bands and optimal feature extraction methods
vary among subjects, highlighting the potential advantage of automated end-to-end fea-
ture learning. Nonetheless, across all participants, power spectral density (PSD) methods
proved more robust for extracting MI-related EEG spectral patterns. Furthermore, the study
showed that linear methods, such as linear discriminant analysis (LDA) and regularized
Fisher discriminant (RFD), offered better intersession generalizability in offline settings.
While the applicability of spectral methods to continuous classification in online experi-
ments remains unexplored, the authors suggest using a moving window method for future
EEG activity analysis.

Other studies have focused on extensive comparisons of classification methods along-
side task-specific EEG feature extraction. Wang et al. [18] examined the classification
accuracy of LDA, quadratic discriminant analysis (QDA), kernel Fisher discriminant (KFD),
support vector machine (SVM), multilayer perceptron (MLP), learning vector quantization
(LVQ) neural network, k-nearest neighbor (k-NN), and decision tree (DT) across two differ-
ent EEG datasets. They found that all methods achieved satisfactory accuracy (>70%) and
emphasized the importance of regularization and dimensionality reduction for nonlinear
methods. This study highlights the impact of feature extraction on the optimal classification
algorithm and advocates for an end-to-end approach to feature extraction and classification.
It also points out that extracting features for motor imagery and execution tasks requires
significant domain-specific knowledge.

Similarly, Zhang et al. [19] compared various LDA variants, including their proposed
Z-score LDA method, using the common spatial pattern (CSP) algorithm to select optimal
spatial filters for EEG signal transformation and feature extraction.

2.2. Convolutional Neural Networks for EEG

Offline-based feature extraction methods focus on static energy features, often over-
looking the discriminative temporal information within the signal recording. Conversely,
CNNs excel at learning these temporal features from raw or pre-processed recordings by
applying convolutional kernels along the time dimension.

Several studies have employed techniques that transform the EEG signal into an
image representation before applying the CNN. For instance, Tabar and Halici [22] utilized
a short-time Fourier transform (STFT) on 2-s segments (500 samples) to convert each
EEG channel into a 2D image (x-axis: time, y-axis: frequency), aggregating along the
channel dimension to form a 3D tensor. This approach ignores precise spatial information,
though a 4D input tensor could incorporate 2D spatial locations. Similarly, Olivas-Padilla
and Chacon-Murguia [23] proposed an algorithm that uses CSP to select discriminative
frequency bands using an SVM. This method transforms the raw EEG signal in 2-s intervals
with the chosen spatial filter but requires separate spatial filters for each pairwise class
combination, reducing scalability for large multi-class problems. Miao et al. [24] leveraged
domain expertise to determine the time intervals and frequency ranges for processing,
decomposing the EEG signal into ten discrete subbands, which might limit the ability to
identify trends across broader, continuous frequency ranges.

Other studies have bypassed extensive domain-specific pre-processing, opting for end-
to-end feature learning by applying CNNs directly to raw EEG signals. Zhang et al. [25]
introduced a novel EEG-inception architecture that uses multiple inception and residual
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modules, inspired by computer vision, to classify subject-specific motor imagery EEG (MI-
EEG) with minimal pre-processing. They also conducted an ablation study on the effects of
data augmentation and neural network depth on classification performance, demonstrating
comparable performance with a lower standard deviation than state-of-the-art methods.

Similarly, Schirrmeister et al. [26] compared CNN architectures against the filter bank
common spatial patterns (FBCSPs) baseline for motor decoding from EEG recordings,
showing comparable performance. They detailed deep learning techniques that enhance
CNN performance for EEG-based BCIs with minimal pre-processing, including regulariza-
tion schemes and data augmentation, and provided insights into using pre-trained model
weights to address dataset size limitations. Unlike the architecture from Schirrmeister
et al. [26], which relies on data augmentation for training a large parameter count CNN,
Lawhern et al. [37] proposed a parameter-efficient depthwise separable CNN that performs
well across multiple BCI tasks and surpasses previous methods in limited data settings.
They compared their model’s performance against the best traditional models for each BCI
paradigm, evaluated both within-subject and cross-subject classification, and investigated
CNN feature explainability.

2.3. EROS-Based BCI

EROS offers high spatial and temporal resolution, making it suitable for detecting
localized brain activity. However, noninvasive recording of event-related optical signals is
a challenging task due to the low SNR. Although independent component analysis (ICA)
has been utilized to mitigate noise and global interference in event-related fast optical
signals, the application of machine learning techniques for EROS-based BCIs remains
under-explored.

Traditionally, researchers have relied on event-related averaging across multiple trials
to enhance SNR [5,6]. For instance, Medvedev et al. [6] demonstrated a significant cor-
relation between independent components of pre-processed single-trial EROS and EEG
recordings by simultaneously capturing brain activity with both modalities. More recently,
Proulx et al. [7] investigated EROS for BCI applications, focusing on classification relia-
bility during a visual oddball task. They employed fifteen-trial averages and classifiers
such as SVM and LDA, achieving an average balanced accuracy of approximately 62–63%.
Additionally, Perpetuini et al. [41] used a frequency-domain optical system and SVM to
classify visual-field quadrant stimulation, obtaining an above-chance classification accuracy
with the highest accuracy of ≈63% using DC light intensity. Despite these advances, the
effectiveness of intensity versus phase delay measurements for EROS classification remains
debated [7,41].

3. Materials and Methods

The methods and data used in this study were derived from a prior study [8] and
were tailored to the particular objectives of the deep learning approach utilized for the
single-trial detection and classification of event-related optical signals for a BCI. Read-
ers are encouraged to consult the methods section of that manuscript for further de-
tails. The analyses included in this manuscript are entirely novel, and none has been
previously published.

3.1. Participants

Data from 12 right-handed, healthy individuals (7 Female, 5 Male; mean age: 22 years,
range: 18–28 years) were included to develop the deep learning models. All participants
were native English speakers, with normal hearing, normal to corrected-to-normal vision,
and normal speech. All participants provided written informed consent, and the study was
approved by the University of Illinois at Urbana-Champaign and conducted accordingly
with the ethical standards of the Helsinki Declaration.
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3.2. Behavioral Task

A detailed description of the entire experimental procedure can be found in Baniqued
et al. [8]. Each trial began with a bimodal auditory–visual cue “V” or “H” presented
simultaneously on a computer monitor and via speakers for 400 msec. The letter “H”
precue indicated a manual (hand) response using the left or right hand. The letter “V”
precue indicated a vocal response to be made through a voice key by saying the word
“left” or “right”, but these trials were not included in the development of the deep learning
model and will not be discussed further. The precue was followed by the reaction stimulus
(2000 ms later). The reaction stimulus (duration 400 ms) was either an “L” or “R” presented
on the screen or via speakers, each indicating a “left” or “right” response, respectively.
Participants responded with a key press using either their left or right index finger. Par-
ticipants completed 20 blocks of 24 trials during each recording montage, with half of the
trials in each block requiring manual responses (“H” precues). This resulted in a maximum
of 240 trials used to train the classifier for each montage.

