Finding dominating induced matchings in P_{10}-free graphs in polynomial time

Andreas Brandstädt ${ }^{\text {a }}$, Raffaele Mosca ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Institut für Informatik, Universität Rostock, A.-Einstein-Str. 22, D-18051 Rostock, Germany
${ }^{\text {b }}$ Dipartimento di Economia, Universitá degli Studi "G. D’Annunzio", Pescara 65121, Italy

A R T I CLE I N F O

Communicated by R. Klasing

Keywords:

Dominating induced matching
Efficient edge domination
P_{10}-free graphs
Polynomial time algorithm

Abstract

Let $G=(V, E)$ be a finite undirected graph. An edge set $E^{\prime} \subseteq E$ is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E^{\prime}. The Dominating Induced Matching (DIM) problem asks for the existence of a d.i.m. in G; this problem is also known as the Efficient Edge Domination problem; it is the Efficient Domination problem for line graphs. The DIM problem is $\mathbb{N P}$-complete even for very restricted graph classes such as planar bipartite graphs with maximum degree 3 but is solvable in polynomial time for P_{9}-free graphs [and in linear time for P_{7}-free graphs] as well as for $S_{1,2,4}$ free, for $S_{2,2,2}$-free, and for $S_{2,2,3}$-free graphs. In this paper, combining two distinct approaches, we solve it in polynomial time for P_{10}-free graphs and introduce a partial result for the general case.

1. Introduction

Let $G=(V, E)$ be a finite undirected graph. A vertex $v \in V$ dominates itself and its neighbors. A vertex subset $D \subseteq V$ is an efficient dominating set (e.d.s. for short) of G if every vertex of G is dominated by exactly one vertex in D. The notion of efficient domination was introduced by Biggs [2] under the name perfect code. The Efficient Domination (ED) problem asks for the existence of an e.d.s. in a given graph G (note that not every graph has an e.d.s.)

A set M of edges in a graph G is an efficient edge dominating set (e.e.d.s. for short) of G if and only if it is an e.d.s. in its line graph $L(G)$. The Efficient Edge Domination (EED) problem asks for the existence of an e.e.d.s. in a given graph G. Thus, the EED problem for a graph G corresponds to the ED problem for its line graph $L(G)$. Note that not every graph has an e.e.d.s. An efficient edge dominating set is also called dominating induced matching (d.i.m. for short), and the EED problem is called the Dominating INDUCED MATCHING (DIM) problem in various papers (see e.g. [3-7,10,12,13]); subsequently, we will use this notation instead of EED.

In [11], it was shown that the DIM problem is $\mathbb{N P}$-complete; see also [3,10,14-16]. However, for various graph classes, DIM is solvable in polynomial time. For mentioning some examples, we need the following notions:

Let P_{k} denote the chordless path P with k vertices, say a_{1}, \ldots, a_{k}, and $k-1$ edges $a_{i} a_{i+1}, 1 \leq i \leq k-1$; we also denote it as $P=\left(a_{1}, \ldots, a_{k}\right)$.

[^0]For indices $i, j, k \geq 0$, let $S_{i, j, k}$ denote the graph H with vertices $u, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}, z_{1}, \ldots, z_{k}$ such that the subgraph induced by u, x_{1}, \ldots, x_{i} forms a $P_{i+1}\left(u, x_{1}, \ldots, x_{i}\right)$, the subgraph induced by u, y_{1}, \ldots, y_{j} forms a $P_{j+1}\left(u, y_{1}, \ldots, y_{j}\right)$, and the subgraph induced by u, z_{1}, \ldots, z_{k} forms a $P_{k+1}\left(u, z_{1}, \ldots, z_{k}\right)$, and there are no other edges in $S_{i, j, k} ; u$ is called the center of H. Thus, claw is $S_{1,1,1}$, and P_{k} is isomorphic to $S_{k-1,0,0}$.

For a set \mathcal{F} of graphs, a graph G is called \mathcal{F}-free if no induced subgraph of G is contained in \mathcal{F}. If $|\mathcal{F}|=1$, say $\mathcal{F}=\{H\}$, then instead of $\{H\}$-free, G is called H-free.

The following results are known:

Theorem 1. DIM is solvable in polynomial time for

(i) $S_{1,1,1}$-free graphs [10],
(ii) $S_{1,2,3}$-free graphs [13],
(iii) $S_{2,2,2}$-free graphs [12],
(iv) $S_{1,2,4}$-free graphs [6],
(v) $S_{2,2,3}$-free graphs [7],
(vi) $S_{1,1,5}$-free graphs [8],
(vii) P_{7}-free graphs [4] (in this case even in linear time),
(viii) P_{8}-free graphs [5],
(ix) P_{9}-free graphs [9].

In [12], it is conjectured that for every fixed i, j, k, DIM is solvable in polynomial time for $S_{i, j, k}$-free graphs (actually, an even stronger conjecture is mentioned in [12]); this includes P_{k}-free graphs for $k \geq 10$.

Based on the two distinct approaches described in [5] and in [12,13], we show in this paper that DIM can be solved in polynomial time for P_{10}-free graphs (generalizing the corresponding results for P_{7}-free, for P_{8}-free, and for P_{9}-free graphs).

2. Definitions and basic properties

2.1. Basic notions

Let G be a finite undirected graph without loops and multiple edges. Let $V(G)$ or V denote its vertex set and $E(G)$ or E its edge set; let $|V|=n$ and $|E|=m$. For $v \in V$, let $N(v):=\{u \in V: u v \in E\}$ denote the open neighborhood of v, and let $N[v]:=N(v) \cup\{v\}$ denote the closed neighborhood of v. For $U, W \subseteq V$, with $U \cap W=\emptyset$, let us say that U contacts W if some vertex of U is adjacent to some vertex of W; in particular, if $U=\{u\}$, then let us simply say that u contacts W. For $U, W \subseteq V$, with $U \cap W=\emptyset$, let us say that U has a join with W and let us write $U(1) W$ if every vertex of U is adjacent to every vertex of W; in particular, if $U=\{u\}$, then let us simply write $u(1) W$.

A vertex set S is independent in G if for every pair of vertices $x, y \in S, x y \notin E$. A vertex set Q is a clique in G if for every pair of vertices $x, y \in Q, x \neq y, x y \in E$. For $u v \in E$ let $N(u v):=N(u) \cup N(v) \backslash\{u, v\}$ and $N[u v]:=N[u] \cup N[v]$.

For $U \subseteq V$, let $G[U]$ denote the subgraph of G induced by vertex set U. Clearly $x y \in E$ is an edge in $G[U]$ exactly when $x \in U$ and $y \in U$; thus, $G[U]$ can simply be denoted by U (if understandable).

For graphs H_{1}, H_{2} with disjoint vertex sets, $H_{1}+H_{2}$ denotes the disjoint union of H_{1}, H_{2}, and for $k \geq 2, k H$ denotes the disjoint union of k copies of H. For example, $2 P_{2}$ is the disjoint union of two edges.

As already mentioned, a chordless path $P_{k}, k \geq 2$, has k vertices, say v_{1}, \ldots, v_{k}, and $k-1$ edges $v_{i} v_{i+1}, 1 \leq i \leq k-1$; the length of P_{k} is $k-1$.

A chordless cycle $C_{k}, k \geq 3$, has k vertices, say v_{1}, \ldots, v_{k}, and k edges $v_{i} v_{i+1}, 1 \leq i \leq k-1$, and $v_{k} v_{1}$; the length of C_{k} is k.
Let $K_{i}, i \geq 1$, denote the clique with i vertices. Let $K_{4}-e$ or diamond be the graph with four vertices, say v_{1}, v_{2}, v_{3}, u, such that (v_{1}, v_{2}, v_{3}) forms a P_{3} and $u(1)\left\{v_{1}, v_{2}, v_{3}\right\}$; its mid-edge is the edge $u v_{2}$.

A butterfly has five vertices, say, $v_{1}, v_{2}, v_{3}, v_{4}, u$, such that $v_{1}, v_{2}, v_{3}, v_{4}$ induce a $2 P_{2}$ with edges $v_{1} v_{2}$ and $v_{3} v_{4}$ (the peripheral edges of the butterfly), and $u(1)\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

We often consider an edge $e=u v$ to be a set of two vertices; then it makes sense to say, for example, $u \in e$ and $e \cap e^{\prime} \neq \emptyset$, for an edge e^{\prime}. For two vertices $x, y \in V$, let $\operatorname{dist}_{G}(x, y)$ denote the distance between x and y in G, i.e., the length of a shortest path between x and y in G. The distance between a vertex z and an edge $x y$ is the length of a shortest path between z and x, y, i.e., $\operatorname{dist}_{G}(z, x y)=\min \left\{\operatorname{dist}_{G}(z, v): v \in\{x, y\}\right\}$. The distance between two edges $e, e^{\prime} \in E$ is the length of a shortest path between e and e^{\prime}, i.e., $d i s t_{G}\left(e, e^{\prime}\right)=\min \left\{d i s t_{G}(u, v): u \in e, v \in e^{\prime}\right\}$. In particular, this means that $d i s t_{G}\left(e, e^{\prime}\right)=0$ if and only if $e \cap e^{\prime} \neq \emptyset$.

An edge subset $M \subseteq E$ is an induced matching if the pairwise distance between its members is at least 2 , that is, M is isomorphic to $k P_{2}$ for $k=|M|$. Obviously, if M is a d.i.m. then M is an induced matching.

Clearly, G has a d.i.m. if and only if every connected component of G has a di.m.; from now on, connected components are mentioned as components.

Note that if G has a di.m. M, and $V(M)$ denotes the vertex set of M then $V \backslash V(M)$ is an independent set, say I, i.e.,
V has the partition $V=V(M) \cup I$.

From now on, all vertices in I are colored white and all vertices in $V(M)$ are colored black. According to [12], we also use the following notions: A partial black-white coloring of $V(G)$ is feasible if the set of white vertices is an independent set in G and every black vertex has at most one black neighbor. A complete black-white coloring of $V(G)$ is feasible if the set of white vertices is an independent set in G and every black vertex has exactly one black neighbor. Clearly, M is a d.i.m. of G if and only if the black vertices $V(M)$ and the white vertices $V \backslash V(M)$ form a complete feasible coloring of $V(G)$.

2.2. Reduction steps, forbidden subgraphs, forced edges, and excluded edges

Various papers on this topic introduced and applied some forcing rules for reducing the graph G to a subgraph G^{\prime} such that G has a d.i.m. if and only if G^{\prime} has a d.i.m., based on the condition that for a d.i.m. M, V has the partition $V=V(M) \cup I$ such that all vertices in $V(M)$ are black and all vertices in I are white (recall (1)).

A vertex $v \in V$ is forced to be black if for every d.i.m. M of $G, v \in V(M)$. Analogously, a vertex $v \in V$ is forced to be white if for every d.i.m. M of $G, v \notin V(M)$.

An edge $e \in E$ is a forced edge of G if for every d.i.m. M of $G, e \in M$. Analogously, an edge $e \in E$ is an excluded edge of G if for every d.i.m. M of $G, e \notin M$.

For the correctness of the reduction steps, we have to argue that G has a d.i.m. if and only if the reduced graph G^{\prime} has one (provided that no contradiction arises in the vertex coloring, i.e., it is feasible).

Then let us introduce two reduction steps which will be applied later.
Vertex Reduction. Let $u \in V(G)$. If u is forced to be white, then
(i) color black all neighbors of u, and
(ii) remove u from G.

Let G^{\prime} be the reduced subgraph. Clearly, Vertex Reduction is correct, i.e., G has a d.i.m. if and only if G^{\prime} has a d.i.m.
Edge Reduction. Let $u v \in E(G)$. If u and v are forced to be black, then
(i) color white all neighbors of v and of v (other than u and v), and
(ii) remove u and v (and the edges containing u or v) from G.

