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Let 𝐺 = (𝑉 , 𝐸) be a finite undirected graph. An edge set 𝐸′ ⊆ 𝐸 is a dominating induced matching

(d.i.m.) in 𝐺 if every edge in 𝐸 is intersected by exactly one edge of 𝐸′. The Dominating Induced 
Matching (DIM) problem asks for the existence of a d.i.m. in 𝐺; this problem is also known as the 
Efficient Edge Domination problem; it is the Efficient Domination problem for line graphs.

The DIM problem is ℕℙ-complete even for very restricted graph classes such as planar bipartite 
graphs with maximum degree 3 but is solvable in polynomial time for 𝑃9-free graphs [and in 
linear time for 𝑃7-free graphs] as well as for 𝑆1,2,4-free, for 𝑆2,2,2-free, and for 𝑆2,2,3-free graphs. 
In this paper, combining two distinct approaches, we solve it in polynomial time for 𝑃10-free 
graphs and introduce a partial result for the general case.

1. Introduction

Let 𝐺 = (𝑉 , 𝐸) be a finite undirected graph. A vertex 𝑣 ∈ 𝑉 dominates itself and its neighbors. A vertex subset 𝐷 ⊆ 𝑉 is an efficient 
dominating set (e.d.s. for short) of 𝐺 if every vertex of 𝐺 is dominated by exactly one vertex in 𝐷. The notion of efficient domination 
was introduced by Biggs [2] under the name perfect code. The EFFICIENT DOMINATION (ED) problem asks for the existence of an e.d.s. 
in a given graph 𝐺 (note that not every graph has an e.d.s.)

A set 𝑀 of edges in a graph 𝐺 is an efficient edge dominating set (e.e.d.s. for short) of 𝐺 if and only if it is an e.d.s. in its line 
graph 𝐿(𝐺). The EFFICIENT EDGE DOMINATION (EED) problem asks for the existence of an e.e.d.s. in a given graph 𝐺. Thus, the EED 
problem for a graph 𝐺 corresponds to the ED problem for its line graph 𝐿(𝐺). Note that not every graph has an e.e.d.s. An efficient 
edge dominating set is also called dominating induced matching (d.i.m. for short), and the EED problem is called the DOMINATING 
INDUCED MATCHING (DIM) problem in various papers (see e.g. [3–7,10,12,13]); subsequently, we will use this notation instead of 
EED.

In [11], it was shown that the DIM problem is ℕℙ-complete; see also [3,10,14–16]. However, for various graph classes, DIM is 
solvable in polynomial time. For mentioning some examples, we need the following notions:

Let 𝑃𝑘 denote the chordless path 𝑃 with 𝑘 vertices, say 𝑎1, … , 𝑎𝑘, and 𝑘 − 1 edges 𝑎𝑖𝑎𝑖+1, 1 ≤ 𝑖 ≤ 𝑘 − 1; we also denote it as 
𝑃 = (𝑎1, … , 𝑎𝑘).

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
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For indices 𝑖, 𝑗, 𝑘 ≥ 0, let 𝑆𝑖,𝑗,𝑘 denote the graph 𝐻 with vertices 𝑢, 𝑥1, … , 𝑥𝑖, 𝑦1, … , 𝑦𝑗 , 𝑧1, … , 𝑧𝑘 such that the subgraph induced 
by 𝑢, 𝑥1, … , 𝑥𝑖 forms a 𝑃𝑖+1 (𝑢, 𝑥1, … , 𝑥𝑖), the subgraph induced by 𝑢, 𝑦1, … , 𝑦𝑗 forms a 𝑃𝑗+1 (𝑢, 𝑦1, … , 𝑦𝑗 ), and the subgraph induced 
by 𝑢, 𝑧1, … , 𝑧𝑘 forms a 𝑃𝑘+1 (𝑢, 𝑧1, … , 𝑧𝑘), and there are no other edges in 𝑆𝑖,𝑗,𝑘; 𝑢 is called the center of 𝐻 . Thus, claw is 𝑆1,1,1, and 
𝑃𝑘 is isomorphic to 𝑆𝑘−1,0,0.

For a set  of graphs, a graph 𝐺 is called  -free if no induced subgraph of 𝐺 is contained in  . If | | = 1, say  = {𝐻}, then 
instead of {𝐻}-free, 𝐺 is called 𝐻 -free.

The following results are known:

Theorem 1. DIM is solvable in polynomial time for

(𝑖) 𝑆1,1,1-free graphs [10],

(𝑖𝑖) 𝑆1,2,3-free graphs [13],

(𝑖𝑖𝑖) 𝑆2,2,2-free graphs [12],

(𝑖𝑣) 𝑆1,2,4-free graphs [6],

(𝑣) 𝑆2,2,3-free graphs [7],

(𝑣𝑖) 𝑆1,1,5-free graphs [8],

(𝑣𝑖𝑖) 𝑃7-free graphs [4] (in this case even in linear time),

(𝑣𝑖𝑖𝑖) 𝑃8-free graphs [5],

(𝑖𝑥) 𝑃9-free graphs [9]. □

In [12], it is conjectured that for every fixed 𝑖, 𝑗, 𝑘, DIM is solvable in polynomial time for 𝑆𝑖,𝑗,𝑘-free graphs (actually, an even 
stronger conjecture is mentioned in [12]); this includes 𝑃𝑘-free graphs for 𝑘 ≥ 10.

Based on the two distinct approaches described in [5] and in [12,13], we show in this paper that DIM can be solved in polynomial 
time for 𝑃10-free graphs (generalizing the corresponding results for 𝑃7-free, for 𝑃8-free, and for 𝑃9-free graphs).

2. Definitions and basic properties

2.1. Basic notions

Let 𝐺 be a finite undirected graph without loops and multiple edges. Let 𝑉 (𝐺) or 𝑉 denote its vertex set and 𝐸(𝐺) or 𝐸 its edge 
set; let |𝑉 | = 𝑛 and |𝐸| =𝑚. For 𝑣 ∈ 𝑉 , let 𝑁(𝑣) ∶= {𝑢 ∈ 𝑉 ∶ 𝑢𝑣 ∈𝐸} denote the open neighborhood of 𝑣, and let 𝑁[𝑣] ∶=𝑁(𝑣) ∪ {𝑣}
denote the closed neighborhood of 𝑣. For 𝑈, 𝑊 ⊆ 𝑉 , with 𝑈 ∩𝑊 = ∅, let us say that 𝑈 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑊 if some vertex of 𝑈 is adjacent to 
some vertex of 𝑊 ; in particular, if 𝑈 = {𝑢}, then let us simply say that 𝑢 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑊 . For 𝑈, 𝑊 ⊆ 𝑉 , with 𝑈 ∩𝑊 = ∅, let us say that 
𝑈 has a join with 𝑊 and let us write 𝑈 1©𝑊 if every vertex of 𝑈 is adjacent to every vertex of 𝑊 ; in particular, if 𝑈 = {𝑢}, then let 
us simply write 𝑢 1©𝑊 .

A vertex set 𝑆 is independent in 𝐺 if for every pair of vertices 𝑥, 𝑦 ∈ 𝑆 , 𝑥𝑦 ∉𝐸. A vertex set 𝑄 is a clique in 𝐺 if for every pair of 
vertices 𝑥, 𝑦 ∈𝑄, 𝑥 ≠ 𝑦, 𝑥𝑦 ∈𝐸. For 𝑢𝑣 ∈𝐸 let 𝑁(𝑢𝑣) ∶=𝑁(𝑢) ∪𝑁(𝑣) ⧵ {𝑢, 𝑣} and 𝑁[𝑢𝑣] ∶=𝑁[𝑢] ∪𝑁[𝑣].

For 𝑈 ⊆ 𝑉 , let 𝐺[𝑈 ] denote the subgraph of 𝐺 induced by vertex set 𝑈 . Clearly 𝑥𝑦 ∈ 𝐸 is an edge in 𝐺[𝑈 ] exactly when 𝑥 ∈ 𝑈
and 𝑦 ∈𝑈 ; thus, 𝐺[𝑈 ] can simply be denoted by 𝑈 (if understandable).

For graphs 𝐻1, 𝐻2 with disjoint vertex sets, 𝐻1 +𝐻2 denotes the disjoint union of 𝐻1, 𝐻2, and for 𝑘 ≥ 2, 𝑘𝐻 denotes the disjoint 
union of 𝑘 copies of 𝐻 . For example, 2𝑃2 is the disjoint union of two edges.

As already mentioned, a chordless path 𝑃𝑘, 𝑘 ≥ 2, has 𝑘 vertices, say 𝑣1, … , 𝑣𝑘, and 𝑘 − 1 edges 𝑣𝑖𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑘 − 1; the length of 
𝑃𝑘 is 𝑘 − 1.

A chordless cycle 𝐶𝑘, 𝑘 ≥ 3, has 𝑘 vertices, say 𝑣1, … , 𝑣𝑘, and 𝑘 edges 𝑣𝑖𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑣𝑘𝑣1; the length of 𝐶𝑘 is 𝑘.

Let 𝐾𝑖, 𝑖 ≥ 1, denote the clique with 𝑖 vertices. Let 𝐾4 − 𝑒 or diamond be the graph with four vertices, say 𝑣1, 𝑣2, 𝑣3, 𝑢, such that 
(𝑣1, 𝑣2, 𝑣3) forms a 𝑃3 and 𝑢 1©{𝑣1, 𝑣2, 𝑣3}; its mid-edge is the edge 𝑢𝑣2.

A butterfly has five vertices, say, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑢, such that 𝑣1, 𝑣2, 𝑣3, 𝑣4 induce a 2𝑃2 with edges 𝑣1𝑣2 and 𝑣3𝑣4 (the peripheral edges

of the butterfly), and 𝑢 1©{𝑣1, 𝑣2, 𝑣3, 𝑣4}.

We often consider an edge 𝑒 = 𝑢𝑣 to be a set of two vertices; then it makes sense to say, for example, 𝑢 ∈ 𝑒 and 𝑒 ∩ 𝑒′ ≠ ∅, for 
an edge 𝑒′. For two vertices 𝑥, 𝑦 ∈ 𝑉 , let 𝑑𝑖𝑠𝑡𝐺(𝑥, 𝑦) denote the distance between 𝑥 and 𝑦 in 𝐺, i.e., the length of a shortest path 
between 𝑥 and 𝑦 in 𝐺. The distance between a vertex 𝑧 and an edge 𝑥𝑦 is the length of a shortest path between 𝑧 and 𝑥, 𝑦, i.e., 
𝑑𝑖𝑠𝑡𝐺(𝑧, 𝑥𝑦) =min{𝑑𝑖𝑠𝑡𝐺(𝑧, 𝑣) ∶ 𝑣 ∈ {𝑥, 𝑦}}. The distance between two edges 𝑒, 𝑒′ ∈𝐸 is the length of a shortest path between 𝑒 and 𝑒′, 
i.e., 𝑑𝑖𝑠𝑡𝐺(𝑒, 𝑒′) =min{𝑑𝑖𝑠𝑡𝐺(𝑢, 𝑣) ∶ 𝑢 ∈ 𝑒, 𝑣 ∈ 𝑒′}. In particular, this means that 𝑑𝑖𝑠𝑡𝐺(𝑒, 𝑒′) = 0 if and only if 𝑒 ∩ 𝑒′ ≠ ∅.

An edge subset 𝑀 ⊆𝐸 is an induced matching if the pairwise distance between its members is at least 2, that is, 𝑀 is isomorphic 
to 𝑘𝑃2 for 𝑘 = |𝑀|. Obviously, if 𝑀 is a d.i.m. then 𝑀 is an induced matching.

Clearly, 𝐺 has a d.i.m. if and only if every connected component of 𝐺 has a d.i.m.; from now on, connected components are 
mentioned as components.

Note that if 𝐺 has a d.i.m. 𝑀 , and 𝑉 (𝑀) denotes the vertex set of 𝑀 then 𝑉 ⧵ 𝑉 (𝑀) is an independent set, say 𝐼 , i.e.,
2

𝑉 has the partition 𝑉 = 𝑉 (𝑀) ∪ 𝐼. (1)
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From now on, all vertices in 𝐼 are colored white and all vertices in 𝑉 (𝑀) are colored black. According to [12], we also use the 
following notions: A partial black-white coloring of 𝑉 (𝐺) is feasible if the set of white vertices is an independent set in 𝐺 and every 
black vertex has at most one black neighbor. A complete black-white coloring of 𝑉 (𝐺) is feasible if the set of white vertices is an 
independent set in 𝐺 and every black vertex has exactly one black neighbor. Clearly, 𝑀 is a d.i.m. of 𝐺 if and only if the black 
vertices 𝑉 (𝑀) and the white vertices 𝑉 ⧵ 𝑉 (𝑀) form a complete feasible coloring of 𝑉 (𝐺).

2.2. Reduction steps, forbidden subgraphs, forced edges, and excluded edges

Various papers on this topic introduced and applied some forcing rules for reducing the graph 𝐺 to a subgraph 𝐺′ such that 𝐺 has 
a d.i.m. if and only if 𝐺′ has a d.i.m., based on the condition that for a d.i.m. 𝑀 , 𝑉 has the partition 𝑉 = 𝑉 (𝑀) ∪ 𝐼 such that all 
vertices in 𝑉 (𝑀) are black and all vertices in 𝐼 are white (recall (1)).

A vertex 𝑣 ∈ 𝑉 is forced to be black if for every d.i.m. 𝑀 of 𝐺, 𝑣 ∈ 𝑉 (𝑀). Analogously, a vertex 𝑣 ∈ 𝑉 is forced to be white if for 
every d.i.m. 𝑀 of 𝐺, 𝑣 ∉ 𝑉 (𝑀).

An edge 𝑒 ∈𝐸 is a forced edge of 𝐺 if for every d.i.m. 𝑀 of 𝐺, 𝑒 ∈𝑀 . Analogously, an edge 𝑒 ∈𝐸 is an excluded edge of 𝐺 if for 
every d.i.m. 𝑀 of 𝐺, 𝑒 ∉𝑀 .