3.3. Optical Imaging Recording

Each participant’s optical data were recorded using two independent Imagent fre-
quency domain oximeters (ISS, Inc.; Champaign, IL, USA). Laser diodes emitted near-
infrared light (830 nm) modulated at 110 MHz over frontal and central brain regions and
300 MHz for parietal and occipital regions. Prior research showed that these two modu-
lation frequencies yield relatively similar EROS responses when the phase delay data are
transformed into picoseconds [42]. To avoid cross-talk between the two systems, sources
from one system were never closer than 6 cm from any detector on the other system. To
achieve this, recordings were obtained from frontal and parietal regions in one set of runs,
and from central and occipital regions in another set. The order of these runs was counter-
balanced across participants. Optic fibers 400 µm core in diameter were used to channel
the light onto the scalp surface, and 3 mm fiber-optic bundles connected to photomultiplier
tubes detected the output light. Fast Fourier transforms were applied to the output current
to compute measures of DC (average) intensity, AC (amplitude), and relative phase delay
(in picoseconds). The optical data were continuously recorded over each block and sampled
at 39.0625 Hz.

Sources and detector fibers were secured on the participants’ heads using modified
motorcycle helmets. Four recording montages were used to cover the majority of the
cortex. Each montage was recorded separately, and the order was counterbalanced across
participants. Each montage consisted of 16 detectors coupled with 16 time-multiplexed
sources for 256 total channels per montage. Figure 1A provides a streamlined visualization
illustrating the use of four montages to record trials for a single participant.

The locations of each source and detector in relation to the nasion and fiducial preauric-
ular points were digitized using a Polhemus “3Space” 3-D digitizer (Figure 2). Volumetric
T1-weighted (MPRAGE) MR images were acquired for each participant with vitamin E pills
positioned on the nasion and preauricular points. The fiducial markers permitted the coreg-
istration of each participant’s digitized optical channels with the corresponding anatomical
images. The data were submitted to scalp surface-fitting using a Levenberg–Marquardt
algorithm (least-squares fit) and standard Talairach transformation [43].
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Optical imaging recording

Trials 1-42 Trials 43-87

A B

Trials 88-128

C

Trials 129-174

D

time

Subject 1

Montage A Montage B Montage C Montage D

(i) Montage-specific classification

A

A

B

B

C

C

D

D

Model selection

C

Best-montage
classifier

(ii) Cross-montage classification

(iii) Montage-specific classification w/ pre-training

C

A B C D

Model selection

C

Pre-trained best-montage
classifier

A B D

A

B

D

ABD

Pre-training phase

Fine-tuning phase

AA

A

B C D

B

C

D

ABCD

Cross-montage
classifier

A

B

Figure 1. Overview of (A) optical imaging recording and (B) model training paradigms. Single
trials obtained by the same recording montage are color-coded. Training datasets are depicted as
cylinders, labeled with the recording montage used for data collection. Convolutional neural network
(CNN) models are represented as trapezoids, labeled with the montage data used for model training.
In (i) montage-specific classification, a separate model is trained for each montage, and the best-
performing model, determined by validation accuracy, is used to evaluate the subject’s held-out test
performance. (ii) Cross-montage classification involves training a single model on a concatenated
dataset of trials from all montages. (iii) Montage-specific classification with pre-training involves
training a model on data from all montages except the montage of interest, followed by fine-tuning
the pre-trained model with data from the montage of interest. A star on the trapezoid indicates the
use of pre-trained weights.
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Figure 2. Event-related optical signal (EROS) recording montage with source (red) and detector
(yellow) locations. Reprinted from Baniqued et al. [8]. ©2013 MIT. All rights reserved.

3.4. Fast Optical Signal Pre-Processing

Phase data were corrected for phase wrapping and pulse artifacts [44], adjusted to a
mean of zero for each block, and band-pass-filtered between 0.1 and 12 Hz. The data from
correct trials were segmented into epochs, time-locked to the onset of the response, using
only the manual left/right responses. Channel and baseline correction were applied using
a 998 ms period preceding the participant response. Finally, the baseline-corrected data
were cropped to 716 ms before and after the response.

Only channels with source–detector distances between 2 and 7 cm, a phase standard
deviation of less than 200, and a mean raw AC value over 100 mV were included in the
analysis [45]. In-house software “Opt-3d” [46] was used to combine data from channels,
creating a 2D axial projection of the 3D voxel space. This was based on the estimation of
the diffusion paths for each channel from their source and detector locations and a model
of how light diffuses through the head. Single-trial phase and DC data from voxels in a
6 by 7 cm region-of-interest (ROI) centered around the motor cortex of each hemisphere
(Figure 3) were used as input to train the deep learning model for left and right-hand
responses. This was performed separately for each of the four montage layouts. The spatial
dimension was flattened, generating a 2D input matrix of 42 voxels by 56 time points.
Statistics (number of trials, viable voxels, and channels per voxel for each subject) for these
four montages, indexed by A-D, are summarized in Table 2. Due to the channel inclusion
criteria, some subjects have missing data for certain montages. Signals from each voxel
were scaled by the maximum absolute value across all voxels and over the time series
before input into the model.

Figure 3. The 6 by 7 cm region-of-interest (ROI) voxel grids (green) for the left and right hemispheres.
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Table 2. Left: Total number of correct trials recorded for each subject and montage. Center: The
number of voxels (out of 98) containing a non-zero number of channels. Right: The number of
channels per voxel averaged over all non-zero voxels. Entries corresponding to subjects without
specific montage recordings are left blank.

