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Abstract. Rate coefficients for vibrational energy transfer are calculated for collisions between molecular
nitrogen and hydrogen in a wide range of temperature and of initial vibrational states (v ≤ 40 for N2 and
w ≤ 10 for H2). These data are needed for the modelling of discharges in N2/H2 plasma or of atmospheric
and interstellar medium chemistry in different temperature ranges. The calculations were performed by a
mixed quantum-classical method, to recover quantum effects associated with the vibrational motion, on
a refined potential energy surface. The obtained rates present striking discrepancies with those evaluated
by first-order perturbation theories, like the SSH (Schwartz, Slavsky, Herzfeld) theory, which are often
adopted in kinetic modelling. In addition, we present a detailed, though preliminary, analysis on the
performance of different Machine Learning models based on the Gaussian Process or Neural Network
techniques to produce complete datasets of inelastic scattering rate coefficients. Eventually, by using the
selected models, we give the complete dataset (i.e., covering the whole vibrational ladder) of rate coefficients
for the N2(v) + H2(0) −→ N2(v − Δv) + H2(0), Δv = 1, 2, 3 processes.

1 Introduction

The modelling of non-equilibrium situations plays a
fundamental role in the description of combustion,
atmospheric and interstellar medium chemistry, of plas-
mas and all related devices. In such environments, the
number of co-occurring physical processes is huge, and
the system is not in a local thermal equilibrium state
[1]. The contribution of each single process (i.e., two-
body collisions involving atoms, molecules and elec-
trons) and the effect of electric and magnetic fields need
to be explicitly included in the description. Further-
more, processes involving excited electronic and vibra-

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1140/
epjd/s10053-023-00688-4.

a e-mail: hongqizhen@imech.ac.cn
b e-mail: loriano.storchi@unich.it
c e-mail: maxbart@iff.csic.es
d e-mail: pirani.fernando@gmail.com
e e-mail: qsun@imech.ac.cn
f e-mail: ccoletti@unich.it (corresponding author)

tional states, which are significantly populated in such
conditions, concur to characterize the overall distribu-
tion of the available energy in the system. For this rea-
son, a large quantity of state-to-state data, i.e., con-
sidering atoms and molecules selected in specific elec-
tronic and vibrational states, is required, mainly in the
form of rate coefficients or cross sections. Quite obvi-
ously, only a very limited number of experimental rate
coefficients are available, and often the vast major-
ity of needed data are obtained through very rough
approximation/extrapolation procedures, like the use
of first-order Schwartz, Slavsky, Herzfeld (SSH) the-
ory [2] or scaling laws, undermining the reliability of
the model, as pointed out in Ref. [3] for cold air plas-
mas. On the other hand, the direct calculation of accu-
rate rate coefficients might pose some formidable chal-
lenges connected to the number of ro-vibrational states
to be included, to their correct quantum treatment,
to the availability of reliable potential energy surfaces
(PESs) for the system, etc. In the last years, we specif-
ically addressed the calculation of large datasets of
rate coefficients for vibrational relaxation (vibration
to translation/rotation, V–T/R, and vibration to elec-
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tronic, V–E) and vibrational energy transfer (vibration
to vibration, V–V) processes. In particular, we focused
on atom–diatom [4,5] and diatom–diatom collisions [6–
8], by using a mixed quantum-classical (MQC) dynam-
ics method [9] in conjunction with accurate analytical
non-reactive PESs based on the Improved Lennard–
Jones (ILJ) model [10,11]. This represents an advanta-
geous combination since: (1) the MQC method allows to
recover quantum effects associated with the vibrational
motion, which are the most relevant ones in this kind of
process, yet for the remaining degrees of freedom a clas-
sical dynamics description is kept, thus involving a com-
putational load similar to standard quasi-classical tra-
jectory (QCT) calculations; (2) the analytical represen-
tation of the PES allows a fast evaluation of the poten-
tial and its derivatives, which are essential in nuclear
dynamics simulations and, at the same time, provides
a very accurate description of non-reactive potential
even at long and very long interaction distances, which
strongly influence the outcome of inelastic scattering,
particularly in the low energy regime.

In the present paper, we apply the same method-
ology to determining large datasets of V–V and V–
T/R rate coefficients for collisions between molecular
nitrogen and molecular hydrogen. Indeed, N2/H2 plas-
mas have a wide range of applications, starting from
the low-temperature sustainable synthesis of ammonia,
NH3, as opposed to the conventional Haber-Bosch pro-
cess: the nonequilibrium conditions induced by differ-
ent types of discharges could produce active species in
N2/H2 mixtures, leading to the weakening of N2 bond
and to a convenient mechanism for ammonia (or ammo-
nia derived fertilizers) formation. A recent study [12]
on N2/H2 plasmas shows that H2 can efficiently quench
the high-lying vibrational levels or energetic metastable
states of N2, so even a small amount of H2 (less than
1%) plays a significant role in the N2 plasma discharges.
Nitrogen/hydrogen plasmas are also used for the chem-
ical treatment of materials, like low-k etching in dielec-
tric [13], surface cleaning [14], or for the production of
metal nitrides, as well as for satellite propulsion [15–17].
Besides, Titan’s ionosphere is a natural plasma made
of N2, H2 and CH4 and an increasing number of stud-
ies is devoted to investigate chemical processes arising
for active species which might form therein [18]. The
determination of the vibrational distribution function
in such environments requires the knowledge, among
others, of the V–V and V–T/R rate coefficients for N2–
N2, H2–H2 and N2–H2 collisions, spanning their com-
plete vibrational ladder. We recently reported such val-
ues for energy exchange in molecular nitrogen [6], and
we focus here on N2–H2 inelastic scattering processes.

For this system, a PES based on an ILJ formulation
has already been published [19]. As in previous inves-
tigations [6,8], we start from such PES and fine-tune
its parameters, which have a strong physical meaning
and are therefore free to change only in a very limited
range, to improve the agreement with the few available
experimental data and with high-level ab initio points
calculated at reference configurations of the interacting
diatoms.