Again, clearly, Edge Reduction is correct, i.e., G has a d.i.m. if and only if the reduced subgraph G^{\prime} has a d.i.m.
The subsequent notions and observations lead to some possible reductions (some of them are mentioned e.g. in [3-5]).

Observation 1 ([3-5]). Let M be a d.i.m. of G.
(i) M contains at least one edge of every odd cycle $C_{2 k+1}$ in $G, k \geq 1$, and exactly one edge of every odd cycle C_{3}, C_{5}, C_{7} in G.
(ii) No edge of any C_{4} can be in M.
(iii) For each C_{6} either exactly two or none of its edges are in M.

Proof. See e.g. Observation 2 in [4].

Since by Observation 1 (i), every triangle contains exactly one M-edge, and the pairwise distance of M-edges is at least 2 , we have:

Corollary 1. If G has a d.i.m. then G is $K_{4}-f r e e$.

Assumption 1. From now on, by Corollary 1, we assume that the input graph is K_{4}-free (else it has no d.i.m.).

Clearly, it can be checked (directly) in polynomial time whether the input graph is K_{4}-free.
By Observation 1 (i) with respect to C_{3} and by the distance property, we have the following:

Observation 2. The mid-edge of any diamond in G and the two peripheral edges of any induced butterfly are forced edges of G.

Assumption 2. From now on, by Observation 2, we assume that the input graph is (diamond, butterfly)-free.

In particular, we can apply the Edge Reduction to each mid-edge of any induced diamond and to each peripheral edge of any induced butterfly; that can be done in polynomial time.

2.3. The distance levels of an M-edge $x y$ in a P_{3}

Based on [5], we first describe some general structure properties for the distance levels of an edge in a d.i.m. M of G. Since G is (K_{4}, diamond, butterfly)-free, we have:

Observation 3. For every vertex v of $G, N(v)$ is the disjoint union of isolated vertices and at most one edge. Moreover, for every edge $x y \in E$, there is at most one common neighbor of x and y.

Since it is trivial to check whether G has a d.i.m. M with exactly one edge, from now on we can assume that $|M| \geq 2$. In particular, since G is connected and butterfly-free, we have (see also [5]):

Observation 4. If $|M| \geq 2$ then there is an edge in M which is contained in a P_{3} of G.
Proof. Let $x y \in M$ and assume that $x y$ is not part of an induced P_{3} of G. Since G is connected and $|M| \geq 2,(N(x) \cup N(y)) \backslash\{x, y\} \neq \emptyset$, and since we assume that $x y$ is not part of an induced P_{3} of G and G is K_{4} - and diamond-free, there is exactly one neighbor of $x y$, namely a common neighbor, say z of x and y. Again, since $|M| \geq 2, z$ has a neighbor $a \notin\{x, y\}$, and since G is K_{4} - and diamond-free, a, x, y, z induce a paw. Clearly, the edge $z a$ is excluded and has to be dominated by a second M-edge, say $a b \in M$ but now, since G is butterfly-free, $z b \notin E$. Thus, z, a, b induce a P_{3} in G, and Observation 4 is shown.

Remark 1. In what follows, let us fix an edge $x y$ in the solution, i.e. let us fix $x y \in M$. In particular, according to the assumption that $|M| \geq 2$ and to Observation 4, let us fix an edge $x y$ in order that there is a vertex r such that $\{r, x, y\}$ induce a P_{3} with edge $r x \in E$. Then, we have that x and y are black, and that could lead to a feasible black-white coloring of $V(G)$ [with vertices x and y black] if no contradiction arises. \diamond

Let us write $N_{0}=N_{0}(x y)=\{x, y\}$, and for $i \geq 1$ let

$$
N_{i}=N_{i}(x y)=\left\{z \in V: \operatorname{dist}_{G}(z, x y)=i\right\}
$$

denote the distance levels of $x y$.
Then we start by considering the partition of V into $N_{i}, i \geq 0$, with respect to the edge $x y$ (under the assumption that $x y \in M$).
If an edge $x^{\prime} y^{\prime} \in E$ is contained in every d.i.m. M of G with $x y \in M$, we say that $x^{\prime} y^{\prime}$ is an $x y$-forced M-edge.
If a vertex $v \in V$ is contained in no d.i.m. M of G with $x y \in M$, we say that v is a $x y$-excluded M-vertex.
In the following description which is based on the assumption of Remark 1:

- whenever a $x y$-forced M-edge, say $x^{\prime} y^{\prime}$, is detected, we re-define $N_{0}:=N_{0} \cup\left\{x^{\prime} y^{\prime}\right\}$ and consequently re-define the distance levels with respect to N_{0};
- whenever a $x y$-excluded M-vertex, say v, is detected, we apply the Vertex Reduction to v only if such a reduction does not disconnect the graph (in fact since we have fixed $x y \in M$, if such a reduction disconnects the graphs, then the approach of "fixing an edge in the solution" could not be iterated in an efficient way).

Clearly, by Observation 4 and since G is P_{10}-free, we have:

$$
\begin{equation*}
N_{k}=\emptyset \text { for every } k \geq 8 \tag{2}
\end{equation*}
$$

Recall that by (1), $V=V(M) \cup I$ is a partition of V where $V(M)$ is the set of black vertices and I is the set of white vertices which is independent.

Since we assume that $x y \in M$ (and is an edge in a P_{3}), clearly, $N_{1} \subseteq I$ and thus:
N_{1} is an independent set of white vertices.
Moreover, no edge between N_{1} and N_{2} is in M. Since $N_{1} \subseteq I$ and all neighbors of vertices in I are in $V(M)$, we have $N_{2} \subseteq V(M)$ and thus:
$G\left[N_{2}\right]$ is the disjoint union of edges and isolated vertices.
Let M_{2} denote the set of edges $u v \in E$ with $u, v \in N_{2}$ and let $S_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$ denote the set of isolated vertices in $N_{2} ; N_{2}=$ $V\left(M_{2}\right) \cup S_{2}$ is a partition of N_{2}. Obviously:

$$
\begin{equation*}
M_{2} \subseteq M \text { and } S_{2} \subseteq V(M) \tag{5}
\end{equation*}
$$

Obviously, by (5), we have:
Every edge in M_{2} is an $x y$-forced M-edge.
Thus, from now on, as one can re-define N_{0} by involving M_{2}-edges, we can assume that $V\left(M_{2}\right)=\emptyset$, i.e., $N_{2}=S_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$. For every $i \in\{1, \ldots, k\}$, let $u_{i}^{\prime} \in N_{3}$ denote the M-mate of u_{i} (i.e., $u_{i} u_{i}^{\prime} \in M$). Let $M_{3}=\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq k\right\}$ denote the set of M-edges
with one endpoint in S_{2} (and the other endpoint in N_{3}). Obviously, by (5) and the distance condition for a d.i.m. M, the following holds:

No edge with both ends in N_{3} and no edge between N_{3} and N_{4} is in M.
As a consequence of (7) and the fact that every triangle contains exactly one M-edge (recall Observation 1 (i)), we have:
For every $C_{3} a b c$ with $a \in N_{3}$, and $b, c \in N_{4}, b c \in M$ is an $x y$-forced M-edge.
This means that for the edge $b c$, one can re-define N_{0} by involving edge $b c$, and from now on, we can assume that there is no such triangle $a b c$ with $a \in N_{3}$ and $b, c \in N_{4}$, i.e., for every edge $u v \in E$ in N_{4} :

$$
\begin{equation*}
N(u) \cap N(v) \cap N_{3}=\emptyset . \tag{9}
\end{equation*}
$$

According to (5) and the assumption that $V\left(M_{2}\right)=\emptyset$ (recall $N_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$), let:

$$
\begin{aligned}
& T_{\text {one }}:=\left\{t \in N_{3}:\left|N(t) \cap N_{2}\right|=1\right\}, \\
& T_{i}:=T_{\text {one }} \cap N\left(u_{i}\right), 1 \leq i \leq k, \text { and } \\
& S_{3}:=N_{3} \backslash T_{\text {one }} .
\end{aligned}
$$

By definition, T_{i} is the set of private neighbors of $u_{i} \in N_{2}$ in N_{3} (note that $u_{i}^{\prime} \in T_{i}$), $T_{1} \cup \ldots \cup T_{k}$ is a partition of $T_{\text {one }}$, and $T_{\text {one }} \cup S_{3}$ is a partition of N_{3}.

Let us report from [5] the following lemma.

Lemma 1 ([5]). The following statements hold:
(i) For all $i \in\{1, \ldots, k\}, T_{i} \cap V(M)=\left\{u_{i}^{\prime}\right\}$.
(ii) For all $i \in\{1, \ldots, k\}, T_{i}$ is the disjoint union of vertices and at most one edge.
(iii) $G\left[N_{3}\right]$ is bipartite.
(iv) $S_{3} \subseteq I$, i.e., S_{3} is an independent subset of white vertices.
(v) If a vertex $t_{i} \in T_{i}$ sees two vertices in $T_{j}, i \neq j, i, j \in\{1, \ldots, k\}$, then $u_{i} t_{i} \in M$ is an xy-forced M-edge.

Then let us introduce the following forcing rules (which are correct).
Since no edge in N_{3} is in M (recall (7)), we have:
(R1) For any vertex $v \in N_{3}$, if v is black (white), then all vertices of $N(v) \cap\left(N_{3} \cup N_{4}\right)$ must be colored white (black).

Moreover, by Lemma 1, we have:
(R2) Every $T_{i}, i \in\{1, \ldots, k\}$, should contain exactly one vertex which is black. Thus, if $t \in T_{i}$ is black then all the remaining vertices in $T_{i} \backslash\{t\}$ must be colored white.
(R3) If all but one vertices of $T_{i}, 1 \leq i \leq k$, are white and the final vertex $t \in T_{i}$ is not yet colored, then t must be colored black.
2.4. The main body of the solution method

Let us say that, for any graph $G=(V, E)$, a central vertex of G is any vertex $v \in V$ such that $\max \left\{\operatorname{dist}_{G}(v, u): u \in V\right\} \leq$ $\max \left\{\operatorname{dist}_{G}\left(v^{\prime}, u\right): u \in V\right\}$ for every $v^{\prime} \in V$.

Theorem 2 ([1]). Every connected P_{t}-free graph $G=(V, E)$ admits a vertex $v \in V$ such that dist ${ }_{G}(v, u) \leq\lfloor t / 2\rfloor$ for every $u \in V$.

Let $G=(V, E)$ be a connected P_{10}-free graph. Then let $v \in V$ be any central vertex of G. Note that, by Theorem $2, \operatorname{dist}_{G}(v, u) \leq 5$ for every $u \in V$.

From one hand, for every edge $v u$ of G, with $u \in N(v)$, one has $N_{k}(v u)=\emptyset$ for any $k \geq 5$; furthermore, by the choice of v, by Assumption 1 and by Assumption 2, one has that [unless G is a triangle] edge $v u$ is contained in an induced P_{3} of G : in fact, if $v u$ is contained in no induced P_{3} of G, then $N(v u)$ contains exactly one vertex (else an induced K_{4} or an induced diamond arises), say vertex z, but then $\max \left\{\operatorname{dist}_{G}(z, \bar{v}): \bar{v} \in V\right\}<\max \left\{\operatorname{dist}_{G}(v, \bar{v}): \bar{v} \in V\right\}$, which contradicts the fact that v is a central vertex of G; it follows that, by Remark 1, all properties introduced in the previous subsection for edge xy hold for edge vu as well.

From the other hand, if one could check, for any edge $v u$, with $u \in N(v)$, whether there is a d.i.m. M^{\prime} of G with $v u \in M^{\prime}$, then one could conclude that: either G has a d.i.m. [with $v \in V(M)$], or G has no d.i.m. M with $v \in V(M)$; in particular, in the latter case, one can apply the Vertex Reduction to v and thus remove v from G.

Then let us introduce the following recursive algorithm which formalizes the approach we will adopt to check if G has a d.i.m.