For the correctness of the reduction steps, we have to argue that 𝐺 has a d.i.m. if and only if the reduced graph 𝐺′ has one 
(provided that no contradiction arises in the vertex coloring, i.e., it is feasible).

Then let us introduce two reduction steps which will be applied later.

Vertex Reduction. Let 𝑢 ∈ 𝑉 (𝐺). If 𝑢 is forced to be white, then

(𝑖) color black all neighbors of 𝑢, and

(𝑖𝑖) remove 𝑢 from 𝐺.

Let 𝐺′ be the reduced subgraph. Clearly, Vertex Reduction is correct, i.e., 𝐺 has a d.i.m. if and only if 𝐺′ has a d.i.m.

Edge Reduction. Let 𝑢𝑣 ∈𝐸(𝐺). If 𝑢 and 𝑣 are forced to be black, then

(𝑖) color white all neighbors of 𝑣 and of 𝑣 (other than 𝑢 and 𝑣), and

(𝑖𝑖) remove 𝑢 and 𝑣 (and the edges containing 𝑢 or 𝑣) from 𝐺.

Again, clearly, Edge Reduction is correct, i.e., 𝐺 has a d.i.m. if and only if the reduced subgraph 𝐺′ has a d.i.m.

The subsequent notions and observations lead to some possible reductions (some of them are mentioned e.g. in [3–5]).

Observation 1 ([3–5]). Let 𝑀 be a d.i.m. of 𝐺.

(𝑖) 𝑀 contains at least one edge of every odd cycle 𝐶2𝑘+1 in 𝐺, 𝑘 ≥ 1, and exactly one edge of every odd cycle 𝐶3, 𝐶5, 𝐶7 in 𝐺.

(𝑖𝑖) No edge of any 𝐶4 can be in 𝑀 .

(𝑖𝑖𝑖) For each 𝐶6 either exactly two or none of its edges are in 𝑀 .

Proof. See e.g. Observation 2 in [4]. □

Since by Observation 1 (𝑖), every triangle contains exactly one 𝑀 -edge, and the pairwise distance of 𝑀 -edges is at least 2, we 
have:

Corollary 1. If 𝐺 has a d.i.m. then 𝐺 is 𝐾4-free. □

Assumption 1. From now on, by Corollary 1, we assume that the input graph is 𝐾4-free (else it has no d.i.m.).

Clearly, it can be checked (directly) in polynomial time whether the input graph is 𝐾4-free.

By Observation 1 (𝑖) with respect to 𝐶3 and by the distance property, we have the following:

Observation 2. The mid-edge of any diamond in 𝐺 and the two peripheral edges of any induced butterfly are forced edges of 𝐺. □

Assumption 2. From now on, by Observation 2, we assume that the input graph is (diamond, butterfly)-free.

In particular, we can apply the Edge Reduction to each mid-edge of any induced diamond and to each peripheral edge of any 
3

induced butterfly; that can be done in polynomial time.
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2.3. The distance levels of an 𝑀 -edge 𝑥𝑦 in a 𝑃3

Based on [5], we first describe some general structure properties for the distance levels of an edge in a d.i.m. 𝑀 of 𝐺. Since 𝐺 is 
(𝐾4, diamond, butterfly)-free, we have:

Observation 3. For every vertex 𝑣 of 𝐺, 𝑁(𝑣) is the disjoint union of isolated vertices and at most one edge. Moreover, for every edge 
𝑥𝑦 ∈𝐸, there is at most one common neighbor of 𝑥 and 𝑦. □

Since it is trivial to check whether 𝐺 has a d.i.m. 𝑀 with exactly one edge, from now on we can assume that |𝑀| ≥ 2. In particular, 
since 𝐺 is connected and butterfly-free, we have (see also [5]):

Observation 4. If |𝑀| ≥ 2 then there is an edge in 𝑀 which is contained in a 𝑃3 of 𝐺. □

Proof. Let 𝑥𝑦 ∈𝑀 and assume that 𝑥𝑦 is not part of an induced 𝑃3 of 𝐺. Since 𝐺 is connected and |𝑀| ≥ 2, (𝑁(𝑥) ∪𝑁(𝑦)) ⧵{𝑥, 𝑦} ≠ ∅, 
and since we assume that 𝑥𝑦 is not part of an induced 𝑃3 of 𝐺 and 𝐺 is 𝐾4- and diamond-free, there is exactly one neighbor of 𝑥𝑦, 
namely a common neighbor, say 𝑧 of 𝑥 and 𝑦. Again, since |𝑀| ≥ 2, 𝑧 has a neighbor 𝑎 ∉ {𝑥, 𝑦}, and since 𝐺 is 𝐾4- and diamond-free, 
𝑎, 𝑥, 𝑦, 𝑧 induce a paw. Clearly, the edge 𝑧𝑎 is excluded and has to be dominated by a second 𝑀 -edge, say 𝑎𝑏 ∈𝑀 but now, since 𝐺
is butterfly-free, 𝑧𝑏 ∉𝐸. Thus, 𝑧, 𝑎, 𝑏 induce a 𝑃3 in 𝐺, and Observation 4 is shown. □

Remark 1. In what follows, let us fix an edge 𝑥𝑦 in the solution, i.e. let us fix 𝑥𝑦 ∈𝑀 . In particular, according to the assumption 
that |𝑀| ≥ 2 and to Observation 4, let us fix an edge 𝑥𝑦 in order that there is a vertex 𝑟 such that {𝑟, 𝑥, 𝑦} induce a 𝑃3 with edge 
𝑟𝑥 ∈ 𝐸. Then, we have that 𝑥 and 𝑦 are black, and that could lead to a feasible black-white coloring of 𝑉 (𝐺) [with vertices 𝑥 and 𝑦
black] if no contradiction arises. ⋄

Let us write 𝑁0 =𝑁0(𝑥𝑦) = {𝑥, 𝑦}, and for 𝑖 ≥ 1 let

𝑁𝑖 =𝑁𝑖(𝑥𝑦) = {𝑧 ∈ 𝑉 ∶ 𝑑𝑖𝑠𝑡𝐺(𝑧,𝑥𝑦) = 𝑖}

denote the distance levels of 𝑥𝑦.
Then we start by considering the partition of 𝑉 into 𝑁𝑖, 𝑖 ≥ 0, with respect to the edge 𝑥𝑦 (under the assumption that 𝑥𝑦 ∈𝑀).

If an edge 𝑥′𝑦′ ∈𝐸 is contained in every d.i.m. 𝑀 of 𝐺 with 𝑥𝑦 ∈𝑀 , we say that 𝑥′𝑦′ is an 𝑥𝑦-forced 𝑀 -edge.

If a vertex 𝑣 ∈ 𝑉 is contained in no d.i.m. 𝑀 of 𝐺 with 𝑥𝑦 ∈𝑀 , we say that 𝑣 is a 𝑥𝑦-excluded 𝑀 -vertex.

In the following description which is based on the assumption of Remark 1:

— whenever a 𝑥𝑦-forced 𝑀 -edge, say 𝑥′𝑦′, is detected, we re-define 𝑁0 ∶=𝑁0 ∪ {𝑥′𝑦′} and consequently re-define the distance 
levels with respect to 𝑁0;

— whenever a 𝑥𝑦-excluded 𝑀 -vertex, say 𝑣, is detected, we apply the Vertex Reduction to 𝑣 only if such a reduction does not 
disconnect the graph (in fact since we have fixed 𝑥𝑦 ∈𝑀 , if such a reduction disconnects the graphs, then the approach of “fixing 
an edge in the solution” could not be iterated in an efficient way).

Clearly, by Observation 4 and since 𝐺 is 𝑃10-free, we have:

𝑁𝑘 = ∅ for every 𝑘 ≥ 8. (2)

Recall that by (1), 𝑉 = 𝑉 (𝑀) ∪ 𝐼 is a partition of 𝑉 where 𝑉 (𝑀) is the set of black vertices and 𝐼 is the set of white vertices 
which is independent.

Since we assume that 𝑥𝑦 ∈𝑀 (and is an edge in a 𝑃3), clearly, 𝑁1 ⊆ 𝐼 and thus:

𝑁1 is an independent set of white vertices. (3)

Moreover, no edge between 𝑁1 and 𝑁2 is in 𝑀 . Since 𝑁1 ⊆ 𝐼 and all neighbors of vertices in 𝐼 are in 𝑉 (𝑀), we have 𝑁2 ⊆ 𝑉 (𝑀)
and thus:

𝐺[𝑁2] is the disjoint union of edges and isolated vertices. (4)

Let 𝑀2 denote the set of edges 𝑢𝑣 ∈ 𝐸 with 𝑢, 𝑣 ∈𝑁2 and let 𝑆2 = {𝑢1, … , 𝑢𝑘} denote the set of isolated vertices in 𝑁2; 𝑁2 =
𝑉 (𝑀2) ∪ 𝑆2 is a partition of 𝑁2. Obviously:

𝑀2 ⊆𝑀 and 𝑆2 ⊆ 𝑉 (𝑀). (5)

Obviously, by (5), we have:

Every edge in 𝑀2 is an 𝑥𝑦-forced 𝑀-edge. (6)

Thus, from now on, as one can re-define 𝑁0 by involving 𝑀2-edges, we can assume that 𝑉 (𝑀2) = ∅, i.e., 𝑁2 = 𝑆2 = {𝑢1, … , 𝑢𝑘}. 
4

For every 𝑖 ∈ {1, … , 𝑘}, let 𝑢′
𝑖
∈𝑁3 denote the 𝑀 -mate of 𝑢𝑖 (i.e., 𝑢𝑖𝑢′𝑖 ∈𝑀). Let 𝑀3 = {𝑢𝑖𝑢′𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} denote the set of 𝑀 -edges 
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with one endpoint in 𝑆2 (and the other endpoint in 𝑁3). Obviously, by (5) and the distance condition for a d.i.m. 𝑀 , the following 
holds:

No edge with both ends in 𝑁3 and no edge between 𝑁3 and 𝑁4 is in 𝑀. (7)

As a consequence of (7) and the fact that every triangle contains exactly one 𝑀 -edge (recall Observation 1 (𝑖)), we have:

For every 𝐶3 𝑎𝑏𝑐 with 𝑎 ∈𝑁3, and 𝑏, 𝑐 ∈𝑁4, 𝑏𝑐 ∈𝑀 is an 𝑥𝑦-forced 𝑀-edge. (8)

This means that for the edge 𝑏𝑐, one can re-define 𝑁0 by involving edge 𝑏𝑐, and from now on, we can assume that there is no 
such triangle 𝑎𝑏𝑐 with 𝑎 ∈𝑁3 and 𝑏, 𝑐 ∈𝑁4, i.e., for every edge 𝑢𝑣 ∈𝐸 in 𝑁4:

𝑁(𝑢) ∩𝑁(𝑣) ∩𝑁3 = ∅. (9)

According to (5) and the assumption that 𝑉 (𝑀2) = ∅ (recall 𝑁2 = {𝑢1, … , 𝑢𝑘}), let:

𝑇𝑜𝑛𝑒 ∶= {𝑡 ∈𝑁3 ∶ |𝑁(𝑡) ∩𝑁2| = 1},

𝑇𝑖 ∶= 𝑇𝑜𝑛𝑒 ∩𝑁(𝑢𝑖), 1 ≤ 𝑖 ≤ 𝑘, and

𝑆3 ∶=𝑁3 ⧵ 𝑇𝑜𝑛𝑒.

By definition, 𝑇𝑖 is the set of private neighbors of 𝑢𝑖 ∈𝑁2 in 𝑁3 (note that 𝑢′
𝑖
∈ 𝑇𝑖), 𝑇1 ∪… ∪𝑇𝑘 is a partition of 𝑇𝑜𝑛𝑒, and 𝑇𝑜𝑛𝑒 ∪𝑆3

is a partition of 𝑁3.

Let us report from [5] the following lemma.

Lemma 1 ([5]). The following statements hold:

(𝑖) For all 𝑖 ∈ {1, … , 𝑘}, 𝑇𝑖 ∩ 𝑉 (𝑀) = {𝑢′
𝑖
}.

(𝑖𝑖) For all 𝑖 ∈ {1, … , 𝑘}, 𝑇𝑖 is the disjoint union of vertices and at most one edge.

(𝑖𝑖𝑖) 𝐺[𝑁3] is bipartite.

(𝑖𝑣) 𝑆3 ⊆ 𝐼 , i.e., 𝑆3 is an independent subset of white vertices.

(𝑣) If a vertex 𝑡𝑖 ∈ 𝑇𝑖 sees two vertices in 𝑇𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, … , 𝑘}, then 𝑢𝑖𝑡𝑖 ∈𝑀 is an 𝑥𝑦-forced 𝑀 -edge. □

Then let us introduce the following forcing rules (which are correct).

Since no edge in 𝑁3 is in 𝑀 (recall (7)), we have:

(R1) For any vertex 𝑣 ∈𝑁3, if 𝑣 is black (white), then all vertices of 𝑁(𝑣) ∩ (𝑁3 ∪𝑁4) must be colored white (black).

Moreover, by Lemma 1, we have:

(R2) Every 𝑇𝑖, 𝑖 ∈ {1, … , 𝑘}, should contain exactly one vertex which is black. Thus, if 𝑡 ∈ 𝑇𝑖 is black then all the remaining vertices 
in 𝑇𝑖 ⧵ {𝑡} must be colored white.

(R3) If all but one vertices of 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑘, are white and the final vertex 𝑡 ∈ 𝑇𝑖 is not yet colored, then 𝑡 must be colored black.