We use such modified PES and the MQC method
to calculate rate coefficients in the temperature range
100–5000 K for the following processes, namely V–T/R
energy exchanges of type:

N2(v) + H2(w) −→ N2(v − Δv) + H2(w), (1)

and

N2(v) + H2(w) −→ N2(v) + H2(w − Δw), (2)

and V–V energy exchanges:

N2(v) + H2(w + 1) −→ N2(v + 1) + H2(w), (3)

and

N2(v + 2) + H2(w) −→ N2(v) + H2(w + 1). (4)

We considered vibrational quantum numbers v for
N2 up to 40 and w for H2 up to 10. Higher vibrational
levels, though available, were not included because the
Morse description of the intramolecular potential of N2

and H2 and of their vibrational wavefunctions might not
be accurate as we approach the dissociation limit. For
a reliable description of such states, a potential and a
dynamical treatment accounting for bond breaking and
reactivity should be used [20].

Even if such a combined approach has helped us to
calculate and produce large tables of rate coefficients
in a wide temperature range, full coverage of all possi-
ble vibrational states is a formidable task. Fitting pro-
cedures of the calculated coefficients, generally based
on polynomial expansions [4], can be used and work
rather well to estimate rates as a function of tem-
perature for a specific process, but the prediction of
rates upon change of the initial vibrational states is
a more complex procedure. In the last years, the use
of Machine Learning (ML) techniques to get insight
and make dependable predictions starting from lim-
ited experimentally or theoretically available datasets
has enormously grown, showing to have the potential-
ities to be applied for the modeling of a variety of
aspects of collision dynamics [21–25]. As a matter of
fact, nowadays, most PESs are obtained by exploit-
ing Neural Network (NN) approaches to interpolate
ab initio points [21,24,26], generally producing reliable
and fast-to-compute reactive potentials and so much
that the procedure and strategies have been widely
described [27,28]. We note here that one could in prin-
ciple obtain a reliable PES for the description of colli-
sional events at very high temperature (or when higher
vibrational states are considered or reactive channels
open) by merging the ILJ PES with PESs which accu-
rately describe short range and the first long range
regions as those obtained through NN procedures [25–
27,29]. On the other hand, ML approaches have just
started to be applied for the production of databases (or
complete datasets) of rate coefficients mainly for reac-
tive dynamics [23,30,31], whereas, with the exception of

123



Eur. Phys. J. D          (2023) 77:128 Page 3 of 16   128 

some very early attempts [32], few studies report their
application for vibrational energy transfer processes
[25]. Considering that modeling of plasma and non-
equilibrium environments must rely on the knowledge
of rate coefficients for reactive and vibrational energy
transfer covering all the vibrational ladder of reactants
and products states, ML methods combined with a suf-
ficient number of accurately calculated sets can pro-
vide the answer to the problem. In the present paper,
we therefore present some preliminary results on the
performance of different ML techniques, namely Neural
Network and Gaussian Process (GP) [33] approaches,
for the interpolation and the prediction of rate coeffi-
cients starting from a set of MQC calculated ones for a
selected V–T/R process:

N2(v) + H2(0) −→ N2(v − Δv)
+H2(0), Δv = 1, 2, 3. (5)

The paper is organized as follows: Sect. 2 describes
the methods applied for (i) the construction of the PES,
highlighting the modifications made to the original for-
mulation of ref. [19]; (ii) the dynamical calculations,
i.e., the details of the MQC method; (iii) the test of
NN and GP approaches; Sect. 3 reports the datasets for
processes (1–4) calculated with the MQC method and
discusses physically meaningful trends of the rates as a
function of temperature and of the vibrational quantum
numbers. Section 4 describes the performance of the
tested NN and GP models to fit and predict rate coef-
ficients for processes (5) as a function of temperature
and, most importantly, of the initial vibrational quan-
tum numbers, discusses their performances in terms of
their predictive capability and computational burden
and, finally, provides the complete dataset of rates for
(5) covering all v values up to v = 40. General conclu-
sions are drawn in Sect. 5.

2 Methods

2.1 Potential energy surface

The formulation of the PES is essentially the same one
of Ref. [19], so we report here only its main features
to describe how the parameters were modified. A full
detailed description can be found in the Supporting
Information as well as in the original reference.

The overall interaction V of the diatom–diatom sys-
tem is expressed as a sum of intramolecular (Vintra) and
intermolecular (Vinter) interaction components. Vintra

is formulated using a Morse potential energy function
De

(
t2 − 2t

)
, in which De is the dissociation energy of

the diatomic molecule, t = exp [−βe (r − req)] and r is
the internuclear diatomic distance (with req being its
equilibrium value). The set of Morse parameters for N2

and H2, used in the intramolecular potential as well as
in the Morse wavefunction of the MQC calculations (see

Table 1 Molecular constants for N2 and H2 [34]

N2 H2

ωe (cm−1) 2359.60 4401.20
xe 0.006126 0.027600
ye 0.0000032 0.0000000
re (Å) 1.098 0.740
βe (Å−1) 2.689 1.946
De (eV) 9.905 4.750

the following), are shown in Table 1 and are taken from
the spectroscopic data of Ref. [34].

It is well-known that Morse potential increasingly
loses accuracy when describing vibrationally and rota-
tionally highly excited states. For this reason, we tested
the vibrational energy values and the matrix elements
needed for MQC dynamics (Eq. (15) in the Sup-
porting Information) calculated by the present Morse
intramolecular potentials with ab initio based ones
(Ref. [35] for N2 and [36] for H2) and found that differ-
ences for the highest vibrational states amount to 10%
ca. for energy values and to much less for the matrix ele-
ments. These uncertainties are smaller than the overall
accuracy of the method (see discussion in the follow-
ing).