Algorithm $\operatorname{DIM}(G)$
Input. A connected P_{10}-free graph $G=(V, E)$ which enjoys Assumption 1 and Assumption 2.
Output. A d.i.m. of G or the proof that G has no d.i.m.
(Step 1) Compute any central vertex, say x, of G.
(Step 2) For each edge $x y$, with $y \in N(x)$, of G (recall that $x y$ is contained in a P_{3} of G) do:
(2.1) compute the distance levels N_{i} with respect to $x y$ and re-define iteratively N_{0} by involving those $x y$-forced edges as shown above;

- if no contradiction arose, according to (3)-(4) or to Lemma 1(ii)-(iv) or to forcing rules (R1)-(R3), then go to Step (2.2); - else consider the next edge;
(2.2) check if G has a d.i.m. M with $x y \in M$; if $y e s$, then return it, and STOP;
(Step 3) Apply the Vertex Reduction to x and thus remove x from G; let G^{\prime} denote the resulting graph, where the neighbors of x in G are colored by black; if G^{\prime} is disconnected, then execute $\operatorname{Algorithm} \operatorname{DIM}(H)$ for each component H of G^{\prime}; else, go to Step 2, with $G:=G^{\prime}$.
(Step 4) Return " G has no d.i.m." and STOP.
Then, by the above, $\operatorname{Algorithm} \operatorname{DIM}(G)$ is correct and can be executed in polynomial time as soon as Step (2.2) can be so.
Then in what follows let us show that Step (2.2) can be solved in polynomial time, with the agreement that G enjoys Assumption 1 and Assumption 2, and that no contradiction arose, according to (3)-(4) or to Lemma 1(ii)-(iv) or to forcing rules (R1)-(R3).

For that we consider the cases $N_{4}=\emptyset$ and $N_{4} \neq \emptyset$.

3. The case $N_{4}=\emptyset$

In this section let us show that, if $N_{4}=\emptyset$, then one can check in polynomial time whether G has a di.m. M with $x y \in M$.
First let us introduce some assumptions, based on the fact that N_{0} can be re-defined [by involving $x y$-forced M-edges] and on the Vertex Reduction [whose application will not disconnect the graph, by construction, and since $N_{4}=\emptyset$], in order to simplify the scenario.

By Lemma 1 (iv) and the Vertex Reduction for the white vertices of S_{3}, we can assume:
(A1) $S_{3}=\emptyset$, i.e., $N_{3}=T_{1} \cup \ldots \cup T_{k}$.
By Lemma 1 (v), we can assume:
(A2) For $i, j \in\{1, \ldots, k\}, i \neq j$, every vertex $t_{i} \in T_{i}$ has at most one neighbor in T_{j}.
In particular, if for some $i \in\{1, \ldots, k\}, T_{i}=\emptyset$, then there is no d.i.m. M of G with $x y \in M$, and if $\left|T_{i}\right|=1$, say $T_{i}=\left\{t_{i}\right\}$, then $u_{i} t_{i}$ is an $x y$-forced M-edge. Thus, we can assume:
(A3) For every $i \in\{1, \ldots, k\},\left|T_{i}\right| \geq 2$.
Let us say that a vertex $t \in T_{i}, 1 \leq i \leq k$, is an out-vertex of T_{i} if it is adjacent to some vertex of T_{j} with $j \neq i$, and t is an in-vertex of T_{i} otherwise.

Recall that, by Lemma 1 (ii), T_{i} is the disjoint union of vertices and at most one edge say e_{i}. If $G\left[T_{i}\right]$ contains e_{i}, then at least one vertex of e_{i} is black, so that the isolated vertices of $G\left[T_{i}\right]$ are white and can be removed, i.e., one can apply the Vertex Reduction to such isolated vertices; it follows that, if vertices of e_{i}, say t^{\prime} and $t^{\prime \prime}$, are in-vertices, then either t^{\prime} or $t^{\prime \prime}$ is black (indifferently by symmetry); then one can re-define N_{0} by involving $u_{i} t^{\prime}$ (or indifferently, by symmetry, by involving $u_{i} t^{\prime \prime}$). If $G\left[T_{i}\right]$ does not contain e_{i}, then for finding a d.i.m. M with $x y \in M$ one can remove all but one in-vertices of T_{i}, i.e., one can apply the Vertex Reduction to all but one in-vertices in T_{i}.

Thus, let us assume:
(A4) For every $i \in\{1, \ldots, k\}, T_{i}$ has at most one in-vertex.
Lemma 2. Assume that G has a d.i.m. M with $x y \in M$. Then there are no three edges between T_{i} and $T_{j}, i \neq j$, and if there are two edges between T_{i} and T_{j}, say $t_{i} t_{j} \in E$ and $t_{i}^{\prime} t_{j}^{\prime} \in E$ for $t_{i}, t_{i}^{\prime} \in T_{i}$ and $t_{j}, t_{j}^{\prime} \in T_{j}$ then any other vertex in T_{i} or T_{j} is white.

Proof. First, suppose to the contrary that there are three edges between T_{1} and T_{2}, say $t_{1} t_{2} \in E$, $t_{1}^{\prime} t_{2}^{\prime} \in E$, and $t_{1}^{\prime \prime} t_{2}^{\prime \prime} \in E$ for $t_{i}, t_{i}^{\prime}, t_{i}^{\prime \prime} \in T_{i}, i=1,2$. Then t_{1} is black if and only if t_{2} is white, t_{1}^{\prime} is black if and only if t_{2}^{\prime} is white, and $t_{1}^{\prime \prime}$ is black if and only if $t_{2}^{\prime \prime}$ is white. Without loss of generality, assume that t_{1} is black, and t_{2} is white. Then t_{1}^{\prime} is white, and t_{2}^{\prime} is black, but now, $t_{1}^{\prime \prime}$ and $t_{2}^{\prime \prime}$ are white, which is a contradiction.

Now, if there are exactly two such edges between T_{1} and T_{2}, say $t_{1} t_{2} \in E$, $t_{1}^{\prime} t_{2}^{\prime} \in E$, then again, t_{1} or t_{1}^{\prime} is black as well as t_{2} or t_{2}^{\prime} is black, and thus, every other vertex in T_{1} or T_{2} is white.

Thus Lemma 2 is shown.

By Lemma 2, we can assume:
(A5) For $i, j \in\{1, \ldots, k\}, i \neq j$, there are at most two edges between T_{i} and T_{j}.
Let us point out that (A1) and (A3) hold under the assumptions of the case $N_{4}=\emptyset$, which warrants that the Vertex Reduction does not disconnect the graph, while (A2), (A4), (A5) hold generally.

In the rest of this section let assume that (A1)-(A5) hold.
Let us write $T_{\text {family }}=\left\{T_{1}, \ldots, T_{k}\right\}$. Let us assume that $G\left[\left\{u_{1}, \ldots, u_{k}\right\} \cup T_{1} \cup \ldots \cup T_{k}\right]$ is connected, without loss of generality, else one can split the problem for the corresponding components. Then let us consider the following two exhaustive cases.

Case 1. There are no vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{3} in G.
Let us define a multi-graph $F=\left(T_{\text {family }}, E^{\prime}\right.$) as follows: for any $T_{i}, T_{j} \in T_{\text {family }}$ (with $i \neq j$), if in G there is an edge from vertices of T_{i} to vertices of T_{j}, then in F there is an edge from node T_{i} to node T_{j}; in particular [according to (A2)], if in G there are two edges from vertices of T_{i} to vertices of T_{j}, then in F there are two edges from node T_{i} to node T_{j} (in this case node T_{i} and node T_{j} form a cycle of F).

Let us recall that a bridge of a connected multi-graph is an edge of the multi-graph whose removal disconnects the multi-graph.
Let us recall that a multi-graph is 2-edge-connected if it is connected and if it has no bridge [so that each edge of the multi-graph belongs to a cycle of the multi-graph].

Let us say that an induced subgraph of F is a blue subgraph of F if it is a maximal 2-edge-connected subgraph of G.
Then $V(F)$ can be partitioned into $\left\{V^{\prime}(F), V^{\prime \prime}(F)\right\}$ where:
:: each node of $V^{\prime}(F)$ belongs to some blue subgraph of F; in particular $V^{\prime}(F)$ can be uniquely partitioned in order that each member of such a partition induces a blue subgraph of F, that is, the family of blue subgraphs of F is unique and its members have mutually no node of F in common; let say that every node of $V^{\prime}(F)$ is a blue node of F;
:: each node of $V^{\prime \prime}(F)$ belongs to no blue subgraph of F; in particular $V^{\prime}(F)$ induces a forest of F; let say that every node of $V^{\prime \prime}(F)$ is a green node of F.

P1. If all nodes of F are green, then G has a d.i.m. containing $x y$.
Proof. Note that in this case, as remarked above, each connected component of F is a tree. Then let us assume without loss of generality that F is a (rooted) tree, i.e., F is connected. Let node T_{i} be any leaf of F and let node T_{j} be the neighbor of node T_{i} in F. Then, by definition of green node, there is exactly one edge in G between T_{i} and T_{j}, say edge $t_{i} t_{j}$ with $t_{i} \in T_{i}$ and $t_{j} \in T_{j}$.

Claim 1. Vertices of T_{i} are ready for any coloring, that is, for any choice of the color of t_{j} there is a feasible coloring of vertices of T_{i}.
Proof. By construction, t_{i} is the only out-vertex of T_{i}; on the other hand, by (A4), T_{i} has at most one in-vertex, say \bar{t}_{i}; in particular, by (A3), vertex \bar{t}_{i} does exist; then for any color of t_{j}, there is a feasible coloring of vertices of T_{i}, in details: t_{i} has a color different to that of t_{j}, while \bar{t}_{i} has the same color as that of t_{j}.

Then one can remove node T_{i} from F and iterate this argument for any leaf in the resulting tree. It follows that, for any feasible coloring of the vertices of the root of F [which does exist by Lemma 1 (ii)], there is a feasible coloring of the vertices of the nodes of F. This completes the proof of P1.

P2. Let B be any blue subgraph of F. Then there are at most two feasible colorings of B and they can be computed in polynomial time.

Proof. Let C be any induced cycle of B.
Claim 1. If T_{i}, T_{j}, T_{h} are three nodes of C inducing a P_{3} of C, say with center say T_{j} (without loss of generality by symmetry), then with reference to graph G one has that: (1) no vertex of T_{j} has a neighbor both in T_{i} and in T_{h}; (2) there are two distinct vertices, say $t_{j}, t_{j}^{\prime} \in T_{j}$, such that vertex t_{j} has a neighbor in T_{i} (which is a nonneighbor of t_{j}^{\prime}) and vertex t_{j}^{\prime} has a neighbor in T_{h} (which is a nonneighbor of t_{j}).

Proof. Statement (1) follows by assumption of Case 1 and since $G\left[N_{3}\right]$ is bipartite by Lemma 1 (iii). Statement (2) follows by assumption of Claim 1, by statement (1), and by (A2).

Claim 2. Let T_{a}, T_{b} be adjacent nodes in C and let $t_{a} t_{b}$ be any edge in G, between T_{a} and T_{b}, with $t_{a} \in T_{a}$ and $t_{b} \in T_{b}$. Then:

- if the color of t_{a} is fixed black [and thus the color of all vertices of $T_{a} \backslash\left\{t_{a}\right\}$ is forced to be white by (R2)], then the color of all vertices of each node of B is forced by (R1)-(R3);
- if the color of t_{a} is fixed white [and thus the color of t_{b} is forced to be black by (R1) and the color of all vertices of $T_{b} \backslash\left\{t_{b}\right\}$ is forced to be white by (R2)], then the color of all vertices of each node of B is forced by (R1)-(R3).

Proof. It follows by construction, by definition of (R1)-(R3), and by Claim 1.
Claim 3. If all vertices of a node of C are colored [i.e. have a given feasible coloring], then the color of all vertices of each node of C is forced.