2.4. The main body of the solution method

Let us say that, for any graph 𝐺 = (𝑉 , 𝐸), a central vertex of 𝐺 is any vertex 𝑣 ∈ 𝑉 such that 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝐺(𝑣, 𝑢) ∶ 𝑢 ∈ 𝑉 } ≤
𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝐺(𝑣′, 𝑢) ∶ 𝑢 ∈ 𝑉 } for every 𝑣′ ∈ 𝑉 .

Theorem 2 ([1]). Every connected 𝑃𝑡-free graph 𝐺 = (𝑉 , 𝐸) admits a vertex 𝑣 ∈ 𝑉 such that 𝑑𝑖𝑠𝑡𝐺(𝑣, 𝑢) ≤
⌊
𝑡∕2

⌋
for every 𝑢 ∈ 𝑉 . □

Let 𝐺 = (𝑉 , 𝐸) be a connected 𝑃10-free graph. Then let 𝑣 ∈ 𝑉 be any central vertex of 𝐺. Note that, by Theorem 2, 𝑑𝑖𝑠𝑡𝐺(𝑣, 𝑢) ≤ 5
for every 𝑢 ∈ 𝑉 .

From one hand, for every edge 𝑣𝑢 of 𝐺, with 𝑢 ∈𝑁(𝑣), one has 𝑁𝑘(𝑣𝑢) = ∅ for any 𝑘 ≥ 5; furthermore, by the choice of 𝑣, by 
Assumption 1 and by Assumption 2, one has that [unless 𝐺 is a triangle] edge 𝑣𝑢 is contained in an induced 𝑃3 of 𝐺: in fact, if 𝑣𝑢
is contained in no induced 𝑃3 of 𝐺, then 𝑁(𝑣𝑢) contains exactly one vertex (else an induced 𝐾4 or an induced diamond arises), say 
vertex 𝑧, but then 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝐺(𝑧, 𝑣̄) ∶ 𝑣̄ ∈ 𝑉 } < 𝑚𝑎𝑥{𝑑𝑖𝑠𝑡𝐺(𝑣, 𝑣̄) ∶ 𝑣̄ ∈ 𝑉 }, which contradicts the fact that 𝑣 is a central vertex of 𝐺; it 
follows that, by Remark 1, all properties introduced in the previous subsection for edge 𝑥𝑦 hold for edge 𝑣𝑢 as well.

From the other hand, if one could check, for any edge 𝑣𝑢, with 𝑢 ∈𝑁(𝑣), whether there is a d.i.m. 𝑀 ′ of 𝐺 with 𝑣𝑢 ∈𝑀 ′, then 
one could conclude that: either 𝐺 has a d.i.m. [with 𝑣 ∈ 𝑉 (𝑀)], or 𝐺 has no d.i.m. 𝑀 with 𝑣 ∈ 𝑉 (𝑀); in particular, in the latter 
case, one can apply the Vertex Reduction to 𝑣 and thus remove 𝑣 from 𝐺.
5

Then let us introduce the following recursive algorithm which formalizes the approach we will adopt to check if 𝐺 has a d.i.m.
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Algorithm DIM(𝐺)

Input. A connected 𝑃10-free graph 𝐺 = (𝑉 , 𝐸) which enjoys Assumption 1 and Assumption 2.

Output. A d.i.m. of 𝐺 or the proof that 𝐺 has no d.i.m.

(Step 1) Compute any central vertex, say 𝑥, of 𝐺.

(Step 2) For each edge 𝑥𝑦, with 𝑦 ∈𝑁(𝑥), of 𝐺 (recall that 𝑥𝑦 is contained in a 𝑃3 of 𝐺) do:

(2.1) compute the distance levels 𝑁𝑖 with respect to 𝑥𝑦 and re-define iteratively 𝑁0 by involving those 𝑥𝑦-forced edges as 
shown above;

— if no contradiction arose, according to (3)-(4) or to Lemma 1(ii)-(iv) or to forcing rules (R1)-(R3), then go to Step (2.2);

— else consider the next edge;

(2.2) check if 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 ; if 𝑦𝑒𝑠, then return it, and STOP;

(Step 3) Apply the Vertex Reduction to 𝑥 and thus remove 𝑥 from 𝐺; let 𝐺′ denote the resulting graph, where the neighbors of 𝑥
in 𝐺 are colored by black; if 𝐺′ is disconnected, then execute Algorithm DIM(𝐻) for each component 𝐻 of 𝐺′; else, go to 
Step 2, with 𝐺 ∶=𝐺′.

(Step 4) Return “𝐺 has no d.i.m.” and STOP. □

Then, by the above, Algorithm DIM(𝐺) is correct and can be executed in polynomial time as soon as Step (2.2) can be so.

Then in what follows let us show that Step (2.2) can be solved in polynomial time, with the agreement that 𝐺 enjoys Assumption 1

and Assumption 2, and that no contradiction arose, according to (3)-(4) or to Lemma 1(ii)-(iv) or to forcing rules (R1)-(R3).

For that we consider the cases 𝑁4 = ∅ and 𝑁4 ≠ ∅.

3. The case 𝑵𝟒 = ∅

In this section let us show that, if 𝑁4 = ∅, then one can check in polynomial time whether 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 .

First let us introduce some assumptions, based on the fact that 𝑁0 can be re-defined [by involving 𝑥𝑦-forced 𝑀 -edges] and on 
the Vertex Reduction [whose application will not disconnect the graph, by construction, and since 𝑁4 = ∅], in order to simplify the 
scenario.

By Lemma 1 (𝑖𝑣) and the Vertex Reduction for the white vertices of 𝑆3 , we can assume:

(A1) 𝑆3 = ∅, i.e., 𝑁3 = 𝑇1 ∪… ∪ 𝑇𝑘.

By Lemma 1 (𝑣), we can assume:

(A2) For 𝑖, 𝑗 ∈ {1, … , 𝑘}, 𝑖 ≠ 𝑗, every vertex 𝑡𝑖 ∈ 𝑇𝑖 has at most one neighbor in 𝑇𝑗 .

In particular, if for some 𝑖 ∈ {1, … , 𝑘}, 𝑇𝑖 = ∅, then there is no d.i.m. 𝑀 of 𝐺 with 𝑥𝑦 ∈𝑀 , and if |𝑇𝑖| = 1, say 𝑇𝑖 = {𝑡𝑖}, then 𝑢𝑖𝑡𝑖
is an 𝑥𝑦-forced 𝑀 -edge. Thus, we can assume:

(A3) For every 𝑖 ∈ {1, … , 𝑘}, |𝑇𝑖| ≥ 2.

Let us say that a vertex 𝑡 ∈ 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑘, is an out-vertex of 𝑇𝑖 if it is adjacent to some vertex of 𝑇𝑗 with 𝑗 ≠ 𝑖, and 𝑡 is an in-vertex

of 𝑇𝑖 otherwise.

Recall that, by Lemma 1 (𝑖𝑖), 𝑇𝑖 is the disjoint union of vertices and at most one edge say 𝑒𝑖. If 𝐺[𝑇𝑖] contains 𝑒𝑖, then at least one 
vertex of 𝑒𝑖 is black, so that the isolated vertices of 𝐺[𝑇𝑖] are white and can be removed, i.e., one can apply the Vertex Reduction 
to such isolated vertices; it follows that, if vertices of 𝑒𝑖, say 𝑡′ and 𝑡′′, are in-vertices, then either 𝑡′ or 𝑡′′ is black (indifferently by 
symmetry); then one can re-define 𝑁0 by involving 𝑢𝑖𝑡′ (or indifferently, by symmetry, by involving 𝑢𝑖𝑡′′). If 𝐺[𝑇𝑖] does not contain 
𝑒𝑖, then for finding a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 one can remove all but one in-vertices of 𝑇𝑖, i.e., one can apply the Vertex Reduction to 
all but one in-vertices in 𝑇𝑖.

Thus, let us assume:

(A4) For every 𝑖 ∈ {1, … , 𝑘}, 𝑇𝑖 has at most one in-vertex.

Lemma 2. Assume that 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 . Then there are no three edges between 𝑇𝑖 and 𝑇𝑗 , 𝑖 ≠ 𝑗, and if there are two edges 
between 𝑇𝑖 and 𝑇𝑗 , say 𝑡𝑖𝑡𝑗 ∈𝐸 and 𝑡′

𝑖
𝑡′
𝑗
∈𝐸 for 𝑡𝑖, 𝑡′𝑖 ∈ 𝑇𝑖 and 𝑡𝑗 , 𝑡′𝑗 ∈ 𝑇𝑗 then any other vertex in 𝑇𝑖 or 𝑇𝑗 is white.

Proof. First, suppose to the contrary that there are three edges between 𝑇1 and 𝑇2, say 𝑡1𝑡2 ∈ 𝐸, 𝑡′1𝑡
′
2 ∈ 𝐸, and 𝑡′′1 𝑡

′′
2 ∈ 𝐸 for 

𝑡𝑖, 𝑡′𝑖 , 𝑡
′′
𝑖
∈ 𝑇𝑖, 𝑖 = 1, 2. Then 𝑡1 is black if and only if 𝑡2 is white, 𝑡′1 is black if and only if 𝑡′2 is white, and 𝑡′′1 is black if and only if 𝑡′′2 is 

white. Without loss of generality, assume that 𝑡1 is black, and 𝑡2 is white. Then 𝑡′1 is white, and 𝑡′2 is black, but now, 𝑡′′1 and 𝑡′′2 are 
white, which is a contradiction.

Now, if there are exactly two such edges between 𝑇1 and 𝑇2, say 𝑡1𝑡2 ∈𝐸, 𝑡′1𝑡
′
2 ∈𝐸, then again, 𝑡1 or 𝑡′1 is black as well as 𝑡2 or 𝑡′2
6

is black, and thus, every other vertex in 𝑇1 or 𝑇2 is white.
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Thus Lemma 2 is shown. □

By Lemma 2, we can assume:

(A5) For 𝑖, 𝑗 ∈ {1, … , 𝑘}, 𝑖 ≠ 𝑗, there are at most two edges between 𝑇𝑖 and 𝑇𝑗 .

Let us point out that (A1) and (A3) hold under the assumptions of the case 𝑁4 = ∅, which warrants that the Vertex Reduction 
does not disconnect the graph, while (A2), (A4), (A5) hold generally.

In the rest of this section let assume that (A1)-(A5) hold.

Let us write 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 = {𝑇1, … , 𝑇𝑘}. Let us assume that 𝐺[{𝑢1, … , 𝑢𝑘} ∪ 𝑇1 ∪… ∪ 𝑇𝑘] is connected, without loss of generality, else 
one can split the problem for the corresponding components. Then let us consider the following two exhaustive cases.

Case 1. There are no vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which induce a 𝑃3 in 𝐺.

Let us define a multi-graph 𝐹 = (𝑇𝑓𝑎𝑚𝑖𝑙𝑦, 𝐸′) as follows: for any 𝑇𝑖, 𝑇𝑗 ∈ 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 (with 𝑖 ≠ 𝑗), if in 𝐺 there is an edge from vertices 
of 𝑇𝑖 to vertices of 𝑇𝑗 , then in 𝐹 there is an edge from node 𝑇𝑖 to node 𝑇𝑗 ; in particular [according to (A2)], if in 𝐺 there are two 
edges from vertices of 𝑇𝑖 to vertices of 𝑇𝑗 , then in 𝐹 there are two edges from node 𝑇𝑖 to node 𝑇𝑗 (in this case node 𝑇𝑖 and node 𝑇𝑗
form a cycle of 𝐹 ).

Let us recall that a 𝑏𝑟𝑖𝑑𝑔𝑒 of a connected multi-graph is an edge of the multi-graph whose removal disconnects the multi-graph.

Let us recall that a multi-graph is 2-edge-connected if it is connected and if it has no bridge [so that each edge of the multi-graph 
belongs to a cycle of the multi-graph].

Let us say that an induced subgraph of 𝐹 is a blue subgraph of 𝐹 if it is a maximal 2-edge-connected subgraph of 𝐺.

Then 𝑉 (𝐹 ) can be partitioned into {𝑉 ′(𝐹 ), 𝑉 ′′(𝐹 )} where:

:: each node of 𝑉 ′(𝐹 ) belongs to some blue subgraph of 𝐹 ; in particular 𝑉 ′(𝐹 ) can be uniquely partitioned in order that each 
member of such a partition induces a blue subgraph of 𝐹 , that is, the family of blue subgraphs of 𝐹 is unique and its members have 
mutually no node of 𝐹 in common; let say that every node of 𝑉 ′(𝐹 ) is a blue node of 𝐹 ;

:: each node of 𝑉 ′′(𝐹 ) belongs to no blue subgraph of 𝐹 ; in particular 𝑉 ′(𝐹 ) induces a forest of 𝐹 ; let say that every node of 
𝑉 ′′(𝐹 ) is a green node of 𝐹 .

P1. If all nodes of 𝐹 are green, then 𝐺 has a d.i.m. containing 𝑥𝑦.

Proof. Note that in this case, as remarked above, each connected component of 𝐹 is a tree. Then let us assume without loss of 
generality that 𝐹 is a (rooted) tree, i.e., 𝐹 is connected. Let node 𝑇𝑖 be any leaf of 𝐹 and let node 𝑇𝑗 be the neighbor of node 𝑇𝑖 in 
𝐹 . Then, by definition of green node, there is exactly one edge in 𝐺 between 𝑇𝑖 and 𝑇𝑗 , say edge 𝑡𝑖𝑡𝑗 with 𝑡𝑖 ∈ 𝑇𝑖 and 𝑡𝑗 ∈ 𝑇𝑗 .

Claim 1. Vertices of 𝑇𝑖 are ready for any coloring, that is, for any choice of the color of 𝑡𝑗 there is a feasible coloring of vertices of 𝑇𝑖.