The intermolecular (Vinter) component is represented
as the sum of two main contributions:

Vinter = VvdW + Velect, (6)

where the VvdW term accounts indirectly for many-
body effects, formulated as a bond-bond interaction
[19] according to the ILJ model. The Velect term con-
sists of the electrostatic interaction due to the molecular
permanent multipoles, and only the main quadrupole–
quadrupole term is taken into account herein [19]:

Velect(R, γ) =
QaQb

R5
A224(γ), (7)

where Qa and Qb correspond to the quadrupole moments
of the monomers (QH2 = 0.4835 a.u. [37], QN2 = −1.1
a.u. at their equilibrium distances req [38]) and A224(γ)
is the bipolar spherical harmonic which describes
the angular dependence of the quadrupole–quadrupole
interaction.

The VvdW interaction (size repulsion plus disper-
sion attraction) depends on the distance R between
the centers of mass of the interacting partners, and
on θa, θb,Φ, collectively indicated as γ, i.e., the four
body Jacobi angular coordinates which describe the
relative orientation of the two diatoms. In the ILJ
formulation (see Supporting Information), the overall
interaction can be expressed as a function of physi-
cally meaningful parameters, βi(γ), εi(γ), Ri

m(γ), cor-
responding to five selected reference configurations i
of the colliding diatoms, namely a parallel H geome-
try (θa = 90◦, θb = 90◦,Φ = 0◦), a crossed X (90, 90, 90)
geometry, a collinear I geometry (0, 0, 0), and two per-
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pendicular Ta, (90, 0, 0) and Tb, (0, 90, 0) geometries,
differing for H2 pointing to N2 center of mass (Ta) or N2

pointing to H2 center of mass (Tb). βi(γ) is related to
the hardness of the interacting partners, whereas εi(γ)
and Ri

m(γ) correspond to the potential well depth and
the equilibrium distance of each configuration. The val-
ues of such parameters for the original PES [19] can be
found in Table 2.

Figure 1 compares the original PES and ab ini-
tio interaction energies for the parallel H, collinear I,
crossed X and perpendicular Ta configurations. The ab
initio values were obtained by using the CCSD(T) level
of theory together with Dunning’s aug-cc-pV5Z basis
set [39] and the bond function set [3s3p2d1f] developed
by Tao [40] and placed on the midpoint of the inter-
molecular distance R. The obtained interaction ener-

Table 2 Parameters for the N2–H2 intermolecular poten-
tials

Configuration (i) (θa, θb, Φ) Original PES Modified PES

Ri
m εi Ri

m εi

H (90,90,0) 3.52 6.16 3.52 5.98
X (90,90,90) 3.52 6.16 3.52 5.98
Ta (90,0,0) 3.54 7.23 3.54 7.02
Tb (0,90,0) 3.92 4.30 3.96 4.30
I (0,0,0) 3.97 4.64 4.13 4.83

The Rm (Å) and ε (meV) values define the vdW components
in the relevant configurations of the complexes, defined by
the θa, θb and Φ angles (in degrees), and corresponding to
the monomers at the equilibrium bond length, req

Fig. 1 Behavior of the original and modified ILJ potential energy surfaces and ab initio points as a function of the inter-
molecular distance. Selected configurations, at the equilibrium intramolecular distance of both monomers, are considered:
the parallel (or H), collinear (or I), crossed (or X) and perpendicular (or Ta) configurations
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gies were corrected using the counterpoise method [41]
to remove the basis set superposition error. All compu-
tations were performed using the Molpro code [42].

The figure shows that the PES of ref. [19] matches
very well the ab initio points at long range and for the
description of the potential well, whereas differences can
be found in the repulsive region. We therefore tried to
improve the description of the short range interaction
by slightly changing the values of the εi and Ri

m param-
eters. The modifications, amounting to a few percent
so as to fully preserve the physical meaning of these
parameters, can be found in Table 2 and the comparison
with the ab initio points and with the original PES in
Fig. 1. Note that in this ILJ formulation (as in the orig-
inal one and that of refs. [6,7]), the monomers’ defor-
mations are explicitly accounted for in Velect and VvdW

through the N2 and H2 bond length dependence of
the molecular polarizabilities and quadrupole moments
[19]. We tested the reliability of this approach by com-
paring the ILJ results to ab initio points, calculated at
the same CCSD(T) level of theory described above, for
the intermolecular interaction in the I and Ta config-
urations with each monomer stretched in turn by 10%
and 20% (with respect to equilibrium distance) and the
results are shown in Figures S1 and S2 in the SI dis-
playing an overall good matching. Since the variation
of N2 and H2 quadrupole moments and of their par-
allel and perpendicular polarizability components (see
discussion and Fig.8 of Ref. [19]) agree with the the-
oretical values in a wide range of molecular deforma-
tions, we are confident that the proposed formulation
is reliable for molecular deformations up to 40%. The
uncertainty associated with larger elongations might be
slightly larger.

The new values were also fine-tuned against the few
available experimental data, that is, against the second
virial coefficient, B(T ), values [43–45] and V–T/R rate
coefficients for N2 (1) +H2 (0) →N2 (0) +H2 (0) (here-
after indicated as (1,0)→(0,0) in short) [46] and V–
V rate coefficients for N2 (0) +H2 (1) →N2 (1) +H2 (0)
(hereafter indicated as (0,1)→(1,0)) processes [47].

The comparison in Fig. 1 shows a substantial improve-
ment in the description of the first repulsive wall with
the modified PES; differences remain in the very repul-
sive short range region, but they are not expected to
play a relevant role in the temperature range consid-
ered here.

Comparison of second virial coefficients, calculated
on the original and modified PESs by including first
quantum corrections Bql(T) to the classical estimate
Bcl(T) [48] (B(T) = Bq1(T) + Bc1(T)), with measured
values [43–45]) can be found in Figure S3 in SI and
shows an excellent agreement of both PESs, with an
improvement at medium and high temperature upon
the use of the modified one. This can be explained
by considering that negative second virial coefficient
values, at low T, mostly depend on the interaction
anisotropy in the attractive part of the PES, which is
substantially unchanged. On the other hand, at high
T, positive B(T) values probe the potential first repul-

sive region, where changes of the parameters were most
effective.