Proof. It follows by construction, by Claim 1, and by Claim 2.

Let us conclude the proof of P2. If B is an induced cycle, then by Claim 1 and by Claim 2 one has that B has at most two feasible colorings [and they can be computed in polynomial time]. If B is not an induced cycle, then one can proceed as follows: take any induced cycle, say Q, of B; let us write $Q=Q_{0}$; then let us define a procedure, with $|V(B)|-|V(Q)|$ steps, such that at each step $h=1, \ldots,|V(B)|-|V(Q)|$, the procedure defines subgraph $Q_{h}=B\left[V\left(Q_{h-1}\right) \cup\left\{v_{h}\right\}\right]$, where v_{h} is any node of $B\left[V(B) \backslash V\left(Q_{h-1}\right)\right]$ such that v_{h} is contained in at least one cycle of $B\left[V\left(Q_{h-1}\right) \cup\left\{v_{h}\right\}\right]$; let us observe that, since B is 2-edge-connected, such a procedure is well defined; summarizing, by Claim 1 and by Claim 2, one has that Q has at most two feasible colorings [and they can be computed in polynomial time], while by Claim 3 and by definition of the above procedure one has that, for each such two feasible colorings of Q, the color of all vertices of each node of B is forced [and that can be computed in polynomial time].

This completes the proof of P2.

Then by P2, for any blue subgraph B of F such that there is at least one feasible coloring of B, the set of vertices of nodes of B can be partitioned into $\{Q 1(B), Q 2(B)\}$ where:

- Q1(B) is formed by those vertices of nodes of B which have the same color for any feasible coloring of B, and
$-Q 2(B)$ is formed by the other vertices of nodes of B; note that, by $\mathrm{P} 2, Q 2(B)$ is nonempty only when there are exactly two feasible colorings of B.

Then let us introduce a method to check whether vertices of nodes of F admit a feasible coloring.
Preliminary Step.
:: Compute the family, say \mathcal{B}, of blue subgraphs of F.
:: Construct the bridge-block tree of F, say F^{*}, that is:
(i) each member of \mathcal{B} is contracted into a respective node of F^{*} and is called a big blue node of F^{*}; each green node of F remains in F^{*} and is called a green node of F^{*}; then each node of F^{*} is either a big blue node of F^{*} or a green node of F^{*};
(ii) in F^{*} two nodes are adjacent if and only if in G there is an edge [i.e. a bridge of G] between two respective vertices of such two nodes; in particular in F^{*}, between two adjacent nodes, there is exactly one edge;
(iii) F^{*} is a tree; then let us fix any vertex of F^{*} as the root of F^{*};
(iv) for any node X of F^{*} different to the root of F^{*}, let us say that the vertex of node X which is adjacent (in G) to the vertex of the ancestor of X is the up-vertex of X, denoted as $u(X)$, and that the vertex of the ancestor of X which is adjacent (in G) to the up-vertex of X is the ancestor-vertex for X.

The generic step of the method focuses on any leaf of F^{*}, i.e., it checks such a leaf (both concerning the forcing conditions which it has received possibly by previous steps and concerning the forcing conditions which it gives possibly for the next steps). After such a step/check, the leaf will be removed from F^{*}; then such a step/check is iterated for any leaf of the resulting tree; the method ends when it focuses on the root of F^{*}.

Generic Step.
Input: any leaf X of F^{*}.
:: if X is a green node of F^{*}, then:
:::: check if some vertex of X is colored (by previous steps); then, according to this possible partial coloring, check by Lemma 1 (ii) if there exist two feasible colorings of vertices of X in which the color of $u(X)$ is assumed respectively black and white; if none of such feasible colorings exist, then return " G has no d.i.m. M with $x y \in M$ "; if there exists only a feasible coloring in which the color of $u(X)$ is assumed black (respectively, white), then fix the color of $u(X)$ as black (respectively, as white);
:::: if $u(X)$ has a fixed color (by the above), then color the ancestor-vertex for X by a color different to the color of $u(X)$;
:::: if $u(X)$ has not a fixed color, then do not color the ancestor-vertex for X; then $u(X)$, and generally X, is ready for any color of the ancestor-vertex for X;
$::$ if X is a big blue node of F^{*}, i.e. let B be the member of \mathcal{B} which has been contracted into X, then:
:::: check if some vertex of X is colored (by previous steps); then, according to this possible partial coloring, compute the (at most two) possible feasible colorings of B by P2; if B does not admit any feasible coloring, then return " G has no d.i.m. M with $x y \in M$ "; :::: if $u(X)$ belongs to $Q 1(B)$, then color the ancestor-vertex for X by a color different to the color of $u(X)$;
:::: if $u(X)$ belongs to $Q 2(B)$, then do not color the ancestor-vertex for X; then $u(X)$, and generally X, is ready for any color of the ancestor-vertex for X.

Then let us formalize the main body of the method.

Main Body

1. Execute the Preliminary Step.
2. While F^{*} has a leaf say X do:
:: execute the Generic Step for X;
:: remove X from F^{*}, i.e., set $F^{*}:=F^{*}-X$;
:: if X is the root of F^{*}, then: if there is a feasible coloring of X, then return " G has a d.i.m. M with $x y \in M$ "; if there is no feasible coloring of X, then return " G has no d.i.m. M with $x y \in M$ ".

Then the above method is correct and can be executed in polynomial time by the above.
This completes the proof for Case 1: let us point out that the assumption that G is P_{10}-free was not used for Case 1 , i.e., the above result holds for the general case.

Case 2. There are vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{3} in G.
P3. One can check if G has a di.m. containing $x y$ in polynomial time in the following cases:
(a) there are vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}, t_{l} \in T_{l}$, with $i, j, h, l \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{4} in G namely $t_{i}-t_{j}-t_{h}-t_{l}$;
(b) there are vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h}, \overline{t_{h}} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{4} in G namely $t_{i}-t_{j}$ -$t_{h}-\overline{t_{h}}$;
(c) there are vertices $t_{i} \in T_{i}, t_{j}, \overline{t_{j}} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{4} in G namely $t_{i}-t_{j}-$ $\bar{t}_{j}-t_{h} ;$

Proof. First let us prove statement (a).
Assume that there are such vertices, say without loss of generality $t_{1} \in T_{1}, t_{2} \in T_{2}, t_{3} \in T_{3}, t_{4} \in T_{4}$, which induce a P_{4} in G. Then let us prove two claims.

Claim 1. Assume that there are vertices, say without loss of generality $t_{5} \in T_{5}, t_{6} \in T_{6}, t_{7} \in T_{7}$, which induce a P_{3} in G. Then $\left\{t_{1}, \ldots, t_{4}\right\}$ contacts $\left\{t_{5}, t_{6}, t_{7}\right\}$.

Proof. By contradiction assume that $\left\{t_{1}, \ldots, t_{4}\right\}$ does not contact $\left\{t_{5}, t_{6}, t_{7}\right\}$. Then let P be any induced path in G from u_{1} and u_{5} through $N_{0} \cup N_{1}$ (let us recall that, by construction, $G\left[N_{0} \cup N_{1}\right]$ is connected). Then the subgraph of G induced by $t_{4}, t_{3}, t_{2}, t_{1}, u_{1}, P, u_{5}, t_{5}, t_{6}, t_{7}$ contains an induced P_{10}, a contradiction. \diamond

Claim 2. One can check if G has a d.i.m. containing $x y$ in polynomial time.
Proof. The proposed method is based on Claim 1.
Assume that all vertices of T_{1}, \ldots, T_{4} have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order to possibly color vertices of members of $T_{\text {family }}$. Then $T_{\text {family }}$ can be partitioned into: $T_{f a m i l}^{\prime}$, formed by those members whose vertices are all colored, and $T_{\text {family }}^{\prime \prime}$, formed by those members whose vertices are not all colored. Clearly $T_{1}, \ldots, T_{4} \in T_{\text {family }}^{\prime}$. Concerning the other members of $T_{\text {family }}$: note that for any triple $t_{a} \in T_{a}, t_{b} \in T_{b}, t_{c} \in T_{c}$, with $\left\{t_{a}, t_{b}, t_{c}\right\}$ inducing a P_{3}, with $a, b, c \in\{1, \ldots, k\}$ and $a, b, c \geq 5$, one has that by Claim 1 and by (R1) at least one vertex in $\left\{t_{a}, t_{b}, t_{c}\right\}$, say t_{d} with $d \in\{a, b, c\}$, is forced to be black, so that the color of all vertices of T_{d} is forced by (R2), so that $T_{d} \in T_{\text {family }}^{\prime}$. Then $T_{\text {family }}^{\prime \prime}$ enjoys Case 1.

Summarizing, to check if G has a d.i.m. containing $x y$, one can proceed as follows: For each $\left(t_{1}^{\prime}, \ldots, t_{4}^{\prime}\right) \in T_{1} \times \ldots \times T_{4}$ assign color black to $t_{1}^{\prime}, \ldots, t_{4}^{\prime}$; then repeatedly apply forcing rules (R1)-(R3) in order to possibly color vertices of members of $T_{\text {family }}$; let $T_{\text {family }}^{\prime}$ and $T_{\text {family }}^{\prime \prime}$ be defined as above; if no contradiction arose, then a feasible coloring of vertices of $T_{\text {family }}^{\prime}$ is directly obtained, while a feasible coloring of vertices of $T_{\text {family }}^{\prime}$ (if one exists) can be obtained since $T_{\text {family }}^{\prime \prime}$ enjoys Case 1 [in details: one can check if $T_{\text {family }}^{\prime \prime}$ admits a feasible coloring, which is consistent with the (possible) forced consequences of the above forcing rules (R1)-(R3), by referring to Case 1]. That is correct by the above and can be executed in polynomial time since the procedure of Case 1 can be executed in polynomial time. \diamond

Then statement (a) follows by Claim 2.
Then let us prove statement (b). The proof is very similar to that of statement (a): that is based on the fact if there are such vertices, say without loss of generality $t_{1} \in T_{1}, t_{2} \in T_{2}$, and $t_{3}, \overline{t_{3}} \in T_{3}$, which induce a P_{4} in G, and if there are vertices, say without loss of generality $t_{4} \in T_{4}, t_{5} \in T_{5}, t_{6} \in T_{6}$, which induce a P_{3} in G, then $\left\{t_{1}, t_{2}, t_{3}, \bar{t}_{3}\right\}$ contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$ (cf. Claim 1).

Then let us prove statement (c). The proof is very similar to that of statement (b).

Remark 2. Let us assume that statements (a)-(b)-(c) of P3 do not occur [else one can apply P3].

Let us recall that, by (A1), $N_{3}=T_{1} \cup \ldots \cup T_{k}$.
Let K be any component of $G\left[N_{3}\right]$ containing vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{3} in G. Note that, once the color of any vertex of K is fixed, then the color of all vertices of K is forced by (R1). Furthermore, by (A2), every induced P_{3} of K is such that its three vertices belong to respective different members of $T_{\text {family }}$.

Let us introduce some preliminary definition.

- Let us say that a member T_{i} of $T_{\text {family }}$ is critical for K if $\left|T_{i} \cap K\right|=1$.
- For any induced P_{3} of K, say of vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$, let us say that the P_{3} involves T_{i}, T_{j}, T_{h}.
- Let us say that an induced P_{3} of K is max-critical for K if the P_{3} involves a maximum number of members of $T_{f a m i l y}$ which are critical for K. Note that such a maximum number is at most 3 .

Now let us assume, without loss of generality, that a max-critical P_{3} of K is induced by vertices $t_{1} \in T_{1}, t_{2} \in T_{2}, t_{3} \in T_{3}$, with edges $t_{1} t_{2}$ and $t_{2} t_{3}$.

P4. Assume that all vertices of T_{1}, T_{2}, T_{3} have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order to possibly color vertices of members of $T_{\text {family }}$. If there are vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{4, \ldots, k\}$ mutually distinct, which induce a P_{3} in G, then all vertices of at least one set in $\left\{T_{i}, T_{j}, T_{h}\right\}$ are colored.