Proof. By construction, 𝑡𝑖 is the only out-vertex of 𝑇𝑖; on the other hand, by (A4), 𝑇𝑖 has at most one in-vertex, say 𝑡𝑖; in particular, 
by (A3), vertex 𝑡𝑖 does exist; then for any color of 𝑡𝑗 , there is a feasible coloring of vertices of 𝑇𝑖, in details: 𝑡𝑖 has a color different to 
that of 𝑡𝑗 , while 𝑡𝑖 has the same color as that of 𝑡𝑗 . □

Then one can remove node 𝑇𝑖 from 𝐹 and iterate this argument for any leaf in the resulting tree. It follows that, for any feasible 
coloring of the vertices of the root of 𝐹 [which does exist by Lemma 1 (𝑖𝑖)], there is a feasible coloring of the vertices of the nodes 
of 𝐹 . This completes the proof of P1. □

P2. Let 𝐵 be any blue subgraph of 𝐹 . Then there are at most two feasible colorings of 𝐵 and they can be computed in polynomial 
time.

Proof. Let 𝐶 be any induced cycle of 𝐵.

Claim 1. If 𝑇𝑖, 𝑇𝑗 , 𝑇ℎ are three nodes of 𝐶 inducing a 𝑃3 of 𝐶 , say with center say 𝑇𝑗 (without loss of generality by symmetry), then with 
reference to graph 𝐺 one has that: (1) no vertex of 𝑇𝑗 has a neighbor both in 𝑇𝑖 and in 𝑇ℎ; (2) there are two distinct vertices, say 𝑡𝑗 , 𝑡′𝑗 ∈ 𝑇𝑗 , 
such that vertex 𝑡𝑗 has a neighbor in 𝑇𝑖 (which is a nonneighbor of 𝑡′

𝑗
) and vertex 𝑡′

𝑗
has a neighbor in 𝑇ℎ (which is a nonneighbor of 𝑡𝑗).

Proof. Statement (1) follows by assumption of Case 1 and since 𝐺[𝑁3] is bipartite by Lemma 1 (𝑖𝑖𝑖). Statement (2) follows by 
assumption of Claim 1, by statement (1), and by (A2). □

Claim 2. Let 𝑇𝑎, 𝑇𝑏 be adjacent nodes in 𝐶 and let 𝑡𝑎𝑡𝑏 be any edge in 𝐺, between 𝑇𝑎 and 𝑇𝑏, with 𝑡𝑎 ∈ 𝑇𝑎 and 𝑡𝑏 ∈ 𝑇𝑏. Then:

— if the color of 𝑡𝑎 is fixed black [and thus the color of all vertices of 𝑇𝑎 ⧵ {𝑡𝑎} is forced to be white by (R2)], then the color of all vertices 
7

of each node of 𝐵 is forced by (R1)-(R3);
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— if the color of 𝑡𝑎 is fixed white [and thus the color of 𝑡𝑏 is forced to be black by (R1) and the color of all vertices of 𝑇𝑏 ⧵ {𝑡𝑏} is forced 
to be white by (R2)], then the color of all vertices of each node of 𝐵 is forced by (R1)-(R3).

Proof. It follows by construction, by definition of (R1)-(R3), and by Claim 1. □

Claim 3. If all vertices of a node of 𝐶 are colored [i.e. have a given feasible coloring], then the color of all vertices of each node of 𝐶 is 
forced.

Proof. It follows by construction, by Claim 1, and by Claim 2. □

Let us conclude the proof of P2. If 𝐵 is an induced cycle, then by Claim 1 and by Claim 2 one has that 𝐵 has at most two feasible 
colorings [and they can be computed in polynomial time]. If 𝐵 is not an induced cycle, then one can proceed as follows: take any 
induced cycle, say 𝑄, of 𝐵; let us write 𝑄 =𝑄0; then let us define a procedure, with |𝑉 (𝐵)| − |𝑉 (𝑄)| steps, such that at each step 
ℎ = 1, … , |𝑉 (𝐵)| − |𝑉 (𝑄)|, the procedure defines subgraph 𝑄ℎ =𝐵[𝑉 (𝑄ℎ−1) ∪{𝑣ℎ}], where 𝑣ℎ is any node of 𝐵[𝑉 (𝐵) ⧵𝑉 (𝑄ℎ−1)] such 
that 𝑣ℎ is contained in at least one cycle of 𝐵[𝑉 (𝑄ℎ−1) ∪ {𝑣ℎ}]; let us observe that, since 𝐵 is 2-edge-connected, such a procedure is 
well defined; summarizing, by Claim 1 and by Claim 2, one has that 𝑄 has at most two feasible colorings [and they can be computed 
in polynomial time], while by Claim 3 and by definition of the above procedure one has that, for each such two feasible colorings of 
𝑄, the color of all vertices of each node of 𝐵 is forced [and that can be computed in polynomial time].

This completes the proof of P2. □

Then by P2, for any blue subgraph 𝐵 of 𝐹 such that there is at least one feasible coloring of 𝐵, the set of vertices of nodes of 𝐵
can be partitioned into {𝑄1(𝐵), 𝑄2(𝐵)} where:

— 𝑄1(𝐵) is formed by those vertices of nodes of 𝐵 which have the same color for any feasible coloring of 𝐵, and

— 𝑄2(𝐵) is formed by the other vertices of nodes of 𝐵; note that, by P2, 𝑄2(𝐵) is nonempty only when there are exactly two 
feasible colorings of 𝐵.

Then let us introduce a method to check whether vertices of nodes of 𝐹 admit a feasible coloring.

Preliminary Step.

:: Compute the family, say , of blue subgraphs of 𝐹 .

:: Construct the bridge-block tree of 𝐹 , say 𝐹 ∗, that is:
(i) each member of  is contracted into a respective node of 𝐹 ∗ and is called a big blue node of 𝐹 ∗; each green node of 𝐹 remains 

in 𝐹 ∗ and is called a green node of 𝐹 ∗; then each node of 𝐹 ∗ is either a big blue node of 𝐹 ∗ or a green node of 𝐹 ∗;

(ii) in 𝐹 ∗ two nodes are adjacent if and only if in 𝐺 there is an edge [i.e. a bridge of 𝐺] between two respective vertices of such 
two nodes; in particular in 𝐹 ∗, between two adjacent nodes, there is exactly one edge;

(iii) 𝐹 ∗ is a tree; then let us fix any vertex of 𝐹 ∗ as the 𝑟𝑜𝑜𝑡 of 𝐹 ∗;

(iv) for any node 𝑋 of 𝐹 ∗ different to the root of 𝐹 ∗, let us say that the vertex of node 𝑋 which is adjacent (in 𝐺) to the vertex 
of the ancestor of 𝑋 is the up-vertex of 𝑋, denoted as 𝑢(𝑋), and that the vertex of the ancestor of 𝑋 which is adjacent (in 𝐺) to the 
up-vertex of 𝑋 is the ancestor-vertex for 𝑋. □

The generic step of the method focuses on any leaf of 𝐹 ∗, i.e., it checks such a leaf (both concerning the forcing conditions which 
it has received possibly by previous steps and concerning the forcing conditions which it gives possibly for the next steps). After such 
a step/check, the leaf will be removed from 𝐹 ∗; then such a step/check is iterated for any leaf of the resulting tree; the method ends 
when it focuses on the root of 𝐹 ∗.

Generic Step.

Input: any leaf 𝑋 of 𝐹 ∗.

:: if 𝑋 is a green node of 𝐹 ∗, then:

:::: check if some vertex of 𝑋 is colored (by previous steps); then, according to this possible partial coloring, check by Lemma 1

(𝑖𝑖) if there exist two feasible colorings of vertices of 𝑋 in which the color of 𝑢(𝑋) is assumed respectively black and white; if none 
of such feasible colorings exist, then return “𝐺 has no d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀”; if there exists only a feasible coloring in which the 
color of 𝑢(𝑋) is assumed black (respectively, white), then fix the color of 𝑢(𝑋) as black (respectively, as white);

:::: if 𝑢(𝑋) has a fixed color (by the above), then color the ancestor-vertex for 𝑋 by a color different to the color of 𝑢(𝑋);
:::: if 𝑢(𝑋) has not a fixed color, then do not color the ancestor-vertex for 𝑋; then 𝑢(𝑋), and generally 𝑋, is ready for any color of 

the ancestor-vertex for 𝑋;

:: if 𝑋 is a big blue node of 𝐹 ∗, i.e. let 𝐵 be the member of  which has been contracted into 𝑋, then:

:::: check if some vertex of 𝑋 is colored (by previous steps); then, according to this possible partial coloring, compute the (at most 
two) possible feasible colorings of 𝐵 by P2; if 𝐵 does not admit any feasible coloring, then return “𝐺 has no d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀”;
8

:::: if 𝑢(𝑋) belongs to 𝑄1(𝐵), then color the ancestor-vertex for 𝑋 by a color different to the color of 𝑢(𝑋);
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:::: if 𝑢(𝑋) belongs to 𝑄2(𝐵), then do not color the ancestor-vertex for 𝑋; then 𝑢(𝑋), and generally 𝑋, is ready for any color of the 
ancestor-vertex for 𝑋. □

Then let us formalize the main body of the method.

Main Body

1. Execute the Preliminary Step.

2. While 𝐹 ∗ has a leaf say 𝑋 do:

:: execute the Generic Step for 𝑋;

:: remove 𝑋 from 𝐹 ∗, i.e., set 𝐹 ∗ ∶= 𝐹 ∗ −𝑋;

:: if 𝑋 is the root of 𝐹 ∗, then: if there is a feasible coloring of 𝑋, then return “𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀”; if there is no 
feasible coloring of 𝑋, then return “𝐺 has no d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀”. □

Then the above method is correct and can be executed in polynomial time by the above.

This completes the proof for Case 1: let us point out that the assumption that 𝐺 is 𝑃10-free was not used for Case 1, i.e., the above 
result holds for the general case.

Case 2. There are vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which induce a 𝑃3 in 𝐺.

P3. One can check if 𝐺 has a d.i.m. containing 𝑥𝑦 in polynomial time in the following cases:

(a) there are vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, 𝑡𝑙 ∈ 𝑇𝑙 , with 𝑖, 𝑗, ℎ, 𝑙 ∈ {1, … , 𝑘} mutually distinct, which induce a 𝑃4 in 𝐺 namely 
𝑡𝑖 − 𝑡𝑗 − 𝑡ℎ − 𝑡𝑙 ;

(b) there are vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ, 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which induce a 𝑃4 in 𝐺 namely 𝑡𝑖 − 𝑡𝑗 −
𝑡ℎ − 𝑡ℎ;

(c) there are vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 , 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which induce a 𝑃4 in 𝐺 namely 𝑡𝑖 − 𝑡𝑗 −
𝑡𝑗 − 𝑡ℎ;

Proof. First let us prove statement (a).

Assume that there are such vertices, say without loss of generality 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2, 𝑡3 ∈ 𝑇3, 𝑡4 ∈ 𝑇4, which induce a 𝑃4 in 𝐺. Then 
let us prove two claims.

Claim 1. Assume that there are vertices, say without loss of generality 𝑡5 ∈ 𝑇5, 𝑡6 ∈ 𝑇6, 𝑡7 ∈ 𝑇7, which induce a 𝑃3 in 𝐺. Then {𝑡1, … , 𝑡4}
contacts {𝑡5, 𝑡6, 𝑡7}.

Proof. By contradiction assume that {𝑡1, … , 𝑡4} does not contact {𝑡5, 𝑡6, 𝑡7}. Then let 𝑃 be any induced path in 𝐺 from 𝑢1
and 𝑢5 through 𝑁0 ∪ 𝑁1 (let us recall that, by construction, 𝐺[𝑁0 ∪ 𝑁1] is connected). Then the subgraph of 𝐺 induced by 
𝑡4, 𝑡3, 𝑡2, 𝑡1, 𝑢1, 𝑃 , 𝑢5, 𝑡5, 𝑡6, 𝑡7 contains an induced 𝑃10, a contradiction. ⋄

Claim 2. One can check if 𝐺 has a d.i.m. containing 𝑥𝑦 in polynomial time.

Proof. The proposed method is based on Claim 1.

Assume that all vertices of 𝑇1, … , 𝑇4 have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order to 
possibly color vertices of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦. Then 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 can be partitioned into: 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
, formed by those members whose vertices 

are all colored, and 𝑇 ′′
𝑓𝑎𝑚𝑖𝑙𝑦

, formed by those members whose vertices are not all colored. Clearly 𝑇1, … , 𝑇4 ∈ 𝑇 ′
𝑓𝑎𝑚𝑖𝑙𝑦

. Concerning the 
other members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦: note that for any triple 𝑡𝑎 ∈ 𝑇𝑎, 𝑡𝑏 ∈ 𝑇𝑏, 𝑡𝑐 ∈ 𝑇𝑐 , with {𝑡𝑎, 𝑡𝑏, 𝑡𝑐} inducing a 𝑃3, with 𝑎, 𝑏, 𝑐 ∈ {1, … , 𝑘} and 
𝑎, 𝑏, 𝑐 ≥ 5, one has that by Claim 1 and by (R1) at least one vertex in {𝑡𝑎, 𝑡𝑏, 𝑡𝑐}, say 𝑡𝑑 with 𝑑 ∈ {𝑎, 𝑏, 𝑐}, is forced to be black, so that 
the color of all vertices of 𝑇𝑑 is forced by (R2), so that 𝑇𝑑 ∈ 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
. Then 𝑇 ′′

𝑓𝑎𝑚𝑖𝑙𝑦
enjoys Case 1.