Furthermore, the spherical average of the modified
potential remains very similar to the original one, both
in the well depth and at long-range. This is an impor-
tant point, because it ensures the correct reproductions
of the maximum glory quantum interference resolved
in scattering experiments and of the absolute value of
the measured total integral cross section. Note that the
negative area of such potential defines the capture prob-
ability leading to the formation of precursor states of
inelastic processes.

V–T/R rate coefficients for the process (1,0)→(0,0)
calculated by the MQC method, as described in the fol-
lowing Section, on the modified PES (red line in Fig. 2)
present a significant better agreement with experimen-
tal data of Ref. [46] (the experimental uncertainties are
not available). However, they still tend to overestimate
the experimental values by ca. 50% quantitatively. The
figure also reports results obtained using the SSH the-
ory [1] (dashed green line), which explicitly uses the
experimental data in the fit.

For the V–V (0,1)→(1,0) process, the only measured
data are available at 295 K with the value of 6.41·10−17

[47]. Rate coefficients calculated by the MQC approach
on the original and modified PESs at the same tem-
perature amount to 8.43·10−17 and 4.42·10−17, slightly
overestimating and underestimating, respectively, the
experiment. Figure S4 in the SI reports the rates in the
whole temperature range investigated here and the val-
ues calculated by the SSH theory [49], fitted on the only
available measured rate. It is worth noting how much
the MQC and the SSH calculated rate coefficients differ
at very low and high temperatures, with discrepancies
larger than one order of magnitude.

2.2 The mixed quantum-classical method

The nuclear dynamics calculations of cross sections
and rate coefficients were carried out with the MQC
method, introduced by Billing [9] in the version devel-
oped by us and used to describe diatom–diatom colli-
sions [6–8]. The method is based on the simultaneous
solution of the time-dependent Schrödinger equation for
the diatom vibrations (by solving a close coupled equa-
tions system) and the classical Hamilton equations of
motion for the remaining degrees of freedom. Details of
the method are reported in the above-mentioned ref-
erences and the SI of the present paper. Here, we only
report the settings specifically used in V–V and V–T/R
calculations. V–V and V–T/R rate coefficients were
obtained by coupling up to 121 initial vibrational states,
needed to describe the highly excited vibrational states,
and by starting from an initial diatoms separation dis-
tance equal to 15 Å and 50 Å for V–V and V–T/R
processes, respectively. Forty-seven different values of
total classical energies, comprised between 45 cm−1 and
80,000 cm−1, were considered, and a maximum value
of the impact parameter of 9 Å is used. Such settings
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Fig. 2 Rate coefficients for the transition (1, 0)−→(0, 0)
calculated on original PES (dash-dot black line) and modi-
fied PES (full red line). Experimental data of Ref. [46] (blue
squares) and results calculated by the SSH theory [1] (green
dash line) are also reported

should ensure an accuracy of the MQC rates within
20%.

All the vibrational deactivation processes (Eqs. 1 and
2) are exothermic. However, by considering the detailed
balance principle (microscopic reversibility), the rate
coefficients k′endo for the reverse endothermic vibra-
tional excitation processes can readily be obtained as

k′endo = kexo × exp
(

−|ΔE|
kBT

)
, (8)

where ΔE is the energy mismatch between the ini-
tial and final vibrational states (i.e., the endothermic-
ity) in the process. V–V transitions (Eqs. 3 and 4), on
the other hand, might be exothermic or endothermic
depending on the initial N2 and H2 vibrational quan-
tum numbers. In such cases, the rate coefficients for
the reverse reactions can also be calculated by apply-
ing microscopic reversibility through the same Eq. 8.

2.3 Neural network and Gaussian process models

Two different Machine Learning (ML) approaches are
employed for rate coefficient predictions in terms of
temperature and initial vibrational nitrogen quantum
number v: the Gaussian Process (GP) and the Neu-
ral Network (NN) techniques, both known to perform
well [23,30,31]. In all Supervised Learning methods, the
complete dataset is split into a training and a test set.
The training set sample is used to train the model to
learn how to classify or predict a specific value. The test
set is instead used to test the capability of the model to
predict the values or to classify the new data, that is,
how well the model can generalize [50]. Specifically, we

are here interested in regression models that should be
able to correctly predict variables (i.e., the label, in our
case log10(k), see the following) given some descriptors
(i.e., features, in our case temperature T and quantum
number v).

GP uses a set of prior random Gaussian functions to
predict the correlation between the Gaussian distribu-
tions at two nearby configurations. A Gaussian process
is specified by a covariance/kernel function. Here, we
used a Matern kernel, which is a generalization of the
RBF (Radial basis function), having an extra parame-
ter (i.e., ν) in the Matern covariance function to specify
the smoothness of the resulting function. We employed
the GP model as implemented in scikit-learn [51] and
a ν = 5/2, as recently done in Ref. [25], where they
used GP to predict the energy transfer cross sections
in CO–CO collisions for different vibrational quantum
numbers and collision energies.

Neural Networks (NNs), also known as artificial neu-
ral networks (ANNs), are sets of node layers, containing
an input layer, one or more hidden layers, and an out-
put layer mimicking the human brain [52]. Each node
(i.e., artificial neuron) is connected to another having
associated weight and threshold (i.e., the node is acti-
vated only when the output of any individual node is
above the specified threshold value). ANNs are well-
known Supervised ML techniques at the heart of deep
learning algorithms. In this work, we use a NN model
developed using TensorFlow [53] (see Fig. S8), made of
an input bi-dimensional layer and an output layer of a
single node. The NN model employs four hidden layers
having: 32, 64, 128 and 32 units starting from the first
to the last. A linear activation function for the input
and output layers and a rectified linear activation func-
tion (ReLU) in all the hidden layers are used. The NN
scheme has been trained for 50 epochs. We also tested
a smaller NN model, hereafter indicated as NN2, made
of only two hidden layers of 100 units each. NN2, whose
performance is only shown in the Supporting Informa-
tion (see Figs. S9–S12), is much less efficient than both
the GP and NN models described here, indicating that
oversimplified NN approaches cannot adequately han-
dle predictions and a certain degree of complexity, in
terms of hidden layers, is needed to get reliable results.
All the ML code developed within this work is freely
available at Ref. [54].