Proof. Without loss of generality let us assume that $i=4, j=5, h=6$.
Let us write $A=\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{t_{1}, t_{2}, t_{3}\right\}$ and $B=\left\{u_{4}, u_{5}, u_{6}\right\} \cup\left\{t_{4}, t_{5}, t_{6}\right\}$.
As a preliminary let us observe that P 4 follows as soon as some vertex in $\left\{t_{4}, t_{5}, t_{6}\right\}$ is colored: in fact, in this case, by (R1) at least one vertex in $\left\{t_{4}, t_{5}, t_{6}\right\}$ is black, say t_{h} with $h \in\{4,5,6\}$, and then by (R2) all vertices of T_{h} are colored.

Claim 1. If there is a path through $G\left[N_{3}\right]$ from a vertex of $T_{1} \cup T_{2} \cup T_{3}$ to a vertex of $\left\{t_{4}, t_{5}, t_{6}\right\}$, then P4 follows.
Proof. In fact, if such a path should exist, then P4 would follow by (R1) and since all vertices of T_{1}, T_{2}, T_{3} are colored.
Assumption 3. Let us assume that there is no path through $G\left[N_{3}\right]$ from a vertex of $T_{1} \cup T_{2} \cup T_{3}$ to a vertex of $\left\{t_{4}, t_{5}, t_{6}\right\}$, else P4 follows, by Claim 1.

Then let us consider a shortest path, say P, in $G\left[\left\{u_{1}, \ldots, u_{k}\right\} \cup T_{1} \cup \ldots \cup T_{k}\right]$ from A to B; then, let a be the vertex of $P \backslash(A \cup B)$ which is adjacent to some vertex of A, and let b be the vertex of $P \backslash(A \cup B)$ which is adjacent to some vertex of B; note that vertex a and vertex b may coincide.

Claim 2. The following statements hold:

(i) if a contacts $\left\{u_{1}, u_{2}, u_{3}\right\}$, then a is the endpoint of an induced P_{5} together with four vertices of A; if a contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$, then a is the endpoint of an induced P_{4} together with three vertices of A and belongs to N_{3}.
(ii) if b contacts $\left\{u_{4}, u_{5}, u_{6}\right\}$, then b is the endpoint of an induced P_{5} together with four vertices of B; if b contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$ and does not contact $\left\{u_{4}, u_{5}, u_{6}\right\}$, then b is the endpoint of an induced P_{4} together with three vertices of B and belongs to N_{3}.

Proof. Let us just prove statement (i), since statement (ii) can be proved similarly, by symmetry.
First assume that a is adjacent to u_{1}; then $a \in T_{1}$; then a is nonadjacent to t_{2} by (A2). If a is nonadjacent to t_{1}, then $a, u_{1}, t_{1}, t_{2}, u_{2}$ induce a P_{5}. If a is adjacent to t_{1}, then by Remark 2 one has that a is adjacent to t_{3}; by Assumption 3 and by construction, there is a vertex say a^{\prime} in $P \backslash(A \cup B)$ adjacent to a, in particular a^{\prime} belongs to some member T_{i} of $T_{\text {family }}$ with $i \notin\{1,2,3\}$; then, by Remark 2 and since $G\left[N_{3}\right]$ is bipartite, a^{\prime} is adjacent to t_{2}; but this contradicts the definition of a, i.e., it is not possible that a is adjacent to t_{1}.

Then assume that a is adjacent to u_{2}; then $a \in T_{2}$; then a is nonadjacent to t_{1} and to t_{3} by (A2). If a is nonadjacent to t_{2}, then $a, u_{2}, t_{2}, t_{3}, u_{3}$ induce a P_{5}. If a is adjacent to t_{2}, then let us consider the following argument; by Assumption 3 and by construction, there is a vertex say a^{\prime} in $P \backslash(A \cup B)$ adjacent to a, in particular a^{\prime} belongs to some member T_{i} of $T_{\text {family }}$ with $i \notin\{1,2,3\}$; then, by Remark 2 and since $G\left[N_{3}\right]$ is bipartite, a^{\prime} is adjacent to t_{1} or to t_{3}; but this contradicts the definition of a, i.e., it is not possible that a is adjacent to t_{2}.

Finally assume that a is adjacent to u_{3}; then, by symmetry, this occurrence can be treated similarly to that in which a is adjacent to u_{1}.

Now let us assume that a contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$. Then, by construction, a belongs to N_{3} [i.e. to some member T_{h} of $T_{\text {family }}$ with $\left.h \notin\{1,2,3\}\right]$: if a is adjacent to t_{1}, then a, t_{1}, t_{2}, u_{2} induce a P_{4}; if a is adjacent to t_{2}; then a, t_{2}, t_{3}, u_{3} induce a P_{4}; if a is adjacent to t_{3}, then a, t_{3}, t_{2}, u_{2} induce a P_{4}.

Claim 3. $P \backslash(A \cup B)$ has at most 3 vertices.

Proof. It follows by construction, by Claim 2, and since G is P_{10}-free.
Then, by Claim 3, let us consider the following exhaustive occurrences.
Occurrence 1: $P \backslash(A \cup B)$ has exactly 3 vertices.
Then $P \backslash(A \cup B)$ is an induced P_{3}, of vertices a, b, and say z, and of edges $a z$ and $z b$.
Since G is P_{10}-free, by Claim 2 one has that: a contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\} ; b$ contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$ and does not contact $\left\{u_{4}, u_{5}, u_{6}\right\}$; furthermore $a, b \in N_{3}$; then by Assumption 3, one has $z \in N_{2}$, say $z=u_{7}$; it follows that $a, b \in T_{7}$.

Then let us consider the following exhaustive cases.
As a preliminary (recalling that $G\left[N_{3}\right]$ is bipartite) let us observe that one can assume that either a is adjacent to t_{2} or a is adjacent to t_{1} and to t_{3} : in fact by Remark 2, if a is adjacent to t_{1} (or to t_{3}), then a is adjacent to t_{3} (to t_{1}) as well.
:: Assume that T_{7} is not critical for K. Then, since by construction $a \in K$ [that is $\left.\left|K \cap T_{7}\right| \geq 1\right]$, one has $\left|K \cap T_{7}\right| \geq 2$. Note that $b \notin K$, by Assumption 3 and by construction. Then there is $t \in T_{7}$, different to a and to b, such that $t \in K$: in particular let us choose vertex t in order that, over vertices of $\left(K \cap T_{7}\right) \backslash\{a\}$, t has a minimum distance in K from $\left\{t_{1}, t_{2}, t_{3}\right\}$. Clearly t does not contact $\left\{u_{4}, u_{5}, u_{6}\right\}$ since $t \in T_{7}$; furthermore, by Assumption 3 , t [and more generally any vertex of K] does not contact $\left\{t_{4}, t_{5}, t_{6}, b\right\}$; furthermore one can assume that t is adjacent to no vertex of $K \cap T_{7}$, else either t or its neighbor in $K \cap T_{7}$ would be black, so that by (R2) vertex b would be white, and then by (R1) vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ are colored, i.e., P4 follows; in particular t is nonadjacent to a.

Then let us consider a shortest path say P^{*} in K from t to $\left\{t_{1}, t_{2}, t_{3}\right\}$.
If t contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$, then by (A2) t is adjacent to a vertex of $\left\{t_{1}, t_{2}, t_{3}\right\}$ which is nonadjacent to a, so that (by the above preliminary) a and t have different colors, so that by (R2) vertex b is white, and then by (R1) vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ are colored, i.e., P4 follows.

If t does not contact $\left\{t_{1}, t_{2}, t_{3}\right\}$, then let \bar{t} be the first vertex in P^{*} (going from t to $\left\{t_{1}, t_{2}, t_{3}\right\}$) which contacts A;
if \bar{t} contacts $\left\{u_{1}, u_{2}, u_{3}\right\}$ [so that $\bar{t} \neq a$], then \bar{t} is the endpoint of an induced P_{5} together with four vertices in A, so that t is the endpoint of an induced P_{6} together with (at least) five vertices in $P^{*} \cup A$, so that [by the choice of t, by the choice of \bar{t}, and since a does not belong to P^{*} by construction] such an induced P_{6} together with vertices u_{7}, b, and two vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ (depending on the neighbors of b) induce a P_{10}, i.e., this occurrence is not possible;
if \bar{t} contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$, then let us consider the vertex say \bar{t}^{\prime} in P^{*} which precedes \bar{t} (going from t to $\left\{t_{1}, t_{2}, t_{3}\right\}$), let us observe that \bar{t} and \bar{t}^{\prime} do not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$ (by the above), and let us conclude that $\bar{t}^{\prime}, \bar{t}$, and other two vertices of $\left\{t_{1}, t_{2}, t_{3}\right\}$ (depending on the neighbors of \bar{t} induce a P_{4} which contradicts Remark 2, i.e., this occurrence is not possible.
:: Assume that T_{7} is critical for K. Then let us show that a contradiction arises, i.e., this occurrence is not possible. In details, let us show that a is the endpoint of an induced P_{5} together with four vertices of A, which is not possible since G is P_{10}-free [in fact by definition of b and by Claim 2, b is the endpoint of an induced P_{4} together with three vertices of B, and in turn u_{7} is the endpoint of an induced P_{5}].

Then let us consider the following exhaustive cases according to the above preliminary.
If a is adjacent to t_{1} and to t_{3}, then, since $\left\{t_{1}, t_{2}, t_{3}\right\}$ induces a max-critical P_{3} of K, T_{2} is critical for K (else one would have considered the P_{3} induced by t_{1}, a, t_{3}); it follows that, since $t_{2} \in K$ and since by (A3) $\left|T_{2}\right| \geq 2$, there is a vertex $t_{2}^{\prime} \in T_{2} \backslash K$; but then a P_{5} is induced by $a, t_{1}, t_{2}, u_{2}, t_{2}^{\prime}$.

If a is adjacent to t_{2}, then, since $\left\{t_{1}, t_{2}, t_{3}\right\}$ induces a max-critical P_{3} of K, T_{1} is critical for K (else one would have considered the P_{3} induced either by t_{3}, t_{2}, a); it follows that, since $t_{1} \in K$ and since by (A3) $\left|T_{1}\right| \geq 2$, there is a vertex $t_{1}^{\prime} \in T_{1} \backslash K$; but then a P_{5} is induced by $a, t_{2}, t_{1}, u_{1}, t_{1}^{\prime}$.

Occurrence 2: $P \backslash(A \cup B)$ has exactly 2 vertices.
Then $P \backslash(A \cup B)$ is an induced P_{2} of vertices a, b.
First let us assume that a contacts $\left\{u_{1}, u_{2}\right.$, $\left.u_{3}\right\}$, i.e., $a \in T_{1} \cup T_{2} \cup T_{3}$; it follows that $b \in N_{3}$; then, by Claim 2 and since G is P_{10}-free, b contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$; but this contradicts Assumption 3, i.e., this occurrence is not possible.

Then let us assume that a contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$, i.e., $a \in N_{3}$, say $a \in T_{7}$, without loss of generality; it follows that $b \in N_{3}$, else $b=u_{7}$, so that b could not contact B; then, by Assumption $3, b$ does not contact $\left\{t_{4}, t_{5}, t_{6}\right\}$; then by construction, b contacts $\left\{u_{4}, u_{5}, u_{6}\right\}$, say $b \in T_{h}$ for some $h \in\{4,5,6\}$; then b, a, and two vertices of $\left\{t_{1}, t_{2}, t_{3}\right\}$ (depending on the neighbors of a) induce a P_{4} which contradicts Remark 2, i.e., this occurrence is not possible.