Subject ID Total Number of Trials Viable Voxel Count Channels Per Voxel
A B C D A B C D A B C D

1 208 219 196 222 78 77 79 70 3.9 4.5 5.3 3.4
2 225 218 222 211 83 80 75 72 4.0 4.6 4.4 4.6
3 229 229 228 84 65 60 3.7 2.3 1.6
4 233 219 194 226 80 77 70 75 4.3 3.9 3.9 4.0
5 199 190 204 200 81 79 79 75 3.6 4.1 4.2 3.3
6 228 229 223 226 84 84 74 72 4.7 4.4 4.6 5.4
7 222 210 226 81 81 78 4.3 4.6 4.6
8 208 210 220 196 78 83 76 75 4.8 5.0 5.0 5.0
9 177 221 170 212 83 76 75 75 3.9 3.7 4.4 4.6

10 225 220 72 74 4.2 4.4
11 220 210 84 74 3.8 5.1
12 229 228 228 228 81 75 77 73 4.5 3.7 4.1 4.1

3.5. Machine Learning Approach
3.5.1. Model Architecture

A modified convolutional neural network (CNN) approach, derived from EEG-based
BCIs, was tailored to classify binary motor responses from single-trial EROS data. Table 3
provides a summary of the backbone architecture used in all experiments. This method was
selected because of its robust performance across a variety of BCI paradigms, success in limited
data regimes, and ability to learn spatial and temporal filters from data [37]. For a detailed
visualization of the architecture, readers are referred to Figure 1 in Lawhern et al. [37].

Table 3. Depthwise separable convolutional neural network (CNN) architecture, where C is the
number of input channels, T is the number of time points, F1 is the number of temporal filters, D is
the number of spatial filters per temporal filter, and F2 is the number of pointwise filters.

Layer # Filters Size # Params Output Activation Options

Input (C, T)
Reshape (1, C, T)
Conv2D F1 (1, 20) 20 ∗ F1 (F1, C, T) Linear mode = same
BatchNorm 2 ∗ F1 (F1, C, T)
DepthwiseConv2D D ∗ F1 (C, 1) C ∗ D ∗ F1 (D ∗ F1, 1, T) Linear mode = valid, depth = D,

max norm = 1
BatchNorm 2 ∗ D ∗ F1 (D ∗ F1, 1, T)
Activation (D ∗ F1, 1, T) ELU
Dropout (D ∗ F1, 1, T) p = 0.5
SeparableConv2D F2 (1, 20) 20 ∗ D ∗ F1

+ F2 ∗ (D ∗ F1)
(F2, 1, T) Linear mode = same

BatchNorm 2 ∗ F2 (F2, 1, T)
Activation (F2, 1, T) ELU
AveragePool2D (1, 8) (F2, 1, T // 8)
Dropout (F2, 1, T // 8) p = 0.5
Flatten (F2 ∗ (T // 8))
Dense F2 ∗ (T // 8) 1 Sigmoid max norm = 0.25
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The modified CNN architecture first learns F1 convolutional filters of size (1, 20). The
filter length was chosen to be half of the data sampling rate (≈40 Hz) to preserve frequency
information up to 2 Hz. This convolution operation produces F1 feature maps, each
representing a band-filtered version of the input signal. For each temporal filter, D spatial
filters of size (C, 1) are trained using depthwise convolution. Here, C denotes the flattened
dimension of the input space. Batch normalization was employed after each convolutional
layer, following the last convolution with an exponential linear unit (ELU) activation and
dropout. Consistent with the original implementation, the dropout probability was set to
0.5, the bias parameter was disabled for all convolutional layers, and the maximum norm
of the spatial filter weights was constrained to be at most one [37].

Next, the architecture applies a separable convolution, a depthwise convolution of
size (1, 20) to summarize 500 ms of activity, followed by F2 (1, 1) pointwise convolutions
to combine the information obtained from individual spatiotemporal filters. Batch nor-
malization and an ELU activation are applied after the separable convolution. Average
pooling with a kernel size of (1, 8) is conducted, along with dropout. The resulting flattened
features are then passed through a final linear layer, with the maximum norm of the weights
constrained to be at most 0.25. The output of the linear layer is passed through a sigmoid
activation function, which maps the output into the range [0, 1]. Finally, the final output is
compared to a fixed threshold of 0.5 for classification. If the output exceeds the threshold, it
is categorized as a right motor response; otherwise, it is classified as a left motor response.

The performance of the proposed CNN model was compared to several baselines, with
results summarized in Appendix B. Specifically, the model was trained using the default
architecture and hyperparameters proposed for EEG-based BCI by Lawhern et al. [37]. Addi-
tionally, performance was compared to the DeepConvNet model proposed by Schirrmeister
et al. [26]. The DeepConvNet model, designed as a general-purpose EEG-based BCI architec-
ture for high performance across multiple tasks, was chosen for its potential adaptation to
EROS-based BCI tasks.

3.5.2. Model Training

To train each model, an extensive architecture and hyperparameter sweep over F1,
D, F2, optimizer, learning rate, weight decay, and validation early stopping metrics was
conducted. A total of 50 random hyperparameter configurations were sampled, training
each configuration with three random neural network parameter initializations (referred to
as iterations). Default hyperparameter configurations, the range of values considered, and
the sampling function used to conduct the model architecture and training hyperparameter
search are depicted in Appendix A.

Each model was trained for 300 passes over the training data to minimize the binary
cross-entropy loss, with early stopping based on the validation set performance. A 20%
held-out test set stratified by the labeled response type was used to evaluate the trained
models. The remaining 80% of the data was split using 5-fold cross-validation, where 4 of
the 5 blocks were used for training and the remaining 1 block was used for validation. All
models were trained on an NVIDIA Titan X Pascal GPU, with CUDA 10 and cuDNN v8, in
PyTorch [47].

A subject-specific evaluation of the CNN approach was conducted, employing three
distinct training paradigms: (i) montage-specific classification, (ii) cross-montage classi-
fication, and (iii) montage-specific classification with warm-start initialization of neural
network parameters (pre-training). Figure 1B visually describes each of these model train-
ing paradigms.

(i) Montage-specific classification: A subject-specific model was trained solely on
trials obtained from a specific montage and evaluated using the subject’s held-out
trials recorded with the same montage. This approach reduced the number of
available trials to a maximum of 240 as the data were partitioned into disjoint sets
based on the montage configuration used for recording.
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(ii) Cross-montage classification: The model was trained using trials recorded by all
available montages for the subject while ensuring an equal distribution of trials
from each montage in the training, validation, and held-out test splits.

(iii) Montage-specific classification with pre-training: A warm-start initialization of
the CNN parameters was obtained by pre-training models on trials corresponding
to all available montages, but excluding the specific montage under evaluation.
Identically to the cross-montage case, the training and validation splits were
stratified based on montage. The pre-trained model was then fine-tuned using
montage-specific data from the previously held-out montage and evaluated the
final trained model on the subject’s held-out trials for the corresponding montage.