3 The V–V and V–T/R rate coefficients
datasets

The modified PES, tested on its ability to reproduce
experimental data of different type, was then used to
build a large and accurate dataset for V–V and V–T/R
rate coefficients of the N2+H2 system.

Here, we consider a wide range of temperature values
between 100–5000 K as well as a large range of initial
vibrationally excited states of N2 and H2. The deter-
mination of so many rate coefficients requires a great
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Fig. 3 V–V rate coefficients for processes N2(v)+H2(w + 1)→ N2(v + 1)+H2(w), with w = 0, 1, 2, 4, 6, 9, as a function of
the vibrational quantum number v at different temperature values

computational effort, and, to the best of our knowl-
edge, they are not included in any available database
of the title system. However, it is worth noting that
an estimate of V–V and V–T/R rate coefficients using
the SSH theory and scaling laws was made in ref. [49]
and the obtained values were used, together with rates
for electron impact, chemical reaction and wall influ-
enced processes, to model DC glow discharges and post-
discharges in N2/H2 mixtures. We will therefore com-
pare the rates estimated according to the simple model
formulation in [49], as described in Appendix A, with
those explicitly calculated with the MQC method.

All the datasets calculated here were deposited in
Zenodo and are freely accessible [55].

The rate coefficients for V–V processes N2(v)
+H2(w+1)→ N2(v + 1)+H2(w) (Eq. 3), with w =
0, 1, 2, 4, 6, 9, as a function of the initial quantum num-
ber v at T= 100, 300, 500, 1000, 3000, 5000 K are
reported in Fig. 3. Due to the difference in the mag-

nitude of the vibrational quanta of N2 and H2, rate
coefficients for this process increase with w, i.e., with
the vibrational excitation of molecular hydrogen, which
reduces the energy mismatch. As a matter of fact, pro-
cesses with w = 0 are strongly exothermic (of about
2000 cm−1), whereas when w = 9, we have quasi-
resonant energy exchange at v ≈ 12. When the energy
mismatch is large (i.e., w = 0, 1, 2), the trend of the
curves in Fig. 3 is approximately the same at all tem-
perature values: for very small v, there is a small
increase in the rates as v grows and then, the rates
reach a plateau for higher v values. For these processes,
a marked rise in the rates as temperature increases
can also be observed. When H2 vibrational excitation
grows (bottom panels in Fig. 3), the trend for high-
temperature rates remains that previously described.
At low temperatures, instead, there is first an increase
(at low v) and then, a marked decrease (at high v)
in the rates. The largest rates are found in the cor-
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Fig. 4 V–V rate coefficients for asymmetric processes N2(v + 2)+H2(w)→ N2(v)+H2(w + 1), with w = 0, 1, 2, 3, 7, 10, as
a function of the vibrational quantum number v at different temperature values

respondence of exothermic V–V exchanges, presenting
a small energy mismatch. Indeed, as observed experi-
mentally [56] and theoretically [6–8] in diatom–diatom
collisions for other systems, for quasi-resonant processes
the enhancement of the rate coefficients becomes very
relevant at the lowest temperature, producing an anti-
Arrhenius kinetic behavior (i.e., larger rates at lower
temperature). This phenomenon can be explained as
the result of an effective trapping in the potential well
at low collision energies, which determines a strong cou-
pling of the diatomic vibrational wavefunctions, favor-
ing the exchange of vibrational quanta.

As mentioned before, we report here, for the cases
w = 0 and w = 9, the rate coefficients calculated by
the analytical expression based on SSH theory given in
[49] and described in Appendix A, which can be found
as dashed lines in the first and last panel of Fig. 3.
The qualitative trend of the curves is very similar to
that of MQC rates. However, the quantitative differ-

ence is extremely large often amounting to more than
one order of magnitude for w = 0 and two or three
orders for w = 9. The only agreement is indeed found
for the (0,1)→(1,0) process rate coefficient at 300 K,
i.e., very close to the experimental value the SSH model
was calibrated upon.

Figure 4 reports the rate coefficients for asymmet-
ric V–V processes N2(v+2)+H2(w)→ N2(v)+H2(w+1)
(Eq. 4), with w = 0, 1, 2, 3, 7, 10, as a function of the
initial quantum number v at T= 100, 300, 500, 1000,
3000, 5000 K. In this case, the basic trends are similar
to those found for process (3), but they are enhanced:
rates become larger as w increases and for the high-
est temperatures investigated here, i.e., 3000 and 5000
K, the behavior of the curves is the same as in Fig. 3.
However, at lower temperatures, the behavior found in
the bottom panels of Fig. 3 is emphasized: there is an
increase followed by a strong decrease in the rates as
v increases at a fixed temperature, the highest rates
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can again be found for nearly resonant processes. The
latter processes show the smallest dependence on tem-
perature: the rate coefficients are close at almost all
temperatures. The peak in the rates is shifted to higher
v values as w increases. Far from this peak, the rates
strongly depend on temperature, particularly when we
consider endothermic energy exchanges, which occur at
high v values. Other rate coefficient data for generic
V–V processes of Eqs. 3 and 4, with different v, w and
temperature values, are given in [55].

In the first panel of Fig. 4, we also report the com-
parison with the rate coefficients calculated by the SSH
theory as described in the Appendix A and used in
Refs. [16,49] to model N2/H2 plasma in DC discharges.
It can be noticed again that, though the qualitative
trend is somehow similar to that of MQC rates, the
rates evaluated by the SSH formulation present several
orders of magnitude differences, particularly for high
vibrationally excited nitrogen.

The behavior of rate coefficients for V–T/R processes
N2(v)+H2(0)→ N2(v − Δv)+H2(0), with Δv = 1, 2, 3,
as a function of the initial quantum number v at T=
100, 300, 500, 1000, 3000, 5000 K is reported in Figs. 5,
S5 and S6. The results show that, though the rate of
V–T/R processes is low at low temperatures (being gen-
erally some orders of magnitude smaller than V–V pro-
cesses for the same initial vibrational states), their effi-
ciency rapidly grows by increasing the temperature, and
they become comparable with high-temperature values.