Occurrence 3: $P \backslash(A \cup B)$ has exactly 1 vertex.
Then $P \backslash(A \cup B)$ is a singleton namely $a=b$. Then, by construction, $a \in N_{3}$.
First let us assume that a contacts $\left\{u_{1}, u_{2}, u_{3}\right\}$, i.e., $a \in T_{1} \cup T_{2} \cup T_{3}$; it follows that a does not contact $\left\{u_{4}, u_{5}, u_{6}\right\}$ by construction, i.e., a contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$. This contradicts Assumption 3, i.e., this occurrence is not possible.

Then let us assume that a contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$ and does not contact $\left\{u_{1}, u_{2}, u_{3}\right\}$. Note that, by Assumption 3, a does not contact $\left\{t_{4}, t_{5}, t_{6}\right\}$. Then a contacts $\left\{u_{4}, u_{5}, u_{6}\right\}$, say a is adjacent to u_{h} for some $h \in\{4,5,6\}$, and in particular a is the endpoint of an induced P_{5} together with four vertices of B by Claim 2.

Then let us consider the following exhaustive cases.
As a preliminary (recalling that $G\left[N_{3}\right]$ is bipartite) let us observe that one can assume that either a is adjacent to t_{2} or a is adjacent to t_{1} and to t_{3} : in fact by Remark 2, if a is adjacent to t_{1} (or to t_{3}), then a is adjacent to t_{3} (to t_{1}) as well.

As a preliminary let us observe that one can assume that the color of a (let us recall that, by assumptions of P4, the color of a is forced since $a \in K$) is white: in fact otherwise, by (R2) the color of t_{h} is forced to be black and then by (R1) vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ are colored, i.e., P4 follows.
:: Assume that T_{h} is not critical for K. Then, since by construction $a \in K$ [that is $\left|K \cap T_{h}\right| \geq 1$, one has $\left|K \cap T_{h}\right| \geq 2$. Let us recall that $t_{h} \notin K$ by Assumption 3. Then there is $t \in T_{h}$, different to a and to t_{h}, such that $t \in K$: in particular let us choose vertex t in order that, over vertices of $\left(K \cap T_{h}\right) \backslash\{a\}, t$ has a minimum distance in K from $\left\{t_{1}, t_{2}, t_{3}\right\}$. Let us observe that t does not contact $\left\{t_{4}, t_{5}, t_{6}\right.$, $\}$ by Assumption 3; furthermore one can assume that t is adjacent to no vertex of $K \cap T_{h}$, else either t or its neighbor in $K \cap T_{h}$ would be black, so that by (R2) vertex t_{h} would be white, and then by (R1) vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ are colored, i.e., P4 follows; in particular t is nonadjacent to a.

Then let us consider a shortest path say P^{*} in K from t to $\left\{t_{1}, t_{2}, t_{3}\right\}$. By Assumption 3 one can assume that no vertex of P^{*} contacts $\left\{t_{4}, t_{5}, t_{6}\right\}$. Furthermore, by the choice of t, one has that t is the endpoint of an induced P_{4} say Z together with three vertices of $\left\{u_{h}\right\} \cup\left\{t_{4}, t_{5}, t_{6}\right\}$ and that no vertex of Z contacts $P^{*} \backslash\{t\}$. It follows that, since G is P_{10}-free, $P^{*} \backslash\left\{t, t_{1}, t_{2}, t_{3}\right\}$ has at most three vertices, say z_{1}, z_{2}, z_{3}, inducing a path $z_{1}-z_{2}-z_{3}$.

If t contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$, then by (A2) t is adjacent to a vertex of $\left\{t_{1}, t_{2}, t_{3}\right\}$ which is nonadjacent to a, so that (by the above preliminary) a and t have different colors, so that by (R2) vertex t_{h} is white, and then by (R1) vertices of $\left\{t_{4}, t_{5}, t_{6}\right\}$ are colored, i.e., P4 follows.

If t does not contact $\left\{t_{1}, t_{2}, t_{3}\right\}$, then let us consider the following exhaustive cases; in particular, let us assume that z_{1} contacts $\left\{t_{1}, t_{2}, t_{3}\right\}$, without loss of generality.
:::: If $P^{*} \backslash\left\{t, t_{1}, t_{2}, t_{3}\right\}=\left\{z_{1}\right\}$, then: if z_{1} is adjacent to t_{1}, then z_{1} is nonadjacent to u_{2} by (A2), and then (independently to the fact that z_{1} is adjacent or nonadjacent to u_{1}) one has that t, z_{1}, t_{1}, t_{2} induce a P_{4} which contradicts Remark 2; if z_{1} is adjacent to t_{2}, then z_{1} is nonadjacent to u_{1} by (A2), and then (independently to the fact that z_{1} is adjacent or nonadjacent to u_{2}) one has that t, z_{1}, t_{2}, t_{1} induce a P_{4} which contradicts Remark 2 ; if z_{1} is adjacent to t_{3}, then one can proceed similarly to the case in which if z_{1} is adjacent to t_{1}, by symmetry.
:::: If $P^{*} \backslash\left\{t, t_{1}, t_{2}, t_{3}\right\}=\left\{z_{1}, z_{2}\right\}$, then: if z_{1} is adjacent to t_{1}, then z_{1} is nonadjacent to u_{2} by (A2), so that, either z_{1} is adjacent to u_{1} and in this case [since z_{2} would be nonadjacent to u_{1} by Lemma 1 (ii)] t, z_{2}, z_{1}, t_{1} induce a P_{4} which contradicts Remark 2, or z_{1} is nonadjacent to u_{1} and in this case [since z_{2} would be nonadjacent to u_{1} by (A2)] t, z_{2}, z_{1}, t_{1} induce a P_{4} which contradicts Remark 2; if z_{1} is adjacent to t_{2}, then z_{1} is nonadjacent to u_{1} and to u_{3} by (A2), while z_{2} is nonadjacent to u_{2} [either by (A2), if z_{1} is nonadjacent to u_{2}, or by Lemma 1 (ii), if z_{1} is adjacent to u_{2}] and is nonadjacent to at least one vertex of $\left\{u_{1}, u_{3}\right\}$ by construction, say z_{2} is nonadjacent to u_{1} (without loss of generality by symmetry), and then $z_{2}, z_{1}, t_{2}, t_{1}$ induce a P_{4} which contradicts Remark 2; if z_{1} is adjacent to t_{3}, then one can proceed similarly to the case in which if z_{1} is adjacent to t_{1}, by symmetry.
:::: If $P^{*} \backslash\left\{t, t_{1}, t_{2}, t_{3}\right\}=\left\{z_{1}, z_{2}, z_{3}\right\}$, then:
assume that z_{1} is adjacent to t_{1}; then z_{1} is nonadjacent to u_{2} by (A2); if z_{1} is adjacent to u_{1}, then z_{2} is nonadjacent to u_{1} by Lemma 1 (ii), and then, either z_{2} is nonadjacent to u_{2}, and then $z_{2}, z_{1}, t_{1}, t_{2}$ induce a P_{4} which contradicts Remark 2 , or z_{2} is adjacent to u_{2}, and then [since z_{3} is nonadjacent to u_{1} by (A2)] t, z_{3}, z_{2}, z_{1} induce a P_{4} which contradicts Remark 2 ;
assume that z_{1} is adjacent to t_{2}; then z_{1} is nonadjacent to u_{1} and to u_{3} by (A2), while z_{2} is nonadjacent to u_{2} [either by (A2) if z_{1} is nonadjacent to u_{2}, or by Lemma $1(i i)$ if z_{1} is adjacent to u_{2}] and is nonadjacent to at least one vertex of $\left\{u_{1}, u_{3}\right\}$ by construction, say that z_{2} is nonadjacent to u_{1} (without loss of generality by symmetry), and then $z_{2}, z_{1}, t_{2}, t_{1}$ induce a P_{4} which contradicts Remark 2 ; assume that z_{1} is adjacent to t_{3}; then one can proceed similarly to the case in which z_{1} is adjacent to t_{1}, by symmetry.
:: Assume that T_{h} is critical for K. Then let us show that a contradiction arises, i.e., this case is not possible.
Then let us consider the following exhaustive cases according to the above preliminary.
If a is adjacent to t_{1} and to t_{3}, then, since $\left\{t_{1}, t_{2}, t_{3}\right\}$ induces a max-critical P_{3} of K, T_{2} is critical for K (else one would have considered the P_{3} induced by t_{1}, a, t_{3}); it follows that, since $t_{2} \in K$ and since by (A3) $\left|T_{2}\right| \geq 2$, there is a vertex $t_{2}^{\prime} \in T_{2} \backslash K$; then a is the endpoint of an induced P_{5} say \bar{P} together with vertices $t_{3}, t_{2}, u_{2}, t_{2}^{\prime}$; in particular, by Assumption 3 , t_{2}^{\prime} does not contact $\left\{t_{4}, t_{5}, t_{6}\right\}$; then a is nonadjacent to u_{4}, else an induced P_{10} arises, involving $u_{4}, t_{4}, t_{5}, t_{6}, u_{6}$, and \bar{P}; furthermore, a is nonadjacent to u_{6}, by symmetry; then a is adjacent to u_{5}; now, by (A3), let t_{4}^{\prime} be any vertex of $T_{4} \backslash\left\{t_{4}\right\}$; let us observe that t_{4}^{\prime} is nonadjacent to t_{4} [else t_{4}^{\prime} would be adjacent to t_{6} by Remark 2 ; then, since by Assumption $3 t_{4}^{\prime}$ does not contact $\{a\} \cup T_{1} \cup T_{2} \cup T_{3}$, vertices u_{4}, t_{4}^{\prime}, t_{6}, t_{5}, u_{5}, and \bar{P} would induce a P_{10}]; furthermore one can assume that t_{4}^{\prime} is nonadjacent to a and to t_{2} [in fact, since by the above preliminary the color of a is white, and the color of t_{2} is white too (since a is adjacent to t_{1}), the color of t_{4}^{\prime} would be black, so that the color of t_{4} would be white by (R2), and P4 would follow]; furthermore one can assume that t_{4}^{\prime} is nonadjacent to t_{2}^{\prime}, in case t_{2}^{\prime} should be white, by an argument similar to that of the previous sentence; summarizing, in order to avoid a P_{10} induced by t_{4}^{\prime}, $u_{4}, t_{4}, t_{5}, u_{5}$, and \bar{P}, one has that t_{4}^{\prime} is adjacent either to t_{1} [which is black since a is white], or to t_{3} [which is black since a is white], or to t_{2}^{\prime} [in case t_{2}^{\prime} should be black]; but then one can conclude that any vertex of $T_{4} \backslash\left\{t_{4}\right\}$ is white, so that by (R3) the color of t_{4} is black, and P4 follows.

If a is adjacent to t_{2}, then one applies a similar argument [not reported for brevity, in particular, T_{3} is critical for K etc.], in order to get to a similar conclusion.

P5. One can check if G has a d.i.m. containing $x y$ in polynomial time.

Proof. The proposed method is based on Remark 2 and P4.

Let K be a component of $G\left[N_{3}\right]$ containing vertices $t_{i} \in T_{i}, t_{j} \in T_{j}, t_{h} \in T_{h}$, with $i, j, h \in\{1, \ldots, k\}$ mutually distinct, which induce a P_{3} in G. Now let us assume, without loss of generality, that a max-critical P_{3} of K is induced by vertices $t_{1} \in T_{1}, t_{2} \in T_{2}, t_{3} \in T_{3}$, with edges t_{1}, t_{2} and t_{2}, t_{3}.