3.6. Evaluation

The reported mean held-out test performance was averaged over the test metrics for
the five models obtained via 5-fold cross-validation. These five models were also used to
generate the 95% confidence intervals for the test metrics. These models shared the selected
hyperparameter configuration yielding the highest validation performance averaged over
training iterations. In the analysis of montage-specific classification methods (i and iii),
classification accuracy and the area under the Receiver Operating Characteristic curve
(AUROC) on the held-out test set were presented for the specific montage model that
achieves the highest validation accuracy. The selection of the “best montage“ for each
subject precedes the final evaluation of the montage-specific model on the independently
sampled held-out test set. To illustrate, suppose a subject had trained models for montages
A, B, C, and D, and, after assessing various hyperparameter settings, the model trained on
trials from montage C exhibited the highest average validation accuracy across training
iterations. In this case, the held-out test metrics associated with montage C would be
reported as the subject’s “best montage” performance. This approach allows for the
aggregation of a subject’s performance across montage-specific metrics, as good signal
quality is anticipated from only a subset of available montage configurations.

Within-subject classification results are reported for several experimental conditions,
in which the following variables are varied:

• Input signal: Phase delay and intensity data were recorded for each participant.
The following inputs were explored to train the proposed method: (i) only phase
signals, (ii) only intensity signals, and (iii) both phase and intensity signals, recorded
simultaneously.

• Frequency band: This study identifies informative frequency ranges for event-related
activity occurring at specific frequencies (see Table 4 for frequency ranges of interest).
Additionally, it assesses the CNN’s capability to automatically learn temporal filters
compared to the conventional practice of manually selecting frequency bands, which
has been commonly employed in the existing literature. The narrow frequency band
analysis focuses on intensity in dual-input experiments using both phase and inten-
sity input signals, given that intensity is particularly susceptible to the masking of
discriminative information by low-frequency noise contamination.

• Training paradigm: Three distinct neural network training paradigms were used, and
each was evaluated separately on the 0.1–12 Hz filtered phase input and intensity input:
(i) montage-specific, (ii) cross-montage, and (iii) montage-specific with pre-training. In
the case of dual-input experiments, separate spatiotemporal CNN architectures were
initialized for each input type. These parallel models were trained jointly, and the
flattened outputs from each model were combined and passed through a final dense
layer for prediction.
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Table 4. Average held-out test performance metrics and 95% confidence interval across subjects (N = 12)
for each input signal, frequency range, and training approach combination. The highest overall test
accuracy and area under the Receiver Operating Characteristic curve (AUROC) were obtained by
selecting the best-performing montage-specific classifier for each subject based on the validation accuracy,
and the held-out test metrics for this experimental setup are shown in bold. The column to the right
of each metric column depicts the proportion of subjects that achieve classification performance above
random chance (Accuracy: 50.0%, AUROC: 0.500).

Input Signal Freq. (Hz) Approach Accuracy >50% AUROC >0.5

Phase 0.1–12 Best Montage 0.628 ± 0.054 10/12 0.674 ± 0.059 12/12
Phase 0.1–12 Cross-Montage 0.559 ± 0.042 8/12 0.580 ± 0.054 8/12
Phase 0.1–12 Pre-Train

Best Montage
0.597 ± 0.061 7/12 0.628 ± 0.074 8/12

Phase 4–7 Best Montage 0.519 ± 0.031 5/12 0.515 ± 0.037 3/12
Phase 8–13 Best Montage 0.506 ± 0.024 1/12 0.514 ± 0.031 1/12
Phase 13–20 Best Montage 0.477 ± 0.028 1/12 0.472 ± 0.040 0/12

Intensity 0.1–12 Best Montage 0.490 ± 0.025 1/12 0.484 ± 0.036 2/12
Intensity 0.1–12 Cross-Montage 0.502 ± 0.013 1/12 0.506 ± 0.019 2/12
Intensity 0.1–12 Pre-Train

Best Montage
0.501 ± 0.036 4/12 0.501 ± 0.041 5/12

Intensity 4–7 Best Montage 0.507 ± 0.022 3/12 0.4950. ± 027 3/12
Intensity 8–13 Best Montage 0.522 ± 0.019 2/12 0.530 ± 0.029 3/12
Intensity 13–20 Best Montage 0.496 ± 0.025 2/12 0.496 ± 0.031 2/12

Phase
+ Intensity

0.1–12
+ 0.1–12

Dual-Input
Best Montage

0.580 ± 0.051 7/12 0.601 ± 0.067 7/12

Phase
+ Intensity

0.1–12
+ 8–13

Dual-Input
Best Montage

0.592 ± 0.051 7/12 0.608 ± 0.070 8/12

Phase
+ Intensity

0.1–12
+ 13–20

Dual-Input
Best Montage

0.586 ± 0.057 6/12 0.625 ± 0.069 7/12

Finally, this study investigated the correlation between montage recording quality
metrics and classification accuracy within the montage-specific classification setting. Two
signal quality measures for each montage were considered:

• Viable voxel count: The quality of montage placement was quantified by determining
the number of voxels that contain viable channels mapping to that voxel. This measure
provides insight into how well the recording montage covers the region of interest,
resulting in signal recording focused around the discriminative region.

• Channels per voxel: The average number of channels mapping to each voxel, averaged
over all viable voxels within a montage, was computed. This measure evaluates the
robustness of the recorded signal to noise disturbances, as voxels with a higher number
of averaged channels tend to have a higher signal-to-noise ratio.

These signal quality measures are summarized for each subject and montage in Table 2.

3.7. Feature Explainability

The recent development of methods for deep neural network feature explainability
has enabled the interpretation and visualization of features learned by “black box” models,
allowing practitioners to take a step toward explaining complex classification decision
rules [48–54]. Specifically, feature attribution methods can highlight the most influential
features in a model’s prediction [49,50,53,54]. This study focuses on identifying specific
spatial regions and temporal intervals contributing to a single-trial classification decision by
the model, where a positive feature relevance indicates information supporting the decision
and vice versa. Utilizing DeepLIFT (with the Rescale rule), a gradient-based feature
attribution method, the feature relevance at the first convolutional layer is computed,
assigning relevance values to each voxel and time step of the input signal [50].
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4. Results
4.1. Subject-Specific Classification Performance

Table 4 shows subject-specific classification results aggregated over all participants.
The spatiotemporal CNN trained on 0.1–12 Hz filtered phase input and trained by selecting
the best-performing montage-specific classifier for each subject achieved a test accuracy
of 62.8% (95% CI: [0.574, 0.682]) and AUROC of 0.674 (95% CI: [0.615, 0.733]) averaged
across 12 participants. This experimental setup demonstrates the highest classification
performance, with a significant majority of the subjects achieving an accuracy above the
chance level (p < 0.05). Notably, all participants achieved statistically significant AUROC
values (p < 0.05). Refer to Figure 4 for detailed visualizations of individual subject and
montage-specific performance metrics.