Summarizing, to check if 𝐺 has a d.i.m. containing 𝑥𝑦, one can proceed as follows: For each (𝑡′1, … , 𝑡′4) ∈ 𝑇1 × … × 𝑇4 assign 
color black to 𝑡′1, … , 𝑡′4; then repeatedly apply forcing rules (R1)-(R3) in order to possibly color vertices of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦; let 
𝑇 ′
𝑓𝑎𝑚𝑖𝑙𝑦

and 𝑇 ′′
𝑓𝑎𝑚𝑖𝑙𝑦

be defined as above; if no contradiction arose, then a feasible coloring of vertices of 𝑇 ′
𝑓𝑎𝑚𝑖𝑙𝑦

is directly obtained, 
while a feasible coloring of vertices of 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
(if one exists) can be obtained since 𝑇 ′′

𝑓𝑎𝑚𝑖𝑙𝑦
enjoys Case 1 [in details: one can check if 

𝑇 ′′
𝑓𝑎𝑚𝑖𝑙𝑦

admits a feasible coloring, which is consistent with the (possible) forced consequences of the above forcing rules (R1)-(R3), 
by referring to Case 1]. That is correct by the above and can be executed in polynomial time since the procedure of Case 1 can be 
executed in polynomial time. ⋄

Then statement (a) follows by Claim 2.

Then let us prove statement (b). The proof is very similar to that of statement (a): that is based on the fact if there are such 
vertices, say without loss of generality 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2, and 𝑡3, 𝑡3 ∈ 𝑇3, which induce a 𝑃4 in 𝐺, and if there are vertices, say without 
loss of generality 𝑡4 ∈ 𝑇4, 𝑡5 ∈ 𝑇5, 𝑡6 ∈ 𝑇6, which induce a 𝑃3 in 𝐺, then {𝑡1, 𝑡2, 𝑡3, 𝑡3} contacts {𝑡4, 𝑡5, 𝑡6} (cf. Claim 1).
9

Then let us prove statement (c). The proof is very similar to that of statement (b). □
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Remark 2. Let us assume that statements (a)-(b)-(c) of P3 do not occur [else one can apply P3].

Let us recall that, by (A1), 𝑁3 = 𝑇1 ∪… ∪ 𝑇𝑘.
Let 𝐾 be any component of 𝐺[𝑁3] containing vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which 

induce a 𝑃3 in 𝐺. Note that, once the color of any vertex of 𝐾 is fixed, then the color of all vertices of 𝐾 is forced by (R1). 
Furthermore, by (A2), every induced 𝑃3 of 𝐾 is such that its three vertices belong to respective different members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 .

Let us introduce some preliminary definition.

— Let us say that a member 𝑇𝑖 of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 is critical for 𝐾 if |𝑇𝑖 ∩𝐾| = 1.

— For any induced 𝑃3 of 𝐾 , say of vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘}, let us say that the 𝑃3 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑇𝑖, 𝑇𝑗 , 𝑇ℎ.

— Let us say that an induced 𝑃3 of 𝐾 is max-critical for 𝐾 if the 𝑃3 involves a maximum number of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 which 
are critical for 𝐾 . Note that such a maximum number is at most 3.

Now let us assume, without loss of generality, that a max-critical 𝑃3 of 𝐾 is induced by vertices 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2, 𝑡3 ∈ 𝑇3, with edges 
𝑡1𝑡2 and 𝑡2𝑡3.

P4. Assume that all vertices of 𝑇1, 𝑇2, 𝑇3 have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order 
to possibly color vertices of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦. If there are vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {4, … , 𝑘} mutually distinct, 
which induce a 𝑃3 in 𝐺, then all vertices of at least one set in {𝑇𝑖, 𝑇𝑗 , 𝑇ℎ} are colored.

Proof. Without loss of generality let us assume that 𝑖 = 4, 𝑗 = 5, ℎ = 6.

Let us write 𝐴 = {𝑢1, 𝑢2, 𝑢3} ∪ {𝑡1, 𝑡2, 𝑡3} and 𝐵 = {𝑢4, 𝑢5, 𝑢6} ∪ {𝑡4, 𝑡5, 𝑡6}.

As a preliminary let us observe that P4 follows as soon as some vertex in {𝑡4, 𝑡5, 𝑡6} is colored: in fact, in this case, by (R1) at least 
one vertex in {𝑡4, 𝑡5, 𝑡6} is black, say 𝑡ℎ with ℎ ∈ {4, 5, 6}, and then by (R2) all vertices of 𝑇ℎ are colored.

Claim 1. If there is a path through 𝐺[𝑁3] from a vertex of 𝑇1 ∪ 𝑇2 ∪ 𝑇3 to a vertex of {𝑡4, 𝑡5, 𝑡6}, then P4 follows.

Proof. In fact, if such a path should exist, then P4 would follow by (R1) and since all vertices of 𝑇1, 𝑇2, 𝑇3 are colored. □

Assumption 3. Let us assume that there is no path through 𝐺[𝑁3] from a vertex of 𝑇1 ∪ 𝑇2 ∪ 𝑇3 to a vertex of {𝑡4, 𝑡5, 𝑡6}, else P4 
follows, by Claim 1.

Then let us consider a shortest path, say 𝑃 , in 𝐺[{𝑢1, … , 𝑢𝑘} ∪ 𝑇1 ∪… ∪ 𝑇𝑘] from 𝐴 to 𝐵; then, let 𝑎 be the vertex of 𝑃 ⧵ (𝐴 ∪𝐵)
which is adjacent to some vertex of 𝐴, and let 𝑏 be the vertex of 𝑃 ⧵ (𝐴 ∪𝐵) which is adjacent to some vertex of 𝐵; note that vertex 
𝑎 and vertex 𝑏 may coincide.

Claim 2. The following statements hold:

(i) if 𝑎 contacts {𝑢1, 𝑢2, 𝑢3}, then 𝑎 is the endpoint of an induced 𝑃5 together with four vertices of 𝐴; if 𝑎 contacts {𝑡1, 𝑡2, 𝑡3} and does not 
contact {𝑢1, 𝑢2, 𝑢3}, then 𝑎 is the endpoint of an induced 𝑃4 together with three vertices of 𝐴 and belongs to 𝑁3.

(ii) if 𝑏 contacts {𝑢4, 𝑢5, 𝑢6}, then 𝑏 is the endpoint of an induced 𝑃5 together with four vertices of 𝐵; if 𝑏 contacts {𝑡4, 𝑡5, 𝑡6} and does not 
contact {𝑢4, 𝑢5, 𝑢6}, then 𝑏 is the endpoint of an induced 𝑃4 together with three vertices of 𝐵 and belongs to 𝑁3.

Proof. Let us just prove statement (i), since statement (ii) can be proved similarly, by symmetry.

First assume that 𝑎 is adjacent to 𝑢1; then 𝑎 ∈ 𝑇1; then 𝑎 is nonadjacent to 𝑡2 by (A2). If 𝑎 is nonadjacent to 𝑡1, then 𝑎, 𝑢1, 𝑡1, 𝑡2, 𝑢2
induce a 𝑃5. If 𝑎 is adjacent to 𝑡1, then by Remark 2 one has that 𝑎 is adjacent to 𝑡3; by Assumption 3 and by construction, there is a 
vertex say 𝑎′ in 𝑃 ⧵ (𝐴 ∪𝐵) adjacent to 𝑎, in particular 𝑎′ belongs to some member 𝑇𝑖 of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 with 𝑖 ∉ {1, 2, 3}; then, by Remark 2

and since 𝐺[𝑁3] is bipartite, 𝑎′ is adjacent to 𝑡2; but this contradicts the definition of 𝑎, i.e., it is not possible that 𝑎 is adjacent to 𝑡1.

Then assume that 𝑎 is adjacent to 𝑢2; then 𝑎 ∈ 𝑇2; then 𝑎 is nonadjacent to 𝑡1 and to 𝑡3 by (A2). If 𝑎 is nonadjacent to 𝑡2, then 
𝑎, 𝑢2, 𝑡2, 𝑡3, 𝑢3 induce a 𝑃5. If 𝑎 is adjacent to 𝑡2, then let us consider the following argument; by Assumption 3 and by construction, 
there is a vertex say 𝑎′ in 𝑃 ⧵ (𝐴 ∪𝐵) adjacent to 𝑎, in particular 𝑎′ belongs to some member 𝑇𝑖 of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 with 𝑖 ∉ {1, 2, 3}; then, by 
Remark 2 and since 𝐺[𝑁3] is bipartite, 𝑎′ is adjacent to 𝑡1 or to 𝑡3; but this contradicts the definition of 𝑎, i.e., it is not possible that 
𝑎 is adjacent to 𝑡2.

Finally assume that 𝑎 is adjacent to 𝑢3; then, by symmetry, this occurrence can be treated similarly to that in which 𝑎 is adjacent 
to 𝑢1.

Now let us assume that 𝑎 contacts {𝑡1, 𝑡2, 𝑡3} and does not contact {𝑢1, 𝑢2, 𝑢3}. Then, by construction, 𝑎 belongs to 𝑁3 [i.e. to 
some member 𝑇ℎ of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 with ℎ ∉ {1, 2, 3}]: if 𝑎 is adjacent to 𝑡1, then 𝑎, 𝑡1, 𝑡2, 𝑢2 induce a 𝑃4; if 𝑎 is adjacent to 𝑡2; then 𝑎, 𝑡2, 𝑡3, 𝑢3
induce a 𝑃4; if 𝑎 is adjacent to 𝑡3, then 𝑎, 𝑡3, 𝑡2, 𝑢2 induce a 𝑃4. □
10

Claim 3. 𝑃 ⧵ (𝐴 ∪𝐵) has at most 3 vertices.
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Proof. It follows by construction, by Claim 2, and since 𝐺 is 𝑃10-free. □

Then, by Claim 3, let us consider the following exhaustive occurrences.

OCCURRENCE 1: 𝑃 ⧵ (𝐴 ∪𝐵) has exactly 3 vertices.

Then 𝑃 ⧵ (𝐴 ∪𝐵) is an induced 𝑃3, of vertices 𝑎, 𝑏, and say 𝑧, and of edges 𝑎𝑧 and 𝑧𝑏.
Since 𝐺 is 𝑃10-free, by Claim 2 one has that: 𝑎 contacts {𝑡1, 𝑡2, 𝑡3} and does not contact {𝑢1, 𝑢2, 𝑢3}; 𝑏 contacts {𝑡4, 𝑡5, 𝑡6} and does 

not contact {𝑢4, 𝑢5, 𝑢6}; furthermore 𝑎, 𝑏 ∈𝑁3; then by Assumption 3, one has 𝑧 ∈𝑁2, say 𝑧 = 𝑢7; it follows that 𝑎, 𝑏 ∈ 𝑇7.

Then let us consider the following exhaustive cases.

As a preliminary (recalling that 𝐺[𝑁3] is bipartite) let us observe that one can assume that either 𝑎 is adjacent to 𝑡2 or 𝑎 is 
adjacent to 𝑡1 and to 𝑡3: in fact by Remark 2, if 𝑎 is adjacent to 𝑡1 (or to 𝑡3), then 𝑎 is adjacent to 𝑡3 (to 𝑡1) as well.

:: Assume that 𝑇7 is not critical for 𝐾 . Then, since by construction 𝑎 ∈ 𝐾 [that is |𝐾 ∩ 𝑇7| ≥ 1], one has |𝐾 ∩ 𝑇7| ≥ 2. Note 
that 𝑏 ∉ 𝐾 , by Assumption 3 and by construction. Then there is 𝑡 ∈ 𝑇7, different to 𝑎 and to 𝑏, such that 𝑡 ∈ 𝐾 : in particular let 
us choose vertex 𝑡 in order that, over vertices of (𝐾 ∩ 𝑇7) ⧵ {𝑎}, 𝑡 has a minimum distance in 𝐾 from {𝑡1, 𝑡2, 𝑡3}. Clearly 𝑡 does not 
contact {𝑢4, 𝑢5, 𝑢6} since 𝑡 ∈ 𝑇7; furthermore, by Assumption 3, 𝑡 [and more generally any vertex of 𝐾] does not contact {𝑡4, 𝑡5, 𝑡6, 𝑏}; 
furthermore one can assume that 𝑡 is adjacent to no vertex of 𝐾 ∩ 𝑇7, else either 𝑡 or its neighbor in 𝐾 ∩ 𝑇7 would be black, so that 
by (R2) vertex 𝑏 would be white, and then by (R1) vertices of {𝑡4, 𝑡5, 𝑡6} are colored, i.e., P4 follows; in particular 𝑡 is nonadjacent to 
𝑎.

Then let us consider a shortest path say 𝑃 ∗ in 𝐾 from 𝑡 to {𝑡1, 𝑡2, 𝑡3}.

If 𝑡 contacts {𝑡1, 𝑡2, 𝑡3}, then by (A2) 𝑡 is adjacent to a vertex of {𝑡1, 𝑡2, 𝑡3} which is nonadjacent to 𝑎, so that (by the above 
preliminary) 𝑎 and 𝑡 have different colors, so that by (R2) vertex 𝑏 is white, and then by (R1) vertices of {𝑡4, 𝑡5, 𝑡6} are colored, i.e., 
P4 follows.

If 𝑡 does not contact {𝑡1, 𝑡2, 𝑡3}, then let 𝑡 be the first vertex in 𝑃 ∗ (going from 𝑡 to {𝑡1, 𝑡2, 𝑡3}) which contacts 𝐴;

if 𝑡 contacts {𝑢1, 𝑢2, 𝑢3} [so that 𝑡 ≠ 𝑎], then 𝑡 is the endpoint of an induced 𝑃5 together with four vertices in 𝐴, so that 𝑡 is the 
endpoint of an induced 𝑃6 together with (at least) five vertices in 𝑃 ∗ ∪𝐴, so that [by the choice of 𝑡, by the choice of 𝑡, and since 𝑎
does not belong to 𝑃 ∗ by construction] such an induced 𝑃6 together with vertices 𝑢7, 𝑏, and two vertices of {𝑡4, 𝑡5, 𝑡6} (depending on 
the neighbors of 𝑏) induce a 𝑃10, i.e., this occurrence is not possible;

if 𝑡 contacts {𝑡1, 𝑡2, 𝑡3} and does not contact {𝑢1, 𝑢2, 𝑢3}, then let us consider the vertex say 𝑡′ in 𝑃 ∗ which precedes 𝑡 (going from 
𝑡 to {𝑡1, 𝑡2, 𝑡3}), let us observe that 𝑡 and 𝑡′ do not contact {𝑢1, 𝑢2, 𝑢3} (by the above), and let us conclude that 𝑡′, ̄𝑡, and other two 
vertices of {𝑡1, 𝑡2, 𝑡3} (depending on the neighbors of 𝑡) induce a 𝑃4 which contradicts Remark 2, i.e., this occurrence is not possible.