Additional rate coefficients for general V–T/R pro-
cesses of the kind N2(v)+H2(w)→ N2(V − Δv)+H2(w)
(Eq. 1) can be found in the Zenodo repository [55].

We also evaluated V–T rate coefficients for Δv =
1 by using the scaling law proposed in ref. [49] and
here reported in Appendix A. The results are shown in
Fig. 5: they are comparable with MQC rates only for
the v = 1 case. The difference becomes rapidly huge as
v increases.

This evidence, together with the results obtained for
V–V rates, confirms that the use of too simple first-
order models, such as the SSH theory, or, even worse,
of scaling laws, can lead to enormous discrepancies with
directly calculated data, and, therefore, their use should
be avoided. Nowadays, the availability of powerful com-
puters and methods allowing the calculation of large
datasets with reasonable computational time and load
permits us to rely on much more accurate data.

V–T/R processes involving vibrational relaxation of
molecular hydrogen, i.e., N2(v)+H2(w)→ N2(v)+H2(w−
Δw) (Eq. 2), are less important in plasma applications
than those involving the vibrational relaxation of nitro-
gen. Nevertheless, we calculated rate coefficients for the
process N2(0)+H2(w)→ N2(0)+H2(w−1) as a function
of the initial quantum number w at T= 100, 300, 500,
1000, 3000, 5000 K and the results can be found in Fig.
S7. Rate coefficient data for additional generic V–T/R
processes with different v values and involving hydrogen
relaxation are also given in [55].

Fig. 5 V–T/R rate coefficients for
N2 (v) +H2 (0) →N2 (v − 1) +H2(0) processes as a func-
tion of the vibrational quantum number v at different
temperature values

4 V–T/R rate coefficients by machine
learning

The results reported in this section are intended to
be preliminary, as they only concern the processes
(5), for which the predictive performances of the ML
approaches described in Sect. 2.3, i.e., Gaussian Pro-
cess (GP) and Neural Network NN, were analyzed
and compared in terms of the associated MSE (Mean
Square Error) and computational time. It is worth not-
ing that, though GP approaches automatically compute
an intrinsic associated standard deviation for each pre-
dicted point, this is not the case for NN method. There-
fore, in order to compare GP and NN on the same
ground, in the present work we only evaluate and ana-
lyze MSE for the test set.

A more extensive ML investigation, covering not only
all V–V and V–T/R processes for the title system, but
also the use of different parameters or features for train-
ing the sets is in progress. It was indeed found, for
instance, that results obtained by using rate coefficients
k or instead log10(k) values might produce changes in
the performance, the magnitude and direction of the
changes being different with the methods, as could be
expected because the models rely on different functional
forms. Here, we chose to use log10(k) data which, at
least for GP and NN models shown here, produced bet-
ter results in the whole range of T and v investigated.

The capabilities of the two ML models to predict rate
coefficients (at temperature values and initial vibra-
tional quantum numbers v not included in the training
set) were tested by considering four different splitting
scenarios.

In the first one, we remove all the rate coefficients
having the same temperature, one temperature at a
time, using all the other points as a training set and the
removed ones as the test set. The MSE obtained for the
three models is reported as a function of the removed
temperature value in the three panels of Fig. 6, corre-
sponding to processes (5) Δv=1, 2, 3, respectively. The
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Fig. 6 Test set MSE values as a function of temperature: log10(k) values corresponding to a specific temperature T were
removed from the training set and constitute the test set. The three panels correspond to processes (5) with Δv = 1, 2, 3,
respectively

MSE slightly grows with Δv, but is always very small
for NN and GP (for T≤ 2000 K, the MSE becomes rel-
evant). A slightly larger error at very low temperatures
can be found for GP and NN, but the absolute mag-
nitude remains small. Specifically, the error associated
with the GP model is practically negligible, showing the
best performance in this case.

The other scenarios concern the performance of the
ML models to predict rate coefficients for processes (5)
corresponding to initial quantum numbers v different
from the MQC calculated ones. Indeed, as mentioned
before, this is the principal target for the use of ML
techniques since extending the direct calculation of rate
coefficients to different temperature ranges is much less
demanding than to different vibrational quantum num-
bers.

In the second scenario, we therefore proceed simi-
larly: we split the full set into a training set made of all
data points except those corresponding to one specific v
value and a test set made of the latter. The three panels
of Fig. 7 report the MSE results for each specific v for
processes (5) with Δv = 1, 2, 3, respectively. The trend
shown in the panels is basically similar to that of Fig. 6:
the magnitude of MSE is relatively small for all models.
The error tends to grow as Δv increases and, above all,
at the edges of the investigated range of v values. For
intermediate v, the MSE associated with GP is negli-
gible and smaller than that for NN. However, for the
highest v values investigated here (where the training

set consists of more sparse data points), the predictive
capability of GP drops.

A further comparison was made by splitting the full
set into a training and a test sets made of randomly
selected points. The number of random points to be
moved from the training to the test set was progres-
sively increased from 5% up to a maximum of 50% of
the full MQC calculated set. The MSE results are shown
in panels of Fig. 8 for processes (5) with Δv = 1, 2, 3,
respectively, and show some of the trends found before:
a growing MSE as Δv grows, and the GP model per-
forming slightly better than NN. The main message
from this scenario can, however, be found concerning
the MSE behavior as a function of the percentage of
randomly selected eliminated points. In general, the
error tends to remain very small when up to 20 % of
points are removed. When this percentage increases,
we have a larger MSE in general, but this value does
not necessarily grow with the percentage, i.e., the MSE
seems to strongly depend on which points are removed:
we might have 50% data points removed from the train-
ing set, but if they are effectively distributed, we will
have smaller MSE than with more data points in the
training set distributed less regularly.