This study demonstrates that the proposed CNN method, utilizing optimized archi-
tecture parameters (specifically, F1, D, F2 for the number of convolutional filters) and
refined hyperparameter tuning, achieves comparable average cross-subject classification
performance and a greater proportion of subjects performing above chance levels com-
pared to existing CNN baseline methods (Table 5). Comprehensive details regarding the
implementation of these baseline methods are available in Appendix B. Throughout the
subsequent analysis, emphasis is placed on classification accuracy results, given that the
reported held-out AUROC values follow a similar ranking across approaches.

For the statistical testing, we employed a Type-II Analysis of Variance (ANOVA) to
model the classification test accuracy as the response variable, with experimental setup and
subject number as factors. The analysis identified significant interaction effects between
these factors and distinct group mean differences. Post hoc pairwise Tukey honestly
significant difference (HSD) tests further examined the differences in group means. In
contrast to the best-montage model, both cross-montage and pre-trained models exhibited
lower average test accuracies for the phase signal, though only the cross-montage model
differences were statistically significant (p < 0.05).

The models trained exclusively on intensity data exhibited the lowest average classification
accuracy, failing to exceed chance levels across all experimental configurations. However,
individual subject analysis revealed that six subjects achieved above 50% accuracy in at least
one training paradigm using intensity inputs. Moreover, these subjects also achieved a test
accuracy above 50% for some combination of phase and training paradigms. This finding
raises the question of whether different, yet complementary, features may be extracted from the
different input types. Motivated by these findings, we conducted dual-input experiments to
explore improving subject performance by combining phase and intensity data modalities. The
implications of these results are discussed in more depth in Section 5.

Furthermore, no significant benefit from utilizing a narrow frequency band for the
phase input was observed, as fewer than half of the subjects performed better than random
chance (p > 0.05). No significant difference in performance from incorporating both phase
and intensity input into a dual-input model was observed, regardless of the frequency
band used for the intensity input (p > 0.05). This analysis assessed the presence/absence
of discriminative information in event-related activity at specific frequencies, rather than
the power variation across frequencies as in a time–frequency analysis. Consequently, it
is expected that restricting information to a subset of frequencies within the broadband
(0.1–12 Hz) range would not enhance performance, as much of the discriminative signal
may be diminished during narrow band filtering.
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Figure 4. Held-out test accuracy and AUROC for the proposed CNN model trained on 0.1–12 Hz
band-filtered phase data from a given subject and montage. Subjects 7, 10, and 11 have missing
data from one or more montages. The error bars depict the 95% confidence interval about the mean,
generated using reported test metrics from 5-fold cross-validation. The gray dashed line represents
the random chance classifier (50.0% accuracy and AUROC of 0.500 for a binary classification task).

Table 5. Average held-out test performance metrics and 95% confidence interval across subjects
(N = 12) for the proposed deep learning method, DeepConvNet [26] baseline, and the default
EEGNet [37] architectures. All experiments were conducted with 0.1–12 Hz band-filtered phase input,
and the test performance was averaged over the best subject-specific montage configuration. The
highest overall test accuracy and area under the Receiver Operating Characteristic curve (AUROC)
were obtained by the proposed method, and the held-out test metrics for this architecture are shown
in bold. The column to the right of each metric column depicts the proportion of subjects that
achieved classification performance above random chance (Accuracy: 50.0%, AUROC: 0.500).

Input Signal Freq. (Hz) Approach Accuracy >50% AUROC >0.5

Phase 0.1–12 Proposed CNN 0.628 ± 0.054 10/12 0.674 ± 0.059 12/12
Phase 0.1–12 DeepConvNet 0.609 ± 0.094 7/12 0.635 ± 0.115 8/12
Phase 0.1–12 EEGNet-8,2 0.604 ± 0.104 8/12 0.650 ± 0.118 9/12
Phase 0.1–12 EEGNet-4,2 0.612 ± 0.093 7/12 0.643 ± 0.112 8/12

4.2. Correlation between Data Quality and Montage-Specific Performance

The highest-performing experimental setup described in the previous subsection
(0.1–12 Hz filtered phase input trained with the montage-specific paradigm) provided a
baseline for the proposed approach’s performance with a fixed data size and non-variable
sensor configuration. The relationship between data quality measures and classification
accuracy was statistically analyzed using a Type-II ANOVA and is summarized in Table 6.
The classification test accuracy was treated as the dependent variable and the data quality
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measure (number of viable voxels and average number of channels per viable voxel) and
subject number were treated as factors. This analysis revealed that the average number of
channels per viable voxel had a significant positive effect on classification accuracy for a
given subject and montage (p < 0.05).

When hemisphere-specific data quality measures were considered in the ANOVA, the
number of viable voxels in the right hemisphere had a significant positive effect on the
classification accuracy (p < 0.05), but the number of viable voxels in the left hemisphere did
not exhibit a significant effect (p > 0.05). These preliminary findings provide insights into
the relationship between signal quality, sensor placement, and classification performance.
Specifically, the fact that only right hemisphere data displayed sensitivity to the number of
viable voxels may suggest that this hemisphere’s data were more critical for classification.
This could be because all the participants were right-handed. In right-handed subjects,
the right hemisphere is activated only during contralateral movements, whereas the left
hemisphere becomes active during both contra and ipsilateral movements, leading to less
hand-specific specificity in the left hemisphere [55].

Table 6. Summary of Analysis of Variance (ANOVA) investigating the correlation between data
quality and classification performance for the proposed convolutional neural network (CNN) model
trained on 0.1–12 Hz phase input. The dependent variable was held-out test classification accuracy. A
Type-II ANOVA was used for the montage-specific experiments, and a Type-I ANOVA was used for
the cross-montage experiments.

Training Paradigm Data Quality Measure p-Value

Montage-specific # viable voxels in L and R
hemi. 0.272

Montage-specific # viable voxels in R hemi. 0.030
Montage-specific # viable voxels in L hemi. 0.366

Montage-specific avg. # channels / viable voxel
in L and R hemi. 0.048

Cross-montage # training montages <0.001
Cross-montage # montages w/ acc. >50% <0.023
Cross-montage prop. montages w/ acc. >50% 0.920

Pre-train # training montages 0.514
Pre-train # montages w/ acc. >50% <0.001
Pre-train prop. montages w/ acc. >50% <0.001

4.3. Correlation between Data Quality and Cross-Montage Performance

This study also investigated the correlation between the classification performance of
montage-specific models trained on 0.1–12 Hz filtered phase input and the classification
performance of multi-montage training paradigms (cross-montage and pre-trained models).
Specifically, the effects of the following montage-specific measures on multi-montage
classification accuracy were investigated: the number of available training montages, the
number of montages with montage-specific classification accuracy above 50%, and the
proportion of montages with montage-specific classification accuracy above 50%.