:: Assume that 𝑇7 is critical for 𝐾 . Then let us show that a contradiction arises, i.e., this occurrence is not possible. In details, let 
us show that 𝑎 is the endpoint of an induced 𝑃5 together with four vertices of 𝐴, which is not possible since 𝐺 is 𝑃10-free [in fact by 
definition of 𝑏 and by Claim 2, 𝑏 is the endpoint of an induced 𝑃4 together with three vertices of 𝐵, and in turn 𝑢7 is the endpoint of 
an induced 𝑃5].

Then let us consider the following exhaustive cases according to the above preliminary.

If 𝑎 is adjacent to 𝑡1 and to 𝑡3, then, since {𝑡1, 𝑡2, 𝑡3} induces a max-critical 𝑃3 of 𝐾 , 𝑇2 is critical for 𝐾 (else one would have 
considered the 𝑃3 induced by 𝑡1, 𝑎, 𝑡3); it follows that, since 𝑡2 ∈𝐾 and since by (A3) |𝑇2| ≥ 2, there is a vertex 𝑡′2 ∈ 𝑇2 ⧵𝐾 ; but then 
a 𝑃5 is induced by 𝑎, 𝑡1, 𝑡2, 𝑢2, 𝑡′2.

If 𝑎 is adjacent to 𝑡2, then, since {𝑡1, 𝑡2, 𝑡3} induces a max-critical 𝑃3 of 𝐾 , 𝑇1 is critical for 𝐾 (else one would have considered the 
𝑃3 induced either by 𝑡3, 𝑡2, 𝑎); it follows that, since 𝑡1 ∈𝐾 and since by (A3) |𝑇1| ≥ 2, there is a vertex 𝑡′1 ∈ 𝑇1 ⧵𝐾 ; but then a 𝑃5 is 
induced by 𝑎, 𝑡2, 𝑡1, 𝑢1, 𝑡′1.

OCCURRENCE 2: 𝑃 ⧵ (𝐴 ∪𝐵) has exactly 2 vertices.

Then 𝑃 ⧵ (𝐴 ∪𝐵) is an induced 𝑃2 of vertices 𝑎, 𝑏.
First let us assume that 𝑎 contacts {𝑢1, 𝑢2, 𝑢3}, i.e., 𝑎 ∈ 𝑇1 ∪𝑇2 ∪𝑇3; it follows that 𝑏 ∈𝑁3; then, by Claim 2 and since 𝐺 is 𝑃10-free, 

𝑏 contacts {𝑡4, 𝑡5, 𝑡6}; but this contradicts Assumption 3, i.e., this occurrence is not possible.

Then let us assume that 𝑎 contacts {𝑡1, 𝑡2, 𝑡3} and does not contact {𝑢1, 𝑢2, 𝑢3}, i.e., 𝑎 ∈𝑁3, say 𝑎 ∈ 𝑇7, without loss of generality; 
it follows that 𝑏 ∈ 𝑁3, else 𝑏 = 𝑢7, so that 𝑏 could not contact 𝐵; then, by Assumption 3, 𝑏 does not contact {𝑡4, 𝑡5, 𝑡6}; then by 
construction, 𝑏 contacts {𝑢4, 𝑢5, 𝑢6}, say 𝑏 ∈ 𝑇ℎ for some ℎ ∈ {4, 5, 6}; then 𝑏, 𝑎, and two vertices of {𝑡1, 𝑡2, 𝑡3} (depending on the 
neighbors of 𝑎) induce a 𝑃4 which contradicts Remark 2, i.e., this occurrence is not possible.

OCCURRENCE 3: 𝑃 ⧵ (𝐴 ∪𝐵) has exactly 1 vertex.

Then 𝑃 ⧵ (𝐴 ∪𝐵) is a singleton namely 𝑎 = 𝑏. Then, by construction, 𝑎 ∈𝑁3.

First let us assume that 𝑎 contacts {𝑢1, 𝑢2, 𝑢3}, i.e., 𝑎 ∈ 𝑇1 ∪ 𝑇2 ∪ 𝑇3; it follows that 𝑎 does not contact {𝑢4, 𝑢5, 𝑢6} by construction, 
i.e., 𝑎 contacts {𝑡4, 𝑡5, 𝑡6}. This contradicts Assumption 3, i.e., this occurrence is not possible.

Then let us assume that 𝑎 contacts {𝑡1, 𝑡2, 𝑡3} and does not contact {𝑢1, 𝑢2, 𝑢3}. Note that, by Assumption 3, 𝑎 does not contact 
{𝑡4, 𝑡5, 𝑡6}. Then 𝑎 contacts {𝑢4, 𝑢5, 𝑢6}, say 𝑎 is adjacent to 𝑢ℎ for some ℎ ∈ {4, 5, 6}, and in particular 𝑎 is the endpoint of an induced 
𝑃5 together with four vertices of 𝐵 by Claim 2.

Then let us consider the following exhaustive cases.

As a preliminary (recalling that 𝐺[𝑁3] is bipartite) let us observe that one can assume that either 𝑎 is adjacent to 𝑡2 or 𝑎 is 
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adjacent to 𝑡1 and to 𝑡3: in fact by Remark 2, if 𝑎 is adjacent to 𝑡1 (or to 𝑡3), then 𝑎 is adjacent to 𝑡3 (to 𝑡1) as well.
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As a preliminary let us observe that one can assume that the color of 𝑎 (let us recall that, by assumptions of P4, the color of 𝑎 is 
forced since 𝑎 ∈𝐾) is white: in fact otherwise, by (R2) the color of 𝑡ℎ is forced to be black and then by (R1) vertices of {𝑡4, 𝑡5, 𝑡6} are 
colored, i.e., P4 follows.

:: Assume that 𝑇ℎ is not critical for 𝐾 . Then, since by construction 𝑎 ∈𝐾 [that is |𝐾 ∩ 𝑇ℎ| ≥ 1], one has |𝐾 ∩ 𝑇ℎ| ≥ 2. Let us recall 
that 𝑡ℎ ∉ 𝐾 by Assumption 3. Then there is 𝑡 ∈ 𝑇ℎ, different to 𝑎 and to 𝑡ℎ, such that 𝑡 ∈ 𝐾 : in particular let us choose vertex 𝑡 in 
order that, over vertices of (𝐾 ∩ 𝑇ℎ) ⧵ {𝑎}, 𝑡 has a minimum distance in 𝐾 from {𝑡1, 𝑡2, 𝑡3}. Let us observe that 𝑡 does not contact 
{𝑡4, 𝑡5, 𝑡6, } by Assumption 3; furthermore one can assume that 𝑡 is adjacent to no vertex of 𝐾 ∩ 𝑇ℎ, else either 𝑡 or its neighbor in 
𝐾 ∩ 𝑇ℎ would be black, so that by (R2) vertex 𝑡ℎ would be white, and then by (R1) vertices of {𝑡4, 𝑡5, 𝑡6} are colored, i.e., P4 follows; 
in particular 𝑡 is nonadjacent to 𝑎.

Then let us consider a shortest path say 𝑃 ∗ in 𝐾 from 𝑡 to {𝑡1, 𝑡2, 𝑡3}. By Assumption 3 one can assume that no vertex of 𝑃 ∗

contacts {𝑡4, 𝑡5, 𝑡6}. Furthermore, by the choice of 𝑡, one has that 𝑡 is the endpoint of an induced 𝑃4 say 𝑍 together with three 
vertices of {𝑢ℎ} ∪{𝑡4, 𝑡5, 𝑡6} and that no vertex of 𝑍 contacts 𝑃 ∗ ⧵ {𝑡}. It follows that, since 𝐺 is 𝑃10-free, 𝑃 ∗ ⧵ {𝑡, 𝑡1, 𝑡2, 𝑡3} has at most

three vertices, say 𝑧1, 𝑧2, 𝑧3, inducing a path 𝑧1 − 𝑧2 − 𝑧3.

If 𝑡 contacts {𝑡1, 𝑡2, 𝑡3}, then by (A2) 𝑡 is adjacent to a vertex of {𝑡1, 𝑡2, 𝑡3} which is nonadjacent to 𝑎, so that (by the above 
preliminary) 𝑎 and 𝑡 have different colors, so that by (R2) vertex 𝑡ℎ is white, and then by (R1) vertices of {𝑡4, 𝑡5, 𝑡6} are colored, i.e., 
P4 follows.

If 𝑡 does not contact {𝑡1, 𝑡2, 𝑡3}, then let us consider the following exhaustive cases; in particular, let us assume that 𝑧1 contacts 
{𝑡1, 𝑡2, 𝑡3}, without loss of generality.

:::: If 𝑃 ∗ ⧵ {𝑡, 𝑡1, 𝑡2, 𝑡3} = {𝑧1}, then: if 𝑧1 is adjacent to 𝑡1, then 𝑧1 is nonadjacent to 𝑢2 by (A2), and then (independently to the 
fact that 𝑧1 is adjacent or nonadjacent to 𝑢1) one has that 𝑡, 𝑧1, 𝑡1, 𝑡2 induce a 𝑃4 which contradicts Remark 2; if 𝑧1 is adjacent to 
𝑡2, then 𝑧1 is nonadjacent to 𝑢1 by (A2), and then (independently to the fact that 𝑧1 is adjacent or nonadjacent to 𝑢2) one has that 
𝑡, 𝑧1, 𝑡2, 𝑡1 induce a 𝑃4 which contradicts Remark 2; if 𝑧1 is adjacent to 𝑡3, then one can proceed similarly to the case in which if 𝑧1 is 
adjacent to 𝑡1, by symmetry.

:::: If 𝑃 ∗ ⧵ {𝑡, 𝑡1, 𝑡2, 𝑡3} = {𝑧1, 𝑧2}, then: if 𝑧1 is adjacent to 𝑡1, then 𝑧1 is nonadjacent to 𝑢2 by (A2), so that, 𝑒𝑖𝑡ℎ𝑒𝑟 𝑧1 is adjacent 
to 𝑢1 and in this case [since 𝑧2 would be nonadjacent to 𝑢1 by Lemma 1 (𝑖𝑖)] 𝑡, 𝑧2, 𝑧1, 𝑡1 induce a 𝑃4 which contradicts Remark 2, 
𝑜𝑟 𝑧1 is nonadjacent to 𝑢1 and in this case [since 𝑧2 would be nonadjacent to 𝑢1 by (A2)] 𝑡, 𝑧2, 𝑧1, 𝑡1 induce a 𝑃4 which contradicts 
Remark 2; if 𝑧1 is adjacent to 𝑡2, then 𝑧1 is nonadjacent to 𝑢1 and to 𝑢3 by (A2), while 𝑧2 is nonadjacent to 𝑢2 [either by (A2), if 𝑧1
is nonadjacent to 𝑢2, or by Lemma 1 (𝑖𝑖), if 𝑧1 is adjacent to 𝑢2] and is nonadjacent to at least one vertex of {𝑢1, 𝑢3} by construction, 
say 𝑧2 is nonadjacent to 𝑢1 (without loss of generality by symmetry), and then 𝑧2, 𝑧1, 𝑡2, 𝑡1 induce a 𝑃4 which contradicts Remark 2; 
if 𝑧1 is adjacent to 𝑡3, then one can proceed similarly to the case in which if 𝑧1 is adjacent to 𝑡1, by symmetry.

:::: If 𝑃 ∗ ⧵ {𝑡, 𝑡1, 𝑡2, 𝑡3} = {𝑧1, 𝑧2, 𝑧3}, then:

assume that 𝑧1 is adjacent to 𝑡1; then 𝑧1 is nonadjacent to 𝑢2 by (A2); if 𝑧1 is adjacent to 𝑢1, then 𝑧2 is nonadjacent to 𝑢1 by 
Lemma 1 (𝑖𝑖), and then, 𝑒𝑖𝑡ℎ𝑒𝑟 𝑧2 is nonadjacent to 𝑢2, and then 𝑧2, 𝑧1, 𝑡1, 𝑡2 induce a 𝑃4 which contradicts Remark 2, 𝑜𝑟 𝑧2 is adjacent 
to 𝑢2, and then [since 𝑧3 is nonadjacent to 𝑢1 by (A2)] 𝑡, 𝑧3, 𝑧2, 𝑧1 induce a 𝑃4 which contradicts Remark 2;

assume that 𝑧1 is adjacent to 𝑡2; then 𝑧1 is nonadjacent to 𝑢1 and to 𝑢3 by (A2), while 𝑧2 is nonadjacent to 𝑢2 [either by (A2) if 𝑧1 is 
nonadjacent to 𝑢2, or by Lemma 1 (𝑖𝑖) if 𝑧1 is adjacent to 𝑢2] and is nonadjacent to at least one vertex of {𝑢1, 𝑢3} by construction, say 
that 𝑧2 is nonadjacent to 𝑢1 (without loss of generality by symmetry), and then 𝑧2, 𝑧1, 𝑡2, 𝑡1 induce a 𝑃4 which contradicts Remark 2;

assume that 𝑧1 is adjacent to 𝑡3; then one can proceed similarly to the case in which 𝑧1 is adjacent to 𝑡1, by symmetry.

:: Assume that 𝑇ℎ is critical for 𝐾 . Then let us show that a contradiction arises, i.e., this case is not possible.

Then let us consider the following exhaustive cases according to the above preliminary.