Assume that all vertices of T_{1}, \ldots, T_{3} have an assigned color, and assume to repeatedly apply forcing rules (R1)-(R3), in order to possibly color vertices of members of $T_{\text {family }}$. Then $T_{\text {family }}$ is partitioned into: $T_{f a m i l y}^{\prime}$, formed by those members whose vertices are all colored, and $T_{\text {family }}^{\prime \prime}$, formed by those members whose vertices are not all colored. Clearly $T_{1}, \ldots, T_{3} \in T_{\text {family }}^{\prime}$. Concerning the other members of $T_{\text {family }}$: note that for any triple $t_{a} \in T_{a}, t_{b} \in T_{b}, t_{c} \in T_{c}$, with $\left\{t_{a}, t_{b}, t_{c}\right\}$ inducing a P_{3}, with $a, b, c \in\{1, \ldots, k\}$ and $a, b, c \geq 4$, one has that by P4 at least one vertex in $\left\{t_{a}, t_{b}, t_{c}\right\}$, say t_{d} with $d \in\{a, b, c\}$, is forced to be black, so that the color of all vertices of T_{d} is forced by (R2), so that $T_{d} \in T_{\text {family }}^{\prime}$. Then $T_{\text {family }}^{\prime \prime}$ enjoys Case 1.

Summarizing, to check if G has a d.i.m. containing $x y$, one can proceed as follows: For each $\left(t_{1}^{\prime}, \ldots, t_{3}^{\prime}\right) \in T_{1} \times \ldots \times T_{3}$ assign color black to $t_{1}^{\prime}, \ldots, t_{3}^{\prime}$; then repeatedly apply forcing rules (R1)-(R3) in order to possibly color vertices of members of $T_{\text {family }}$; let $T_{\text {family }}^{\prime}$ and $T_{\text {family }}^{\prime \prime}$ be defined as above; then, if no contradiction arose, then a feasible coloring of vertices of $T_{\text {family }}^{\prime}$ is directly obtained, while a feasible coloring of vertices of $T_{\text {family }}^{\prime}$ (if one exists) since $T_{\text {family }}^{\prime \prime}$ enjoys Case 1 [in details: one can check if $T_{\text {family }}^{\prime \prime}$ admits a feasible coloring, which is consistent with the (possible) forced consequences of the above forcing rule (R1)-(R3), by referring to Case 1]. That is correct by the above and can be executed in polynomial time since the procedure of Case 1 can be executed in polynomial time.

This completes the proof for Case 2.

4. The case $N_{4} \neq \emptyset$

In this section let us show that, if $N_{4} \neq \emptyset$ [i.e., in the general case, with possibly $N_{4} \neq \emptyset$], then one can check in polynomial time whether G has a di.m. M with $x y \in M$.

Recall that $N_{k}=\emptyset$ for $k \geq 6$ according to $\operatorname{Algorithm} \operatorname{DIM}(G)$.
Then let us assume that $G\left[N_{3} \cup N_{4} \cup N_{5}\right]$ is connected, without loss of generality, else one can split the problem for each component of $G\left[N_{3} \cup N_{4} \cup N_{5}\right]$.

Observation 5. If $v \in N_{i}$ for $i \geq 4$, then v is an endpoint of an induced P_{6}, say with vertices $v, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ such that $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in$ $N_{0} \cup N_{1} \cup \ldots \cup N_{i-1}$ and with edges $v v_{1} \in E, v_{1} v_{2} \in E, v_{2} v_{3} \in E, v_{3} v_{4} \in E, v_{4} v_{5} \in E$. Analogously, if $v \in N_{3}$, then v is an endpoint of a corresponding induced P_{5}.

Proof. If $i \geq 5$, then clearly there is such a P_{6}. Thus, assume that $v \in N_{4}$. Then $v_{1} \in N_{3}$ and $v_{2} \in N_{2}$. Recall that y, x, r induce a P_{3}. If $v_{2} r \in E$ then v, v_{1}, v_{2}, r, x, y induce a P_{6}. Thus assume that $v_{2} r \notin E$. Let $v_{3} \in N_{1}$ be a neighbor of v_{2}. Now, if $v_{3} x \in E$ then $v, v_{1}, v_{2}, v_{3}, x, r$ induce a P_{6}, and if $v_{3} x \notin E$ but $v_{3} y \in E$, then $v, v_{1}, v_{2}, v_{3}, y, x$ induce a P_{6}. Analogously, if $v \in N_{3}$ then v is an endpoint of an induced P_{5} (which could be part of the P_{6} above). Thus, Observation 5 is shown.

For any component of $G\left[N_{4} \cup N_{5}\right]$, say K, let us say that:
K is pure if K contacts exactly one member of $T_{\text {family }}$,
K is impure if K contacts at least two members of $T_{\text {family }}$.
P6. One can assume that every component of $G\left[N_{4} \cup N_{5}\right]$ is non-trivial, i.e., that every vertex of N_{4} is not isolated in $G\left[N_{4} \cup N_{5}\right]$.
Proof. In fact if a vertex $v \in N_{4}$ is isolated in $G\left[N_{4} \cup N_{5}\right]$, then by (7) and by definition of d.i.m. the color of v is forced white, so that one can apply the Vertex Reduction to v [without disconnecting the graph].

P7. One can assume that every component of $G\left[N_{4} \cup N_{5}\right]$ is impure.

Proof. Let us assume that there are pure components of $G\left[N_{4} \cup N_{5}\right]$. Then, for every member $T_{i} \in T_{\text {family }}$, let Q_{i} denote the union of vertex-sets of those pure components of $G\left[N_{4} \cup N_{5}\right]$ which contact T_{i}.

Let us observe that T_{i} is a cut-set for G separating Q_{i} : in particular, if G has a d.i.m. M with $x y \in M$, then $G\left[\left\{u_{i}\right\} \cup T_{i} \cup Q_{i}\right]$ has a d.i.m. M^{*} with $u_{i} t \in M^{*}$ for some $t \in T_{i}$.

Note that since $\operatorname{dist}_{G}\left(u_{i}, q\right) \leq 3$ for any $q \in\left\{u_{i}\right\} \cup T_{i} \cup Q_{i}$ (by construction), one can check for each $t \in T_{i}$ if $G\left[\left\{u_{i}\right\} \cup T_{i} \cup Q_{i}\right]$ has a d.i.m. M^{*} with $u_{i} t \in M^{*}$ in polynomial time, by referring to the case $N_{4}=\emptyset$ of the previous section with $u_{i} t$ instead of $x y$.

Then, for every member $T_{i} \in T_{\text {family }}$ such that $Q_{i} \neq \emptyset$, one can proceed as follows:
:: For each $t \in T_{i}$, check if there is a d.i.m. M^{*} of $G\left[\left\{u_{i}\right\} \cup T_{i} \cup Q_{i}\right]$, with $u_{i} t \in M^{*}$: if the answer is no, then color t by white.
:: Remove Q_{i} from V.
Then, by the above, G has a d.i.m. M with $x y \in M$ if and only if the resulting graph [together with the above possible forcing conditions for vertices of $\left.T_{i}\right]$ has a d.i.m. M^{\prime} with $x y \in M^{\prime}$.

P8. For any feasible partial coloring of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ [with vertices x and y black] such that all vertices of N_{4} are colored, one can check in polynomial time if there is a feasible coloring of N_{5} which is consistent with it.

Proof. Let us fix any feasible partial coloring of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ [with vertices x and y black] such that all vertices of N_{4} are colored. By definition of d.i.m., vertices of N_{4} can be partitioned into $\left\{W\left(N_{4}\right), B^{\prime}\left(N_{4}\right), B^{\prime \prime}\left(N_{4}\right)\right\}$, where: vertices of $W\left(N_{4}\right)$ are white, vertices of $B^{\prime}\left(N_{4}\right)$ are black and have no black neighbor in N_{4} [and more generally in $N_{3} \cup N_{4}$ by (7)], vertices of $B^{\prime \prime}\left(N_{4}\right)$ are black and have one black neighbor in N_{4}.

Claim 1. Vertices of $W\left(N_{4}\right)$ force their neighbors in N_{5} to be black. Vertices of $B^{\prime \prime}\left(N_{4}\right)$ force their neighbors in N_{5} to be white. Vertices of $B^{\prime}\left(N_{4}\right)$ should have one black neighbor in N_{5} : however, if a vertex of N_{5} has two neighbors in $B^{\prime}\left(N_{4}\right)$, then it is forced to be white.

Proof. The first two statements follow by definition of d.i.m. The third statement follows by definition of d.i.m. and by (7).
Let N_{5}^{*} be the set of vertices of N_{5} which enjoy none of the forcing conditions of Claim 1, i.e., each vertex of N_{5}^{*} has exactly one neighbor in N_{4}, namely, a vertex of $B^{\prime}\left(N_{4}\right)$.

Then - once checked if the forcing conditions of Claim 1 lead to a contradiction - the problem is to check in polynomial time if there is a feasible coloring of $B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}$ which is consistent with the current feasible partial coloring.

Let us assume that $G\left[B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}\right]$ is connected, without loss of generality, else one can split the problem for the corresponding components.

Claim 2. There exists a vertex $u_{i} \in S_{2}$ such that dist ${ }_{G}\left(u_{i}, z\right)=3$ for any $z \in N_{5}^{*}$.
Proof. First let us observe that $B^{\prime}\left(N_{4}\right)$ is an independent set (by construction).
Assume by contradiction that such a vertex does not exist. Then let $u_{i} \in S_{2}$ be such that the number of vertices $z \in N_{5}^{*}$ such that dist $_{G}\left(u_{i}, z\right)=3$ for any $z \in N_{5}$ is maximum over all vertices of S_{2}. Then, by assumption of contradiction and by construction, there are vertices $u_{j} \in S_{2}, t_{j} \in T_{j}, b \in B^{\prime}\left(N_{4}\right), z \in N_{5}^{*}$, with $j \neq i$, and vertices $t_{i} \in T_{i}, b^{\prime} \in B^{\prime}\left(N_{4}\right), z^{\prime} \in N_{5}^{*}$, such that: $\left\{u_{j}, t_{j}, b, z\right\}$ and $\left\{u_{i}, t_{i}, b^{\prime}, z^{\prime}\right\}$ respectively induce a P_{4}, and between such P_{4} 's there is at most one edge possibly between z and z^{\prime} [note in particular that t_{j} and t_{i} are white].

Now, since $G\left[B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}\right]$ is connected, consider any shortest path in $G\left[B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}\right]$ say P from $\{b, z\}$ to $\left\{b^{\prime}, z^{\prime}\right\}$. Note that P has at most one interior vertex [where interior vertices are those not in $\{b, z\} \cup\left\{b^{\prime}, z^{\prime}\right\}$], else an induced P_{10} arises in the subgraph induced by P, by the above vertices, and by $N_{0} \cup N_{1}$. And if P has exactly one interior vertex, then a similar induced P_{10} arises, recalling that by Claim 1 we assumed that no vertex of N_{5}^{*} is adjacent to two vertices of $B^{\prime}\left(N_{4}\right)$. This leads to a contradiction.

Then let $u_{i} \in S_{2}$ be according to Claim 2, i.e., such that $\operatorname{dist}_{G}\left(u_{i}, v\right) \leq 3$ for any $v \in B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}$. Let us focus on the subgraph of G, say G^{\prime}, induced by $N_{0}^{\prime}=\left\{u_{i}, u\right\}$ where $u \in N_{1}$ is any neighbor of $u_{i}, N_{1}^{\prime}=N\left(u_{i}\right) \cap N\left(B^{\prime}\left(N_{4}\right)\right), N_{2}^{\prime}=B^{\prime}\left(N_{4}\right)$, and $N_{3}^{\prime}=N_{5}^{*}$. Then, by referring to the case $N_{4}=\emptyset$ of the previous section with $u_{i} u$ instead of $x y$, one can check in polynomial time if there is a feasible coloring of $B^{\prime}\left(N_{4}\right) \cup N_{5}^{*}$ which is consistent with the current feasible partial coloring.

This completes the proof of P8.
P9. For any $i \in\{1, \ldots, k\}$ and for any $t \in T_{i}$, with $N(t) \cap N_{4} \neq \emptyset$, if the color of t is fixed black, then there are (at most) polynomially many feasible partial colorings of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ [with vertices x and y black] such that all vertices of N_{4} are colored.