To better analyze this issue, we considered a fourth
scenario built by removing rate coefficients correspond-
ing to initial vibrational quantum numbers v in a sys-
tematic fashion. Specifically, Sets 1 and 2 were obtained
by moving alternate data points from the training to the
test set, that is, points corresponding to v = [2; 4; 6; 8;
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Fig. 7 Test set MSE values as a function of initial vibrational quantum number v: log10(k) values corresponding to a
specific v were removed from the training set and constitute the test set. The three panels correspond to processes (5) with
Δv = 1, 2, 3, respectively

Fig. 8 Test set MSE values for the two models obtained by removing an increasing number of random points (5% to 50%)
from the training set. The three panels correspond to processes (5) with Δv = 1, 2, 3, respectively
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Fig. 9 The test set MSE values for the two models obtained by removing an increasing number of systematically selected
points, corresponding to specific v values, from the training set, i.e., Set1, removed v = [2; 4; 6; 8; 10; 14; 18; 22; 26; 30;
35], Set2, removed v = [1; 3; 5; 7; 9; 12; 16; 20; 24; 28; 32; 40], Set3, removed v = [2; 3; 5; 6; 8; 9; 12; 14; 18; 20; 24; 26; 30;
32], Set4, removed v = [1; 2; 4; 5; 7; 8; 10; 12; 16; 18; 22; 24; 28; 30; 35; 40]. The three panels correspond to processes (5)
with Δv = 1, 2, 3, respectively

10; 14; 18; 22; 26; 30; 35] for Set 1 and v = [1; 3; 5; 7;
9; 12; 16; 20; 24; 28; 32; 40] for Set 2 (which does not
correspond to even and odd points, because the MQC
rate coefficients do not cover all v values). Sets 3 and
4 were obtained by moving 2 data points out of 3 from
the training to the test set, i.e., Set 3 = [2; 3; 5; 6; 8;
9; 12; 14; 18; 20; 24; 26; 30; 32] and Set 4 = [1; 2; 4; 5;
7; 8; 10; 12; 16; 18; 22; 24; 28; 30; 35; 40].

The resulting MSE is reported in panels a, b, c in
Fig. 9 for processes (5) with Δv = 1, 2, 3, respectively.
It can be noted that, with some exceptions, the best
performance can be obtained when the rate coefficients
for values at the edges (i.e., v = 1 and v = 40) are
kept in the training set, that is, for Set 1 and 3, the
difference between removing one point out of 2 or two
points out of 3 making a smaller impact on the MSE
values. This pattern is more regular for the GP model
and more unpredictable for NN. As in all other scenar-
ios although NN is presenting a small MSE, it usually
gives slightly larger errors than GP except when the
prediction involves rate coefficients corresponding to v
values larger than the maximum used in the training
set, i.e., when an extrapolation rather than an interpo-
lation of the values is requested.

From the present analysis, it emerges that, regardless
of the considered scenario, both NN and GP provide
reliable results with very small associated MSE, with
GP generally performing better in a predictable way.
The only exception to this behavior consists of GP pre-
dictions when extrapolating the rate coefficients for v

values larger than those contained in the training set
(see Fig. 7 and selected sets in Fig. 9), in such cases
NN outperforms GP.

Given the above results, comparing the computa-
tional time required to train GP and NN models might
be useful. The wall times needed in examples of the sce-
narios investigated above (quite obviously, the wall time
depends on the training set magnitude) are reported
in Table S1 in SI, which invariably shows that NN is
much faster than GP in all cases by one or two orders
of magnitude. This is not an issue when the magnitude
of the training set is not too large since the training is
done only once, but it might become important when
larger datasets, depending on an increased number of
variables (features), are used, as could be the case of
complete datasets for the general V–T/R and V–V pro-
cesses (1–4).

As a final step, we built the complete table of rate
coefficients for the process (5) covering all the v values
up to v = 40 using the full set as the training set. The
complete dataset of MQC calculated and ML (GP or
NN) predicted rates can be found in Zenodo [55]. In
Fig. 10 panels (a) and (b), we report the comparison
between the ML predictions using the full training set
and the reference MQC rates specifically computed for
such purpose, for processes (5) with v = 34 and v = 36,
respectively. The results show a very good agreement
between both GP and NN rates with MQC ones: the
match of GP and MQC rates is excellent for the whole
temperature range and all Δv = 1, 2, 3. NN and MQC
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Fig. 10 NN and GP rate coefficient predictions for v = 34 (left panel) and v = 36 (right panel) as a function of temperature.
The reference MQC calculated rates are shown for comparison

rates instead slightly differ at the highest temperature
for Δv = 2 and Δv = 3. The difference is, however,
within 25 %.

5 Conclusions and final remarks

In this work, we have applied a consolidated strat-
egy developed by our research team to calculate large
datasets of V–V and V–T/R rate coefficients in a
wide temperature range for the N2-H2 collisions. The
methodology relies on an accurate non-reactive PES
(built according to the ILJ model) able to capture
relevant effects occurring at long range, in the van
der Waals well and in the first repulsive region of
the interaction. The PES was fine-tuned and tested
against available experimental data (second virial coef-
ficients and few measured V–V and V–T/R rates) and
was subsequently exploited in the dynamical calcula-
tions, performed by a MQC method, whereby the full
dimensionality of the system is considered and quan-
tum effects associated with the vibrational motion and
roto-vibrational coupling are recovered.

In particular, we calculated V–V and V–T/R rates
for processes (1–4) corresponding to several initial
vibrational states up to v = 40 for molecular nitro-
gen and w = 10 for molecular hydrogen. The results
were compared to the rate coefficients derived from
first-order perturbation SSH theory or scaling laws,
which are generally used in modeling non-equilibrium
systems and plasma environments in different discharge
conditions. The comparison is striking: with the excep-
tion of processes in the proximity of the experimental
data, which were in fact used to fit the SSH parame-
ters, discrepancies between calculated values and those
obtained by the approximate SSH formulation are huge,

often amounting to several orders of magnitude. This
outcome poses serious doubts about the use of such
approaches for modelling purposes.