If 𝑎 is adjacent to 𝑡1 and to 𝑡3, then, since {𝑡1, 𝑡2, 𝑡3} induces a max-critical 𝑃3 of 𝐾 , 𝑇2 is critical for 𝐾 (else one would have 
considered the 𝑃3 induced by 𝑡1, 𝑎, 𝑡3); it follows that, since 𝑡2 ∈𝐾 and since by (A3) |𝑇2| ≥ 2, there is a vertex 𝑡′2 ∈ 𝑇2 ⧵𝐾 ; then 𝑎 is 
the endpoint of an induced 𝑃5 say 𝑃 together with vertices 𝑡3, 𝑡2, 𝑢2, 𝑡′2; in particular, by Assumption 3, 𝑡′2 does not contact {𝑡4, 𝑡5, 𝑡6}; 
then 𝑎 is nonadjacent to 𝑢4, else an induced 𝑃10 arises, involving 𝑢4, 𝑡4, 𝑡5, 𝑡6, 𝑢6, and 𝑃 ; furthermore, 𝑎 is nonadjacent to 𝑢6, by 
symmetry; then 𝑎 is adjacent to 𝑢5; now, by (A3), let 𝑡′4 be 𝑎𝑛𝑦 vertex of 𝑇4 ⧵ {𝑡4}; let us observe that 𝑡′4 is nonadjacent to 𝑡4 [else 𝑡′4
would be adjacent to 𝑡6 by Remark 2; then, since by Assumption 3 𝑡′4 does not contact {𝑎} ∪ 𝑇1 ∪ 𝑇2 ∪ 𝑇3, vertices 𝑢4, 𝑡′4, 𝑡6, 𝑡5, 𝑢5, and 
𝑃 would induce a 𝑃10]; furthermore one can assume that 𝑡′4 is nonadjacent to 𝑎 and to 𝑡2 [in fact, since by the above preliminary 
the color of 𝑎 is white, and the color of 𝑡2 is white too (since 𝑎 is adjacent to 𝑡1), the color of 𝑡′4 would be black, so that the color 
of 𝑡4 would be white by (R2), and P4 would follow]; furthermore one can assume that 𝑡′4 is nonadjacent to 𝑡′2, in case 𝑡′2 should be 
white, by an argument similar to that of the previous sentence; summarizing, in order to avoid a 𝑃10 induced by 𝑡′4, 𝑢4, 𝑡4, 𝑡5, 𝑢5, and 
𝑃 , one has that 𝑡′4 is adjacent either to 𝑡1 [which is black since 𝑎 is white], or to 𝑡3 [which is black since 𝑎 is white], or to 𝑡′2 [in case 
𝑡′2 should be black]; but then one can conclude that 𝑎𝑛𝑦 vertex of 𝑇4 ⧵ {𝑡4} is white, so that by (R3) the color of 𝑡4 is black, and P4 
follows.

If 𝑎 is adjacent to 𝑡2, then one applies a similar argument [not reported for brevity, in particular, 𝑇3 is critical for 𝐾 etc.], in order 
to get to a similar conclusion. □

P5. One can check if 𝐺 has a d.i.m. containing 𝑥𝑦 in polynomial time.
12

Proof. The proposed method is based on Remark 2 and P4.
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Let 𝐾 be a component of 𝐺[𝑁3] containing vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑡ℎ ∈ 𝑇ℎ, with 𝑖, 𝑗, ℎ ∈ {1, … , 𝑘} mutually distinct, which induce 
a 𝑃3 in 𝐺. Now let us assume, without loss of generality, that a max-critical 𝑃3 of 𝐾 is induced by vertices 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2, 𝑡3 ∈ 𝑇3, 
with edges 𝑡1, 𝑡2 and 𝑡2, 𝑡3.

Assume that all vertices of 𝑇1, … , 𝑇3 have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order to 
possibly color vertices of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦. Then 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 is partitioned into: 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
, formed by those members whose vertices are 

all colored, and 𝑇 ′′
𝑓𝑎𝑚𝑖𝑙𝑦

, formed by those members whose vertices are not all colored. Clearly 𝑇1, … , 𝑇3 ∈ 𝑇 ′
𝑓𝑎𝑚𝑖𝑙𝑦

. Concerning the 
other members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦: note that for any triple 𝑡𝑎 ∈ 𝑇𝑎, 𝑡𝑏 ∈ 𝑇𝑏, 𝑡𝑐 ∈ 𝑇𝑐 , with {𝑡𝑎, 𝑡𝑏, 𝑡𝑐} inducing a 𝑃3, with 𝑎, 𝑏, 𝑐 ∈ {1, … , 𝑘} and 
𝑎, 𝑏, 𝑐 ≥ 4, one has that by P4 at least one vertex in {𝑡𝑎, 𝑡𝑏, 𝑡𝑐}, say 𝑡𝑑 with 𝑑 ∈ {𝑎, 𝑏, 𝑐}, is forced to be black, so that the color of all 
vertices of 𝑇𝑑 is forced by (R2), so that 𝑇𝑑 ∈ 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
. Then 𝑇 ′′

𝑓𝑎𝑚𝑖𝑙𝑦
enjoys Case 1.

Summarizing, to check if 𝐺 has a d.i.m. containing 𝑥𝑦, one can proceed as follows: For each (𝑡′1, … , 𝑡′3) ∈ 𝑇1 ×… × 𝑇3 assign color 
black to 𝑡′1, … , 𝑡′3; then repeatedly apply forcing rules (R1)-(R3) in order to possibly color vertices of members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 ; let 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦

and 𝑇 ′′
𝑓𝑎𝑚𝑖𝑙𝑦

be defined as above; then, if no contradiction arose, then a feasible coloring of vertices of 𝑇 ′
𝑓𝑎𝑚𝑖𝑙𝑦

is directly obtained, 
while a feasible coloring of vertices of 𝑇 ′

𝑓𝑎𝑚𝑖𝑙𝑦
(if one exists) since 𝑇 ′′

𝑓𝑎𝑚𝑖𝑙𝑦
enjoys Case 1 [in details: one can check if 𝑇 ′′

𝑓𝑎𝑚𝑖𝑙𝑦
admits a 

feasible coloring, which is consistent with the (possible) forced consequences of the above forcing rule (R1)-(R3), by referring to Case 
1]. That is correct by the above and can be executed in polynomial time since the procedure of Case 1 can be executed in polynomial 
time. □

This completes the proof for Case 2.

4. The case 𝑵𝟒 ≠ ∅

In this section let us show that, if 𝑁4 ≠ ∅ [i.e., in the general case, with possibly 𝑁4 ≠ ∅], then one can check in polynomial time 
whether 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 .

Recall that 𝑁𝑘 = ∅ for 𝑘 ≥ 6 according to Algorithm DIM(𝐺).

Then let us assume that 𝐺[𝑁3 ∪ 𝑁4 ∪ 𝑁5] is connected, without loss of generality, else one can split the problem for each 
component of 𝐺[𝑁3 ∪𝑁4 ∪𝑁5].

Observation 5. If 𝑣 ∈𝑁𝑖 for 𝑖 ≥ 4, then 𝑣 is an endpoint of an induced 𝑃6, say with vertices 𝑣, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 such that 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 ∈
𝑁0 ∪𝑁1 ∪… ∪𝑁𝑖−1 and with edges 𝑣𝑣1 ∈𝐸, 𝑣1𝑣2 ∈𝐸, 𝑣2𝑣3 ∈𝐸, 𝑣3𝑣4 ∈𝐸, 𝑣4𝑣5 ∈𝐸. Analogously, if 𝑣 ∈𝑁3, then 𝑣 is an endpoint of 
a corresponding induced 𝑃5.

Proof. If 𝑖 ≥ 5, then clearly there is such a 𝑃6. Thus, assume that 𝑣 ∈𝑁4. Then 𝑣1 ∈𝑁3 and 𝑣2 ∈𝑁2. Recall that 𝑦, 𝑥, 𝑟 induce a 
𝑃3. If 𝑣2𝑟 ∈ 𝐸 then 𝑣, 𝑣1, 𝑣2, 𝑟, 𝑥, 𝑦 induce a 𝑃6. Thus assume that 𝑣2𝑟 ∉ 𝐸. Let 𝑣3 ∈𝑁1 be a neighbor of 𝑣2. Now, if 𝑣3𝑥 ∈ 𝐸 then 
𝑣, 𝑣1, 𝑣2, 𝑣3, 𝑥, 𝑟 induce a 𝑃6, and if 𝑣3𝑥 ∉ 𝐸 but 𝑣3𝑦 ∈ 𝐸, then 𝑣, 𝑣1, 𝑣2, 𝑣3, 𝑦, 𝑥 induce a 𝑃6. Analogously, if 𝑣 ∈ 𝑁3 then 𝑣 is an 
endpoint of an induced 𝑃5 (which could be part of the 𝑃6 above). Thus, Observation 5 is shown. □

For any component of 𝐺[𝑁4 ∪𝑁5], say 𝐾 , let us say that:

𝐾 is pure if 𝐾 contacts exactly one member of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦,
𝐾 is impure if 𝐾 contacts at least two members of 𝑇𝑓𝑎𝑚𝑖𝑙𝑦.

P6. One can assume that every component of 𝐺[𝑁4 ∪𝑁5] is non-trivial, i.e., that every vertex of 𝑁4 is not isolated in 𝐺[𝑁4 ∪𝑁5].

Proof. In fact if a vertex 𝑣 ∈𝑁4 is isolated in 𝐺[𝑁4 ∪𝑁5], then by (7) and by definition of d.i.m. the color of 𝑣 is forced white, so 
that one can apply the Vertex Reduction to 𝑣 [without disconnecting the graph]. □

P7. One can assume that every component of 𝐺[𝑁4 ∪𝑁5] is impure.

Proof. Let us assume that there are pure components of 𝐺[𝑁4 ∪𝑁5]. Then, for every member 𝑇𝑖 ∈ 𝑇𝑓𝑎𝑚𝑖𝑙𝑦, let 𝑄𝑖 denote the union 
of vertex-sets of those pure components of 𝐺[𝑁4 ∪𝑁5] which contact 𝑇𝑖.

Let us observe that 𝑇𝑖 is a cut-set for 𝐺 separating 𝑄𝑖: in particular, if 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 , then 𝐺[{𝑢𝑖} ∪ 𝑇𝑖 ∪𝑄𝑖] has 
a d.i.m. 𝑀∗ with 𝑢𝑖𝑡 ∈𝑀∗ for some 𝑡 ∈ 𝑇𝑖.

Note that since 𝑑𝑖𝑠𝑡𝐺(𝑢𝑖, 𝑞) ≤ 3 for any 𝑞 ∈ {𝑢𝑖} ∪ 𝑇𝑖 ∪𝑄𝑖 (by construction), one can check for each 𝑡 ∈ 𝑇𝑖 if 𝐺[{𝑢𝑖} ∪ 𝑇𝑖 ∪𝑄𝑖] has 
a d.i.m. 𝑀∗ with 𝑢𝑖𝑡 ∈𝑀∗ in polynomial time, by referring to the case 𝑁4 = ∅ of the previous section with 𝑢𝑖𝑡 instead of 𝑥𝑦.

Then, for every member 𝑇𝑖 ∈ 𝑇𝑓𝑎𝑚𝑖𝑙𝑦 such that 𝑄𝑖 ≠ ∅, one can proceed as follows:

:: For each 𝑡 ∈ 𝑇𝑖, check if there is a d.i.m. 𝑀∗ of 𝐺[{𝑢𝑖} ∪ 𝑇𝑖 ∪𝑄𝑖], with 𝑢𝑖𝑡 ∈𝑀∗: if the answer is 𝑛𝑜, then color 𝑡 by white.

:: Remove 𝑄𝑖 from 𝑉 .

Then, by the above, 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 if and only if the resulting graph [together with the above possible forcing 
13

conditions for vertices of 𝑇𝑖] has a d.i.m. 𝑀 ′ with 𝑥𝑦 ∈𝑀 ′. □
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P8. For any feasible partial coloring of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 [with vertices 𝑥 and 𝑦 black] such that all vertices of 𝑁4 are 
colored, one can check in polynomial time if there is a feasible coloring of 𝑁5 which is consistent with it.

Proof. Let us fix any feasible partial coloring of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 [with vertices 𝑥 and 𝑦 black] such that all vertices of 𝑁4
are colored. By definition of d.i.m., vertices of 𝑁4 can be partitioned into {𝑊 (𝑁4), 𝐵′(𝑁4), 𝐵′′(𝑁4)}, where: vertices of 𝑊 (𝑁4) are 
white, vertices of 𝐵′(𝑁4) are black and have no black neighbor in 𝑁4 [and more generally in 𝑁3 ∪𝑁4 by (7)], vertices of 𝐵′′(𝑁4)
are black and have one black neighbor in 𝑁4.

Claim 1. Vertices of 𝑊 (𝑁4) force their neighbors in 𝑁5 to be black. Vertices of 𝐵′′(𝑁4) force their neighbors in 𝑁5 to be white. Vertices of 
𝐵′(𝑁4) should have one black neighbor in 𝑁5: however, if a vertex of 𝑁5 has two neighbors in 𝐵′(𝑁4), then it is forced to be white.

Proof. The first two statements follow by definition of d.i.m. The third statement follows by definition of d.i.m. and by (7). □

Let 𝑁∗
5 be the set of vertices of 𝑁5 which enjoy none of the forcing conditions of Claim 1, i.e., each vertex of 𝑁∗

5 has exactly one 
neighbor in 𝑁4, namely, a vertex of 𝐵′(𝑁4).

Then − once checked if the forcing conditions of Claim 1 lead to a contradiction − the problem is to check in polynomial time if 
there is a feasible coloring of 𝐵′(𝑁4) ∪𝑁∗

5 which is consistent with the current feasible partial coloring.

Let us assume that 𝐺[𝐵′(𝑁4) ∪𝑁∗
5 ] is connected, without loss of generality, else one can split the problem for the corresponding 

components.