Proof. For any $i \in\{1, \ldots, k\}$ and for any $t \in T_{i}$, with $N(t) \cap N_{4} \neq \emptyset$, let us fix black the color of t. Then the color of vertices in $T_{i} \backslash\{t\}$ is forced (white): then, by (R1), the color of vertices in $N\left(T_{i}\right) \cap N_{4}$ is forced. Then let us consider any vertex $z \in N\left(T_{j}\right) \cap N_{4}$, for any $j \in\{1, \ldots, k\}$, with $j \neq i$: then let $t_{j} \in T_{j}$ be adjacent to z.

Let us recall some preliminary:
by Observation 5, for any $\bar{t} \in N_{3}$, let $Q(\bar{t})$ denote the induced P_{5} of G whose vertices except for \bar{t} are in $N_{0} \cup N_{1} \cup N_{2}$;
by (9), there is no triangle in G with one vertex in N_{3} and two vertices in N_{4};
by P6 and by P7, every component of $G\left[N_{4} \cup N_{5}\right]$ is non-trivial and impure.
Let $G[D]$, with vertex set D, be any component of $G\left[N_{4} \cup N_{5}\right]$ such that $N(t) \cap D \neq \emptyset$ [i.e. $\left.N(t) \cap D \cap N_{4} \neq \emptyset\right]$ according to the assumption.

By Observation 5 and since G is P_{10}-free, D can be partitioned into $\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$, where D_{j} for $j=1,2,3,4$, denotes the set of vertices of D at distance j from t in $G[\{t\} \cup D]$.

Note that: vertices of D_{1} are forced to be white; vertices of D_{2} are forced to be black; $D_{2} \neq \emptyset$ [by (9) and by P6]. Then let us distinguish the following two exhaustive cases with the aim of determining the color of z.

Case A. No vertex of D_{3} is fixed black.

Assume that $z \in D$. Then, since by assumption of Case A either $D_{3}=\emptyset$ or all vertices of D_{3} are fixed white, the color of z is forced (in particular, if $v \in D_{4}$, then v is forced to be black).

Assume that $z \notin D$. Recall that [by P7] the component of $G\left[N_{4} \cup N_{5}\right.$] containing z, say D^{\prime}, is impure. Then D^{\prime} contacts T_{h}, for some $h \in\{1, \ldots, k\}$, with $h \neq j$: let $t_{h} \in T_{h}$ contact D^{\prime}. Then there is a shortest path, say P, through D^{\prime} from t_{h} to z, say of consecutive vertices $t_{h}, z_{1}, \ldots, z_{l}, z$: note that $l \geq 1$ (since z can not be adjacent to t_{h} by construction), and that t_{j} is nonadjacent to z_{1} (by construction) and to z_{l} (by (9)). On the other hand, recall that $D_{2} \neq \emptyset$, then let $d_{1} \in D_{1}, d_{2} \in D_{2}$ induce a P_{2}.

If $h \neq i$, then: if t_{h} contacts $\left\{d_{1}, d_{2}\right\}$, then the subgraph induced by $\left\{t, d_{1}, d_{2}, t_{h}\right\} \cup P \cup Q\left(t_{j}\right)$, contains an induced P_{10}; else, the subgraph induced by $\left\{d_{2}, d_{1}, t, u_{i}\right\} \cup N_{1} \cup\{x, y\} \cup\left\{u_{h}, t_{h}\right\} \cup P \cup\left\{t_{j}\right\}$, contains an induced P_{10}; then this occurrence is not possible.

If $h=i$, then: if $t=t_{h}$, then the subgraph induced by $\left\{d_{2}, d_{1}, t\right\} \cup P \cup Q\left(t_{j}\right)$, contains an induced P_{10}; if $t \neq t_{h}$, then: if t_{h} contacts $\left\{d_{1}, d_{2}\right\}$, then the subgraph induced by $\left\{t, d_{1}, d_{2}, t_{h}\right\} \cup P \cup Q\left(t_{j}\right)$, contains an induced P_{10}; else, the subgraph induced by $\left\{d_{2}, d_{1}, t, u_{i}, t_{h}\right\} \cup P \cup\left\{t_{j}, u_{j}\right\} \cup N_{1}$, contains an induced P_{10}; then this occurrence is not possible.

Case B. A vertex of D_{3} is fixed black.

Then let $d_{1} \in D_{1}, d_{2} \in D_{2}, d_{3} \in D_{3}$ induce a P_{3} (recall that d_{1} is white and d_{2} is black) and let us assume that d_{3} is fixed black.
Assume that $z \in D$. If $z \in D_{1} \cup D_{2}$, then by the above the color of z is forced. If $z \in D_{3}$, then there is a induced path say $z-z_{2}-z_{1}$ with $z_{2} \in D_{2}$ and $z_{1} \in D_{1}$; if $\left\{z, z_{2}\right\}$ contacts $\left\{d_{2}, d_{3}\right\}$ (or if such sets should have a nonempty intersection), then the color of z is forced; else, if z_{1} contacts $\left\{d_{2}, d_{3}\right\}$ [that is z_{1} is adjacent to d_{2}], then $d_{3}, d_{2}, z_{1}, z_{2}, z$, and $Q\left(t_{j}\right)$ induce a P_{10}, which is not possible; else, if d_{1} contacts $\left\{z_{1}, z_{3}\right\}$, then one similarly would get an induced P_{10}, which is not possible; else, one similarly would get an induced P_{10} [involving vertex t], which is not possible.

Assume that $z \notin D$. Then one can refer to the corresponding proof for Case A.
Summarizing, to obtain all possible feasible colorings of N_{4}, one can proceed as follows: (a) if $D_{3}=\emptyset$, then derive the color of all vertices of N_{4}, by Case A; else: (b) fix white the color of all vertices of D_{3} and then derive the color of all vertices of N_{4}, by Case A, and (c) for each vertex $d_{3} \in D_{3}$, fix black the color of d_{3} and then derive the color of all vertices of N_{4}, by Case B.

This completes the proof of P9.

P10. For any $i \in\{1, \ldots, k\}$ and for any $t \in T_{i}$, with $N(t) \cap N_{4} \neq \emptyset$, one can check if G has a d.i.m. M with $u_{i} t \in M$ and $x y \in M$ in polynomial time.

Proof. For any $i \in\{1, \ldots, k\}$ and for any $t \in T_{i}$, with $N(t) \cap N_{4} \neq \emptyset$, let us fix black the color of t. Then, by P9, there are (at most) polynomially many feasible partial colorings of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ [with vertices x and y black] such that all vertices of N_{4} are colored: then, let us fix one of such feasible partial colorings, say γ.

Let us consider $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$. Then, by referring to the case $N_{4}=\emptyset$ of the previous section, one can check in polynomial time if there is a feasible coloring of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ which is consistent with γ.

Let us consider N_{5}. Then, by construction and by P8, one can check in polynomial time if there is a feasible coloring of vertices of N_{5} which is consistent with γ.

Finally let us show that one can check if G has a d.i.m. M with $x y \in M$ in polynomial time, by the following algorithm, which is based on P10.
$::$ Let $T=\left\{t \in T_{i}: i \in\{1, \ldots, k\}\right.$ and $\left.N(t) \cap N_{4} \neq \emptyset\right\}$.
$::$ For each $t \in T$ do
:::: check if G has a d.i.m. M with $u_{i} t \in M$ and $x y \in M$ [by P10]
:::: if yes, then return the corresponding d.i.m. and STOP;
:: Assign color white to all vertices in T and repeatedly apply (R1), so to obtain a partial coloring of $N_{3} \cup N_{4}$ such that all vertices of N_{4} are colored, by definition of T.
:: Check if G has a d.i.m. M with $x y \in M$ which is consistent with the above partial coloring of $N_{3} \cup N_{4}$, by referring to the case $N_{4}=\emptyset$ of the previous section and by P8 [that is in details: concerning $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$, by referring to the case $N_{4}=\emptyset$ of the previous section, one can check in polynomial time if there is a feasible coloring of $N_{0} \cup N_{1} \cup N_{2} \cup N_{3} \cup N_{4}$ which is consistent with the above partial coloring of $N_{3} \cup N_{4}$; concerning N_{5}, by construction and by P8, one can check in polynomial time if there is a feasible coloring of vertices of N_{5} which is consistent with the above partial coloring of $N_{3} \cup N_{4}$]; if yes, then return the corresponding d.i.m. and STOP; if no, then return " G has no d.i.m. M with $x y \in M$ " and STOP.

This completes the proof for the case $N_{4} \neq \emptyset$.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors would like to thank the reviewers for their helpful comments and suggestions which improved the paper under different aspects. The second author would like to witness that he just tries to pray a lot and is not able to do anything without that - ad laudem Domini.

References

[1] G. Bacsó, Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (4) (1990) 455-464.
[2] N. Biggs, Perfect codes in graphs, J. Comb. Theory, Ser. B 15 (1973) 289-296.
[3] A. Brandstädt, C. Hundt, R. Nevries, Efficient edge domination on hole-free graphs in polynomial time, in: Conference Proceedings LATIN 2010, in: Lecture Notes in Computer Science, vol. 6034, 2010, pp. 650-661.
[4] A. Brandstädt, R. Mosca, Dominating induced matchings for P_{7}-free graphs in linear time, Algorithmica 68 (2014) 998-1018.
[5] A. Brandstädt, R. Mosca, Finding dominating induced matchings in P_{8}-free graphs in polynomial time, Algorithmica 77 (2017) $1283-1302$.
[6] A. Brandstädt, R. Mosca, Dominating induced matchings in $S_{1,2,4}$-free graphs, CoRR, arXiv:1706.09301, 2017, Discrete Appl. Math. 278 (2020) 83-92.
[7] A. Brandstädt, R. Mosca, Finding dominating induced matchings in $S_{2,2.3}$-free graphs, CoRR, arXiv:1706.04894, 2017, Discrete Appl. Math. 283 (2020) 417-434.
[8] A. Brandstädt, R. Mosca, Finding dominating induced matchings in $S_{1,1,5}$-free graphs, CoRR, arXiv:1905.05582, 2019, Discrete Appl. Math. 284 (2020) $269-280$.
[9] A. Brandstädt, R. Mosca, Finding dominating induced matchings in P_{9}-free graphs, Discuss. Math., Graph Theory 42 (2022) 1139-1162.
[10] D.M. Cardoso, N. Korpelainen, V.V. Lozin, On the complexity of the dominating induced matching problem in hereditary classes of graphs, Discrete Appl. Math. 159 (2011) 521-531.
[11] D.L. Grinstead, P.L. Slater, N.A. Sherwani, N.D. Holmes, Efficient edge domination problems in graphs, Inf. Process. Lett. 48 (1993) $221-228$.
[12] A. Hertz, V.V. Lozin, B. Ries, V. Zamaraev, D. de Werra, Dominating induced matchings in graphs containing no long claw, J. Graph Theory 88 (1) (2018) 18-39.
[13] N. Korpelainen, V.V. Lozin, C. Purcell, Dominating induced matchings in graphs without a skew star, J. Discret. Algorithms 26 (2014) 45-55.
[14] C.L. Lu, M.-T. Ko, C.Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl. Math. 119 (3) (2002) 227-250.
[15] C.L. Lu, C.Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs, Discrete Appl. Math. 87 (1998) $203-211$.
[16] B.S. Panda, J. Chaudhary, Dominating induced matching in some subclasses of bipartite graphs, in: S. Pal, A. Vijayakumar (Eds.), Algorithms and Discrete Applied Mathematics, CALDAM 2019, in: Lecture Notes in Computer Science, vol. 11394, Springer, Cham, 2019, Theor. Comput. Sci. 885 (2021) $104-115$.

[^0]: * This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
 * Corresponding author.

 E-mail addresses: andreas.brandstaedt@uni-rostock.de (A. Brandstädt), r.mosca@unich.it (R. Mosca).