In addition, we present a detailed, though prelimi-
nary, analysis on the use of different ML techniques and
models for predicting rate coefficients corresponding to
initial vibrational states not included in the direct cal-
culations. It turns out that the most robust method
is the GP model (also employed in Ref. [25], to the
best of our knowledge the only previous attempt to use
machine learning to produce rate coefficients for V–V
processes), which gives negligible MSE values for inter-
polation. The NN model also gives very small MSE val-
ues (though in a less predictable fashion than GP) and
presents two additional interesting features: it seems to
lead to better results for extrapolating rates which fall
just outside the calculated vibrational range, a case for
which the present GP model does not perform too well;
and the computational time needed for the training of
the datasets is generally an order of magnitude smaller
than for GP. This might not be an issue for the specific
process (5) investigated here, consisting of a relatively
small dataset. However, in the prospect of using ML to
produce rate coefficients for the general process:

N2(v) + H2(w) −→ N2(v′) + H2(w′), (9)

i.e., starting from a dataset with increased dimensional-
ity (depending on 4 vibrational quantum numbers), the
question of the associated computational time might be
significant. The use of GPUs instead of CPUs, as well
as a systematic optimization of the NN hyperparame-
ters, can further speed up the training process for NN
models [57]. Work on comparing the performance of ML
methods depending on the features (e.g., cross sections
(collision energies) instead of rate coefficients (temper-
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ature), etc.) and on optimizing hyperparameters in the
models is currently in progress.
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Appendix A: Rate coefficients by SSH the-
ory and scaling laws

An analytical expression for the rate coefficients of V–
V type processes: N2(v)+H2(w+1)→ N2(v +1)+H2(w)
(Eq. 3) is given as equation (A2) in Gordiets et al. [49],
i.e.:

kv,v+1
w+1,w = Q0δ

H2
w δN2

v Fvw (1.5 − 0.5Fvw) , (A1)

and

Fvw = exp

(

− A

T 1/2

EH2
w+1 − EH2

w − EN2
v+1 + EN2

v

EH2
10 − EN2

10

)

,

(A2)

δH2
w = (w + 1)

(
1 + w

ΔEH2

EH2
10

)
, (A3)

δN2
w = (v + 1)

(
1 + v

ΔEN2

EN2
10

)
, (A4)

where ΔEH2 (or ΔEN2) and EH2
10 (or EN2

10 ) are, respec-
tively, the energy deficits of vibrational levels w + 1, w
(or v + 1, v) and 1, 0 for H2 (or N2). Moreover, Q0 =
1.9×10−13

(
T
300

)3/2
and A = 144 are determined in such

a way to obtain a good agreement with the experimen-
tal rate coefficient [47] of the process N2(0) + H2(1) →
N2(1) + H2(0) at T = 295 K.

Analytical expression of the rate coefficients for
the V–V asymmetric processes, N2(v + 2)+H2(w)→
N2(v)+H2(w+1) (Eq. 4), is also given in Ref. [49] by
replacing EN2

10 with EN2
20 , EN2

v+1 with EN2
v+2 and δ′

v =
1
2δN2

v

(
δN2
v + 1

)
with δN2

v in Eq. (A1). Moreover, Q0 =

2.4 × 10−15
(

T
300

)3/2
and A = 37 in Eq.A1 are deter-

mined by Gordiets et al. [49] according to SSH theory
[2].

Analytical expression for the V–T/R rate coefficients
for processes N2(v)+H2(w)→ N2(V −1)+H2(w) (Eq. 1)
was given by using a scaling law type expression:

kV T
v+1→v ≈ kV T

1→0(v + 1)
(

1 +
ΔE

EN2
10

v

)
exp

(
4.34
T 1/3

v

)
,

(A5)

where ΔE is the energy deficit of vibrational levels v +
1, v of N2.
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40. F.M. Tao, Y.K. Pan, Möller-Plesset perturbation inves-
tigation of the he2 potential and the role of midbond
basis functions. J. Chem. Phys. 97, 4989 (1992)

41. S.F. Boys, F. Bernardi, The calculation of small molecu-
lar interactions by the differences of separate total ener-
gies some procedures with reduced errors. Mol. Phys.
19, 553 (1970)

42. H.-J., Werner, P.J., Knowles, G., Knizia, F.R., Manby,
M. Schütz, A Package of Ab initio Programs. Molpro
(Version 2012)

43. P. Zandbergen, J. Beenakker, Experimental determina-
tion of the volume change on mixing for gaseous N2-H2,
Ar-H2 and Ar-N2 between 170 and 292 k up to 100 atm.
Physica 33(2), 343–365 (1967)

44. J.R. von, J. Beenakker, Bestimmung des zweiten viri-
alkoeffizienten b12 von gasgemischen. Physica 22(6–12),
869–879 (1956)

45. J. Brewer, G.W. Vaughn, Measurement and correlation
of some interaction second virial coefficients from- 125◦

to 50◦ c. i. J. Chem. Phys. 50(7), 2960–2968 (1969)
46. D.R. White, Vibrational relaxation of N2 in N2-H2 mix-

tures. J. Chem. Phys. 46(5), 2016–2017 (1967)

47. J.F. Bott, Vibrational energy exchange between H2 (v=
1) and D2, N2, HCl, and CO2. J. Chem. Phys. 65(10),
3921–3928 (1976)

48. R.T. Pack, Anisotropic potentials and the damping of
rainbow and diffraction oscillations in differential cross
sections. Chem. Phys. Lett. 55(2), 197–201 (1978)

49. B. Gordiets, C. Ferreira, M. Pinheiro, A. Ricard, Self-
consistent kinetic model of low-pressure-flowing dis-
charges: I. Volume processes. Plasma Sources Sci. Tech-
nol. 7(3), 363 (1998)

50. T. Jiang, J.L. Gradus, A.J. Rosellini, Supervised
machine learning: a brief primer. Behav. Therapy 51(5),
675–687 (2020)

51. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-
learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

52. S. Agatonovic-Kustrin, R. Beresford, Basic concepts of
artificial neural network (ANN) modeling and its appli-
cation in pharmaceutical research. J. Pharm. Biomed.
Anal. 22(5), 717–727 (2000)

53. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.
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