A Type-I ANOVA was used for this analysis as no significant interaction effects between
the subject identifier and montage-specific measures were anticipated. The results revealed that
the number of available montages and the number of montages with above-chance accuracy
for a given subject significantly contributed to the classification accuracy of the cross-montage
training paradigm (p < 0.05). However, the proportion of montages with above-chance accuracy
does not yield a significant effect for this paradigm (p > 0.05). In contrast, for the pre-training
paradigm, both the number and proportion of montages with above-chance accuracy positively
affected the classification accuracy (p < 0.05). These results provide valuable insights into
the effectiveness of different training paradigms for utilizing multi-montage data, and their
implications are discussed in more detail in Section 5.
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4.4. Neural Network Feature Relevance

Neural network feature relevance values were computed for the best-performing
(0.1–12 Hz phase, montage-specific) model trained on Subject 7’s data recorded from
montage B. Selecting a model with high classification accuracy enables the analysis of
high-confidence (prediction <0.20 or >0.80) and low-confidence (prediction between 0.20
and 0.80) single-trial model predictions. To visualize general trends, trials were grouped
by response type and confidence level and then averaged to yield the feature relevance
heatmaps in Figure 5.
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Figure 5. Trained neural network DeepLIFT feature attributions for various single-trial response
types and prediction confidence levels (shown in parentheses). The proposed convolutional neural
network (CNN) model was trained on 0.1–12 Hz band-filtered phase data. Green indicates positive
relevance values and red indicates negative relevance, though magnitude is the primary informative
descriptor. (A) Input relevance as a function of space (y-axis) and time (x-axis). Spatial indices
represent top-down rows of the region-of-interest (ROI) for each L/R hemisphere. (B) ROI voxel
relevance at 179 ms after the response and (C) ROI voxel relevance at 410 ms after the response. The
x and y axes represent Talairach coordinates (mm).

Analyzing the contributions of specific time points in the input signal to the model
prediction over time reveals larger magnitude contributions after the time of the response,
specifically centered around 179 ms and 410 ms after the response for both right and
left-handed responses. Furthermore, there is a greater activation magnitude in the right
hemisphere than in the left, supporting the hypothesis that the signal from the right hemi-
sphere is more discriminative. For correctly classified and high-confidence right-handed
responses, there is a strong positive (green) contribution by the signal recorded 410 ms after
the response. For correctly classified and high-confidence left-handed responses, there is
a strong negative (red) contribution by the signal recorded 179 ms after the response. In
the case of low-confidence predictions for both response types, both of the aforementioned
contributions are visible and these trials have more noisy feature attributions in general,
thus leading to less discriminability between the left and right response types.

To identify the contributions of spatial locations within the ROI, this study visualized
feature importance values at the time points with the largest magnitude of contribution: 179
and 410 ms after the response. Again, the contrast between activation magnitude between
the hemispheres is apparent. Additionally, the polarity of activation at location (40, −20) for
right-handed versus left-handed responses is switched at 179 ms after the response, indicating a
high discriminative signal. This voxel corresponds to the hand region of the motor cortex, which
reflects the hand-related motor movement and shows the highest magnitude of activation for
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high-confidence model predictions. For lower-confidence predictions, the contributions are less
specific and attribute spatial importance to larger brain regions.

5. Discussion

This study explored the potential of using a convolutional neural network (CNN)
architecture that learns temporal and spatial filters to classify EROS in a single-trial setting.
It considered several variations of the analytical setup, varying the input signal (phase
delay and intensity), the temporal filtering applied during pre-processing, and the neural
network training paradigm (single-montage, cross-montage, pre-trained single-montage).
To date, this study represents the first attempt to apply deep learning techniques to the
single-trial classification of EROS signals. The findings demonstrate that a CNN model
trained on phase data can effectively learn discriminative features for motor response
classification, achieving an average accuracy of 62.8% and AUROC of 0.674 across 12 par-
ticipants. Additionally, the relationship between sensor coverage of the discriminative
region of interest and the performance of montage-specific models was investigated. The
analysis reveals a positive correlation between the average number of channels per voxel
recorded with a montage and the classification accuracy achieved by that montage, in-
dicating that classification accuracy critically depends on data quality. Furthermore, the
consistency of performance across the different montages recorded for each subject indi-
cates the potential effectiveness of multi-montage training paradigms in achieving high
classification performance. Overall, the present study contributes to a better understanding
of the data conditions required to successfully apply deep learning approaches to BCI tasks,
specifically in the context of EROS signals.

Although the classification accuracy did not meet the 70% threshold considered es-
sential for effective BCI communication [56], these findings are consistent with prior work
achieving 63% accuracy in single-trial classification EROS for retinotopy [41] and 63%
accuracy in an online visual oddball task utilizing an average of 15 trials [7]. Furthermore,
this study shows that the proposed method, incorporating architecture search and hy-
perparameter tuning, maintains consistent performance comparable to established CNN
approaches. Moreover, the proposed method yields the highest proportion of subjects
achieving above-chance classification accuracy and AUROC, underscoring the importance
of subject-specific hyperparameter optimization.

The montage-specific paradigm trained on a relative broadband 0.1–12 Hz filtering of
phase data achieved the highest performance across participants. This finding is consistent
with prior research suggesting the superior classification performance of phase compared to
intensity data for classifying Fast Optical Signals (FOS) [57,58]. These earlier studies proposed
that external noise sources may affect intensity measurements, potentially reducing their
discriminative power. However, it is important to note that some previous investigations
have reported the opposite trend, with intensity data outperforming phase data [59,60]. More
recently, a cross-subject study employing support vector machines (SVMs) for classifying
EROS signals found intensity data to be superior to phase data [41]. The authors of that
study hypothesized that the lower performance of phase data could be attributed to the
challenge of aligning sensor locations to the brain across participants. Phase delay signals
have a higher spatial resolution than intensity signals, making them more sensitive to spatial
shifts in channel locations [61]. This inter-subject variability in channel alignment could impact
the classification performance when using subject-averaging approaches.

The present study bypasses this limitation by developing subject-specific classifiers,
eliminating the potential influence of inter-subject variability on sensor alignment. More-
over, the superiority of the single-montage training paradigm over multi-montage ap-
proaches in the results further supports the notion that phase data are sensitive to spatial
shifts across montages since common features are difficult to learn across variable montages.
However, the limited number of available trials for each subject–montage combination
likely impaired the training of single-montage classifiers, contributing to the low average
accuracy across subjects [56]. To better evaluate the single-subject classification perfor-
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mance of EROS, experiments with a greater number of trials and a single recording montage
should be conducted as larger datasets generally enhance the performance of machine
learning frameworks. In the absence of additional data availability, data augmentation
strategies may be employed to simulate a larger dataset [26].