Claim 2. There exists a vertex 𝑢𝑖 ∈ 𝑆2 such that 𝑑𝑖𝑠𝑡𝐺(𝑢𝑖, 𝑧) = 3 for any 𝑧 ∈𝑁∗
5 .

Proof. First let us observe that 𝐵′(𝑁4) is an independent set (by construction).

Assume by contradiction that such a vertex does not exist. Then let 𝑢𝑖 ∈ 𝑆2 be such that the number of vertices 𝑧 ∈𝑁∗
5 such 

that 𝑑𝑖𝑠𝑡𝐺(𝑢𝑖, 𝑧) = 3 for any 𝑧 ∈𝑁5 is maximum over all vertices of 𝑆2. Then, by assumption of contradiction and by construction, 
there are vertices 𝑢𝑗 ∈ 𝑆2, 𝑡𝑗 ∈ 𝑇𝑗 , 𝑏 ∈𝐵′(𝑁4), 𝑧 ∈𝑁∗

5 , with 𝑗 ≠ 𝑖, and vertices 𝑡𝑖 ∈ 𝑇𝑖, 𝑏′ ∈𝐵′(𝑁4), 𝑧′ ∈𝑁∗
5 , such that: {𝑢𝑗 , 𝑡𝑗 , 𝑏, 𝑧} and 

{𝑢𝑖, 𝑡𝑖, 𝑏′, 𝑧′} respectively induce a 𝑃4, and between such 𝑃4’s there is at most one edge possibly between 𝑧 and 𝑧′ [note in particular 
that 𝑡𝑗 and 𝑡𝑖 are white].

Now, since 𝐺[𝐵′(𝑁4) ∪𝑁∗
5 ] is connected, consider any shortest path in 𝐺[𝐵′(𝑁4) ∪𝑁∗

5 ] say 𝑃 from {𝑏, 𝑧} to {𝑏′, 𝑧′}. Note that 𝑃
has at most one interior vertex [where interior vertices are those not in {𝑏, 𝑧} ∪ {𝑏′, 𝑧′}], else an induced 𝑃10 arises in the subgraph 
induced by 𝑃 , by the above vertices, and by 𝑁0 ∪𝑁1. And if 𝑃 has exactly one interior vertex, then a similar induced 𝑃10 arises, 
recalling that by Claim 1 we assumed that no vertex of 𝑁∗

5 is adjacent to two vertices of 𝐵′(𝑁4). This leads to a contradiction. □

Then let 𝑢𝑖 ∈ 𝑆2 be according to Claim 2, i.e., such that 𝑑𝑖𝑠𝑡𝐺(𝑢𝑖, 𝑣) ≤ 3 for any 𝑣 ∈ 𝐵′(𝑁4) ∪𝑁∗
5 . Let us focus on the subgraph of 

𝐺, say 𝐺′, induced by 𝑁 ′
0 = {𝑢𝑖, 𝑢} where 𝑢 ∈𝑁1 is any neighbor of 𝑢𝑖, 𝑁 ′

1 =𝑁(𝑢𝑖) ∩𝑁(𝐵′(𝑁4)), 𝑁 ′
2 = 𝐵

′(𝑁4), and 𝑁 ′
3 =𝑁

∗
5 . Then, 

by referring to the case 𝑁4 = ∅ of the previous section with 𝑢𝑖𝑢 instead of 𝑥𝑦, one can check in polynomial time if there is a feasible 
coloring of 𝐵′(𝑁4) ∪𝑁∗

5 which is consistent with the current feasible partial coloring.

This completes the proof of P8. □

P9. For any 𝑖 ∈ {1, … , 𝑘} and for any 𝑡 ∈ 𝑇𝑖, with 𝑁(𝑡) ∩ 𝑁4 ≠ ∅, if the color of 𝑡 is fixed black, then there are (at most) 
polynomially many feasible partial colorings of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 [with vertices 𝑥 and 𝑦 black] such that all vertices of 𝑁4
are colored.

Proof. For any 𝑖 ∈ {1, … , 𝑘} and for any 𝑡 ∈ 𝑇𝑖, with 𝑁(𝑡) ∩𝑁4 ≠ ∅, let us fix black the color of 𝑡. Then the color of vertices in 
𝑇𝑖 ⧵ {𝑡} is forced (white): then, by (R1), the color of vertices in 𝑁(𝑇𝑖) ∩𝑁4 is forced. Then let us consider any vertex 𝑧 ∈𝑁(𝑇𝑗 ) ∩𝑁4, 
for any 𝑗 ∈ {1, … , 𝑘}, with 𝑗 ≠ 𝑖: then let 𝑡𝑗 ∈ 𝑇𝑗 be adjacent to 𝑧.

Let us recall some preliminary:

by Observation 5, for any 𝑡 ∈𝑁3, let 𝑄(𝑡) denote the induced 𝑃5 of 𝐺 whose vertices except for 𝑡 are in 𝑁0 ∪𝑁1 ∪𝑁2;

by (9), there is no triangle in 𝐺 with one vertex in 𝑁3 and two vertices in 𝑁4;

by P6 and by P7, every component of 𝐺[𝑁4 ∪𝑁5] is non-trivial and impure.

Let 𝐺[𝐷], with vertex set 𝐷, be any component of 𝐺[𝑁4 ∪𝑁5] such that 𝑁(𝑡) ∩𝐷 ≠ ∅ [i.e. 𝑁(𝑡) ∩𝐷 ∩𝑁4 ≠ ∅] according to the 
assumption.

By Observation 5 and since 𝐺 is 𝑃10-free, 𝐷 can be partitioned into {𝐷1, 𝐷2, 𝐷3, 𝐷4}, where 𝐷𝑗 for 𝑗 = 1, 2, 3, 4, denotes the set 
of vertices of 𝐷 at distance 𝑗 from 𝑡 in 𝐺[{𝑡} ∪𝐷].

Note that: vertices of 𝐷1 are forced to be white; vertices of 𝐷2 are forced to be black; 𝐷2 ≠ ∅ [by (9) and by P6]. Then let us 
distinguish the following two exhaustive cases with the aim of determining the color of 𝑧.
14

Case A. No vertex of 𝐷3 is fixed black.
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Assume that 𝑧 ∈𝐷. Then, since by assumption of Case A either 𝐷3 = ∅ or all vertices of 𝐷3 are fixed white, the color of 𝑧 is forced 
(in particular, if 𝑣 ∈𝐷4, then 𝑣 is forced to be black).

Assume that 𝑧 ∉ 𝐷. Recall that [by P7] the component of 𝐺[𝑁4 ∪𝑁5] containing 𝑧, say 𝐷′, is impure. Then 𝐷′ contacts 𝑇ℎ, 
for some ℎ ∈ {1, … , 𝑘}, with ℎ ≠ 𝑗: let 𝑡ℎ ∈ 𝑇ℎ contact 𝐷′. Then there is a shortest path, say 𝑃 , through 𝐷′ from 𝑡ℎ to 𝑧, say of 
consecutive vertices 𝑡ℎ, 𝑧1, … , 𝑧𝑙, 𝑧: note that 𝑙 ≥ 1 (since 𝑧 can not be adjacent to 𝑡ℎ by construction), and that 𝑡𝑗 is nonadjacent to 
𝑧1 (by construction) and to 𝑧𝑙 (by (9)). On the other hand, recall that 𝐷2 ≠ ∅, then let 𝑑1 ∈𝐷1, 𝑑2 ∈𝐷2 induce a 𝑃2.

If ℎ ≠ 𝑖, then: if 𝑡ℎ contacts {𝑑1, 𝑑2}, then the subgraph induced by {𝑡, 𝑑1, 𝑑2, 𝑡ℎ} ∪ 𝑃 ∪𝑄(𝑡𝑗 ), contains an induced 𝑃10; else, the 
subgraph induced by {𝑑2, 𝑑1, 𝑡, 𝑢𝑖} ∪𝑁1 ∪ {𝑥, 𝑦} ∪ {𝑢ℎ, 𝑡ℎ} ∪ 𝑃 ∪ {𝑡𝑗}, contains an induced 𝑃10; then this occurrence is not possible.

If ℎ = 𝑖, then: if 𝑡 = 𝑡ℎ, then the subgraph induced by {𝑑2, 𝑑1, 𝑡} ∪ 𝑃 ∪ 𝑄(𝑡𝑗 ), contains an induced 𝑃10; if 𝑡 ≠ 𝑡ℎ, then: if 𝑡ℎ
contacts {𝑑1, 𝑑2}, then the subgraph induced by {𝑡, 𝑑1, 𝑑2, 𝑡ℎ} ∪ 𝑃 ∪𝑄(𝑡𝑗 ), contains an induced 𝑃10; else, the subgraph induced by 
{𝑑2, 𝑑1, 𝑡, 𝑢𝑖, 𝑡ℎ} ∪ 𝑃 ∪ {𝑡𝑗 , 𝑢𝑗} ∪𝑁1, contains an induced 𝑃10; then this occurrence is not possible.

Case B. A vertex of 𝐷3 is fixed black.

Then let 𝑑1 ∈𝐷1, 𝑑2 ∈𝐷2, 𝑑3 ∈𝐷3 induce a 𝑃3 (recall that 𝑑1 is white and 𝑑2 is black) and let us assume that 𝑑3 is fixed black.

Assume that 𝑧 ∈𝐷. If 𝑧 ∈𝐷1 ∪𝐷2, then by the above the color of 𝑧 is forced. If 𝑧 ∈𝐷3, then there is a induced path say 𝑧 −𝑧2 −𝑧1
with 𝑧2 ∈𝐷2 and 𝑧1 ∈𝐷1; if {𝑧, 𝑧2} contacts {𝑑2, 𝑑3} (or if such sets should have a nonempty intersection), then the color of 𝑧 is 
forced; else, if 𝑧1 contacts {𝑑2, 𝑑3} [that is 𝑧1 is adjacent to 𝑑2], then 𝑑3, 𝑑2, 𝑧1, 𝑧2, 𝑧, and 𝑄(𝑡𝑗 ) induce a 𝑃10, which is not possible; 
else, if 𝑑1 contacts {𝑧1, 𝑧3}, then one similarly would get an induced 𝑃10, which is not possible; else, one similarly would get an 
induced 𝑃10 [involving vertex 𝑡], which is not possible.

Assume that 𝑧 ∉𝐷. Then one can refer to the corresponding proof for Case A.

Summarizing, to obtain all possible feasible colorings of 𝑁4, one can proceed as follows: (a) if 𝐷3 = ∅, then derive the color of all 
vertices of 𝑁4, by Case A; else: (b) fix white the color of all vertices of 𝐷3 and then derive the color of all vertices of 𝑁4, by Case A, 
and (c) for each vertex 𝑑3 ∈𝐷3, fix black the color of 𝑑3 and then derive the color of all vertices of 𝑁4 , by Case B.

This completes the proof of P9. □

P10. For any 𝑖 ∈ {1, … , 𝑘} and for any 𝑡 ∈ 𝑇𝑖, with 𝑁(𝑡) ∩𝑁4 ≠ ∅, one can check if 𝐺 has a d.i.m. 𝑀 with 𝑢𝑖𝑡 ∈𝑀 and 𝑥𝑦 ∈𝑀
in polynomial time.

Proof. For any 𝑖 ∈ {1, … , 𝑘} and for any 𝑡 ∈ 𝑇𝑖, with 𝑁(𝑡) ∩𝑁4 ≠ ∅, let us fix black the color of 𝑡. Then, by P9, there are (at most) 
polynomially many feasible partial colorings of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 [with vertices 𝑥 and 𝑦 black] such that all vertices of 𝑁4
are colored: then, let us fix one of such feasible partial colorings, say 𝛾 .

Let us consider 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4. Then, by referring to the case 𝑁4 = ∅ of the previous section, one can check in polynomial 
time if there is a feasible coloring of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 which is consistent with 𝛾 .

Let us consider 𝑁5. Then, by construction and by P8, one can check in polynomial time if there is a feasible coloring of vertices 
of 𝑁5 which is consistent with 𝛾 . □

Finally let us show that one can check if 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 in polynomial time, by the following algorithm, which 
is based on P10.

:: Let 𝑇 = {𝑡 ∈ 𝑇𝑖: 𝑖 ∈ {1, … , 𝑘} and 𝑁(𝑡) ∩𝑁4 ≠ ∅}.

:: For each 𝑡 ∈ 𝑇 do

:::: check if 𝐺 has a d.i.m. 𝑀 with 𝑢𝑖𝑡 ∈𝑀 and 𝑥𝑦 ∈𝑀 [by P10]

:::: if 𝑦𝑒𝑠, then return the corresponding d.i.m. and STOP;

:: Assign color white to all vertices in 𝑇 and repeatedly apply (R1), so to obtain a partial coloring of 𝑁3 ∪𝑁4 such that all vertices 
of 𝑁4 are colored, by definition of 𝑇 .

:: Check if 𝐺 has a d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀 which is consistent with the above partial coloring of 𝑁3 ∪𝑁4, by referring to the 
case 𝑁4 = ∅ of the previous section and by P8 [that is in details: concerning 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4, by referring to the case 
𝑁4 = ∅ of the previous section, one can check in polynomial time if there is a feasible coloring of 𝑁0 ∪𝑁1 ∪𝑁2 ∪𝑁3 ∪𝑁4 which is 
consistent with the above partial coloring of 𝑁3 ∪𝑁4; concerning 𝑁5, by construction and by P8, one can check in polynomial time 
if there is a feasible coloring of vertices of 𝑁5 which is consistent with the above partial coloring of 𝑁3 ∪𝑁4]; if 𝑦𝑒𝑠, then return the 
corresponding d.i.m. and STOP; if 𝑛𝑜, then return “𝐺 has no d.i.m. 𝑀 with 𝑥𝑦 ∈𝑀” and STOP.

This completes the proof for the case 𝑁4 ≠ ∅.
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