Alternatively, future studies could consider using subject-specific structural images, such
as anatomical magnetic resonance images, to accurately align optical channels with distinct
brain anatomy before voxel-space reconstruction and mitigate this limitation. This proce-
dure holds the potential to reduce the impact of spatial shifts and enhance the classification
performance of phase data when employing multi-montage training paradigms.

No performance gains were observed when pre-processing the default 0.1–12 Hz
input signal using band-pass filtering. This finding indicates that domain expertise in
selecting narrow frequency bands of interest is unnecessary for achieving good classification
performance with the CNN approach, which automatically extracts temporal features. The
added restriction of fixed frequency ranges may impede the learning of temporal features
that span multiple frequency ranges (4–7, 8–13, and 13–20 Hz) considered in this study. This
limitation is particularly plausible given the variability of inter-subject signals, as frequency-
based features are not expected to generalize across subjects. The broad frequency range of
the 0.1–12 Hz input allows for the model to flexibly learn the most discriminative frequency
information for each subject.

As stated in Section 4.1, the investigation reveals that a subset of subjects achieving a
phase-based classification accuracy exceeding 50% also demonstrate accuracy above 50% with
intensity. This observation prompted whether dual-modality analyses might be more effective
than single-modality paradigms for classification purposes. In these analyses, separate CNNs
for each modality (phase and intensity) were trained and their features were concatenated
at the final classification layer. However, no significant improvement or deterioration in
classification accuracy was found when both phase and intensity inputs were employed,
compared to using phase input alone, suggesting that the two modalities may provide
redundant information. The effects of this phenomenon might have been confounded by the
limited dataset size. Consequently, it is imperative to conduct future studies utilizing more
abundant data to fully assess the potential of dual-modality feature extraction.

This study investigated the impact of data quality on the classification performance of the
proposed method. Quantitatively, it identified a positive statistical effect between the average
number of channels per viable voxel in a montage on the held-out classification accuracy of
that montage. Specifically, significant effects were observed in the number of viable voxels in
the right hemisphere, whereas no significant effects were found in the left hemisphere. It is
hypothesized that the right hemisphere ROI contains a more discriminative signal because, for
right-handed participants, the left hemisphere’s activation is bi-lateral (activated for both right
and left motor responses), whereas the right hemisphere is expected to be activated mainly
with left motor responses. These results highlight that the data quality in the discriminative
region of interest is important in predicting classification performance.

Similarly, the study aimed to identify a good predictor of multi-montage perfor-
mance, specifically for the cross-montage and pre-trained montage-specific paradigms.
The findings indicated a significant positive impact on classification accuracy within the
cross-montage training paradigm when considering two factors: the number of available
montages and the number of montage-specific models achieving above 50% accuracy for a
given subject. The observed correlation between the number of available montages and
classification performance can be attributed to the enlarged training dataset resulting from
the concatenation of all available montage data. Additionally, the correlation between the
number of montages with above 50% accuracy and cross-montage performance suggests
that an increased number of properly aligned montages with discriminative regions of
interest contributes to superior performance. Furthermore, it is possible that subjects with
high performance exhibit better alignment among montages, leading to similar signals and
reduced noise in the concatenated dataset.
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The present study also demonstrates that both the number and proportion of available
montages exhibiting classification accuracy above 50% have a significant positive effect on the
accuracy achieved through the pre-trained single-montage training paradigm. Assessing the
proportion of high-performing montages provides a less restrictive measure of montage data
quality, as it accounts for instances where certain subjects lack montage data but can still benefit
from the advantageous inductive biases derived from the pre-training step, thereby facilitating
downstream task-specific fine-tuning. In contrast to the cross-montage approach, where the
alignment of all montages is crucial, the alignment of all montages is less essential for this
paradigm since the neural network weights are fine-tuned specifically for a target montage.
Additionally, the number of available montages has a limited impact on performance within
this paradigm due to the potential for negative inductive biases to arise from pre-training on
dissimilar montage data, thereby impairing performance. Therefore, it is more advantageous
to include a few montages with a discriminative signal rather than introducing additional
noisy montages into the training paradigm. It is postulated that the performance could be
further enhanced by pre-selecting high-performing montages for inclusion in the concatenated
dataset during the training (cross-montage) or pre-training (pre-trained montage-specific)
phase. However, this investigation is deferred to future work.

It must be noted that accurate alignment of the optical channels using subject-specific
anatomical features has the potential to render the distinction between single-montage and
multi-montage approaches obsolete, as it enables the representation of all montage signals
within the same voxel space. Future work may also investigate the alignment of multiple
subject data to develop a cross-subject classifier.

Finally, the visualization of feature relevance attributing the neural network’s predic-
tion to specific temporal intervals and spatial regions of the input provides valuable insights
for the broader scientific community. The findings of these analyses support that the most
discriminative signals originate from the motor cortex, aligning with expectations for such
a motor response task. Furthermore, these interpretations help elucidate the importance of
collecting high-quality data from discriminative regions of interest in future investigations.

6. Conclusions

This study explores the use of a convolutional neural network (CNN) architecture to
classify event-related optical signals (EROS) in a single-trial setting. The proposed method
was evaluated on a data set from a previous study in which the participants performed
a motor response task [8]. The implemented method utilizes a series of two-dimensional
convolutions to learn temporal and spatial filters from the EROS data. This study demon-
strates that the CNN model trained on phase data, utilizing a montage-specific approach,
achieves an average accuracy of 62.8% for motor response classification, surpassing the
models trained on intensity data. This suggests some discriminative power of phase data
for EROS classification tasks. Furthermore, a positive correlation between the sensor cover-
age of the discriminative region and the classification accuracy was observed, indicating
the importance of comprehensive coverage in data collection methodologies for future
EROS studies.

Among various subject-specific model training paradigms, the montage-specific train-
ing paradigm yielded the highest performance. Data quality, measured by the number of
available voxels and the average number of channels per voxel, significantly improved clas-
sification performance in single-montage training. In the cross-montage training paradigm,
the number of available montages and the number of montages achieving classification ac-
curacy above random chance positively impacted accuracy. The number and proportion of
montages achieving above-chance accuracy in the pre-training paradigm had a significant
positive effect. A post-hoc analysis of learned feature relevance identified discriminative
time intervals and spatial locations of the input signal, highlighting the hand motor cortex
in the right hemisphere as a significant contributor to the model’s predictions. Finally, the
proposed method’s classification efficacy is comparable with existing CNN-based brain–
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computer interface (BCI) research using electroencephalography (EEG) and is consistent
with both the multi-trial and single-trial EROS classification literature.

Future investigations should further explore multi-montage model-training paradigms
and incorporate subject-specific or inter-subject alignment of optical channels to enhance
classification performance and increase the dataset size. Furthermore, investigating data
augmentation strategies to simulate a larger effective dataset size is crucial for enhancing
the efficiency and robustness of training deep learning models.

Although achieving higher classification accuracy is desirable, this study highlights
the potential of using deep learning approaches to automate feature extraction for EROS
signals, which holds promise for various BCI applications.
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Abbreviations
The following abbreviations are used in this manuscript:

AC alternating current light intensity
ANOVA Analysis of Variance
AUROC area under the curve of the Receiver Operating Characteristic
BCI brain–computer interface
CI confidence interval
CNN convolutional neural network
CSP common spatial patterns
CW continuous-wave
DC direct current light intensity
DT decision tree
EEG electroencephalography
EHR electronic health records
ELU exponential linear unit
EROS event-related optical signals
FD frequency-domain
FBCSP filter bank common spatial patterns
fNIRS functional near-infrared spectroscopy
FOS fast optical signals
FPR false positive rate
HSD honestly significant difference
ICA independent component analysis
KDA kernel Fisher discriminant analysis
k-NN k-nearest neighbors
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LDA linear discriminant analysis
LVQ learning vector quantization
MI motor imagery
MLP multi-layer perceptron
MPRAGE magnetization-prepared rapid gradient-echo
MR magnetic resonance
NDA nonlinear discriminant analysis
QDA quadratic discriminant analysis
RFD regularized Fischer discriminant
ROC Receiver Operating Characteristic
ROI region-of-interest
SAE stacked autoencoder
SGD stochastic gradient descent
SNR signal-to-noise ratio
STFT short-time Fourier transform
SVM support vector machine
TPR true positive rate

Appendix A. Hyperparameter Tuning

To optimize the neural network model hyperparameters, an architecture search was
conducted across varying numbers of temporal (F1), spatial (D), and pointwise (F2) filters
alongside a hyperparameter sweep over the choice of the optimizer, learning rate, weight decay,
and early stopping metric. The ranges of values considered and the sampling function used for
both model architecture and training hyperparameter search are detailed in Table A1.

Optimal hyperparameters were selected on a subject-specific basis (and montage-
specific, where applicable) based on the configuration that yielded the highest average
cross-validation accuracy over three training iterations.

Table A1. Default hyperparameter settings, sampling functions, and value range for each hyperpa-
rameter in the architecture and hyperparameter search.

Hyperparameter Default Sampling Function Value Range

# temporal filters (F1) 8 ⌊2x⌋ for x ∈ [2, 4) [4, 16)
# spatial filters (D) 2 ⌊2x⌋ for x ∈ [2, 4) [4, 16)

# pointwise filters (F2) 16 ⌊2x⌋ for x ∈ [2, 4) [4, 16)

Optimizer Adam Uniform {Adam, SGD,
RMSprop}

Learning rate 0.001 10−4x for x ∈ [0.5, 1) (0.0001, 0.01]
Weight decay 0 10x for x ∈ [−6,−2) [10−6, 10−2)

Early stopping metric Accuracy Uniform {Accuracy, AUROC}

Appendix B. Baseline CNN Implementation Details

The study compares the proposed method featuring optimized architecture and hy-
perparameter configurations with various convolutional neural network (CNN)-based
deep learning baselines. All models were trained using phase-input montage-specific
data filtered between 0.1–12 Hz, chosen for its superior classification performance across
experimental setups. Default model training hyperparameters from Table A1 were used to
train the CNN baselines.

The DeepConvNet model, initially developed by Schirrmeister et al. [26] for elec-
troencephalography (EEG) decoding, employs five convolutional layers and a softmax
classification layer. This architecture has more-than-an-order-of-magnitude-larger number
of trainable parameters, making it more data-intensive. Schirrmeister et al. [26] point out
this limitation and hypothesize that data augmentation strategies or transfer learning may
help address data scarcity issues. Therefore, it is hypothesized that the proposed method
will achieve higher within-subject performance in the data-limited regime. Modifications
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to the architecture include adjusting the temporal convolution kernel size from (1, 5) to
(1, 3) to accommodate the lower sampling rate of approximately 40 Hz in our EROS data,
compared to the 250 Hz assumed in EEG applications.

Additionally, this comparative study explored default EEGNet architectures from
Lawhern et al. [37], which served as the basis for the proposed CNN method. The EEGNet-
8,2 and EEGNet-4,2 models feature 8 and 4 temporal filters (F1), respectively, with D = 2
and F2 = F1 ∗ D. The kernel length was adjusted from the original (1, 64) to (1, 20) to
align with the EROS data sampling rate (40 Hz). These models offer a more compact,
parameter-efficient alternative to DeepConvNet. However, these baselines were evaluated
without subject-specific hyperparameter tuning, a factor expected to impact performance
in this study’s subject-specific training and evaluation framework.

Appendix C. Additional Performance Metrics

Figure A1 illustrates the Receiver Operating Characteristic (ROC) curve and confu-
sion matrix corresponding to the best-performing approach across subjects (best-montage
trained on 0.1–12 Hz phase input). Predictions for each subject were obtained by evaluating
the best-performing montage classifier, trained using three different random seeds, on
the subject’s held-out test trials. Finally, a visualization of the metric was obtained by
concatenating single-trial predictions for all subjects and comparing them to their ground
truth labels.

Figures A2 and A3 display the subject-specific ROC curves and confusion matrices
for each subject’s best-performing montage classifier, respectively. Similarly to the metrics
aggregated across subjects, predictions for each subject were obtained by evaluating the
subject-specific model on the subject’s held-out test trials, aggregating model predictions
across training iterations.
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Figure A1. Receiver Operating Characteristic (ROC) curve and confusion matrix for predictions on
the concatenated held-out test set for all subjects. Predictions were generated by the best-performing
montage convolutional neural network (CNN) trained on 0.1–12 Hz phase input and aggregated
across all montage-specific subject trials.
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Figure A2. Receiver Operating Characteristic (ROC) curves for individual subjects, with the false
positive rate (FPR) on the x-axis and true positive rate (TPR) on the y-axis. Predictions were obtained
by evaluating each subject’s best-performing montage convolutional neural network (CNN), trained
on 0.1–12 Hz phase input, on the subject’s held-out test trials. Predictions were aggregated across all
model training iterations.
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Figure A3. Confusion matrices for individual subjects. Predictions were obtained by evalu-
ating each subject’s best-performing montage convolutional neural network (CNN), trained on
0.1–12 Hz phase input, on the subject’s held-out test trials. Predictions were aggregated across all
model training iterations.
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